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Abstract 
The use of Lidar (Light Detection and Ranging), an active light-emitting 
instrument, is becoming increasingly common for a range of potential 
applications. Its ability to provide fine resolution spatial and vertical 
resolution elevation data makes it ideal for a wide range of studies. This 
paper demonstrates the capability of Lidar data to measure sky view factors 
(SVF). The Lidar data is used to generate a spatial map of SVFs which are 
then compared against photographically-derived SVF at selected point 
locations. At each location three near-surface elevations measurements were 
taken and compared with collocated Lidar-derived estimated. It was found 
that there was generally good agreement between the two methodologies, 
although with decreasing SVF the Lidar-derived technique tended to over-
estimate the SVF: this can be attributed in part to the spatial resolution of 
the Lidar sampling. Nevertheless, airborne Lidar systems can map sky view 
factors over a large area easily, improving the utility of such data in 
atmospheric and meteorological models. 

 
1. Introduction 
Geospatial information has become increasingly important to government and 
commercial agencies for a range of applications. This includes the collection, 
processing and application of space-height data derived from airborne Lidar sensors. 
Lidar (also know as airborne laser scanning; ALS) provides high density, high-
resolution, accurate 3D point data acquisition and makes directly the availability of 3D 
points in object space (Habib et al, 2005). Airborne lidar in particular provides one of 
the most effective and reliable means of terrain data collection. A full review of Digital 
Elevation Model (DEM) generation techniques from LIDAR can be found in Liu 
(2008). 

The generation of DEMs is not new: digital data bases have been digitised from 
map data, which in turn had been generated through ground surveys. However, the level 
of detail on these DEMs was typically low, and could only be used to provide crude 
sky-view information. In addition, such DEMs were generated to represent the earth 
surface, rather than the actual surface. More recently large-area DEMs have included 
those derived from Shuttle Radar Topography Mission (SRTM; Berry et al. 2007) with 
a best resolution of 1 arc-second (~30 m) or the Advanced Spaceborne Thermal 
Emission and Reflectance Spectrometer (ASTER) as described by Hirano (2003).  
Fisher and Tate (2006) provide an overview and discussion of the errors associated with 
DEM generation. 

Lidar-generated DEMs in particular, have undergone significant development in 
the last 10-15 years. Interest in its ability to capture higher levels of detail than satellite-
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derived instrumentation has grown as the level of detail in associated imagery has 
increased. In particular, using Lidar to obtain elevation data has a number of advantages 
including the ability to survey large areas quickly with a high-level of detail. It can 
provide a comprehensive survey, even in areas of limited or restricted access, while the 
resulting terrain model can be easily combined with other geospatial information. Lidar 
therefore provides a cost-effective means for the collection and exploitation of accurate 
height information.  

Although Lidar is very adept at obtaining data for DEM generation it is unable 
to penetrate water, and often cannot retrieve over water due to the specular reflection of 
the laser beam off the water surface. In addition, it has difficulty in retrieving 
unambiguous ground levels under dense vegetation canopies, although winter-time 
provides better coverage due to thinner tree canopies. However, a number of studies 
have shown that Lidar has the ability to retrieve vegetation height: through the analysis 
of the first and last return of the laser pulse the height of vegetation and trees vs the 
surface may be obtained (see Kraus and Pfeifer, 1998). Indeed, Devereux et al. (2005) 
and Suarez et al. (2005) showed that archeological features could still be identified 
under woodland. 

The drive for greater spatial resolution has greatly enhanced/improved the 
potential for site-specific exploitation of these data. Consequently, Lidar has become an 
invaluable tool in the observation of the Earth and, through combination with other data 
sets, the exploitation of Earth observation data sets in general.  It has found uses in 
landscape mapping, identifying archeological features (e.g. Bewley et al. 2005; 
Devereux et al. 2008), while Howard et al. (2008) studied archeological remains on the 
flood plain of the Trent Valley. Applications in the physical environment have included 
river environments. Charlton et al. (2003) investigated the cross-profiles of gravel-beds 
in rivers, comparing the Lidar surface with a surface survey. They found that vegetation 
and water depth affected the accuracy of the Lidar data, although for unvegetated 
exposed bars, it was capable of providing high-resolution information. 

The ability of Lidar to obtain high-resolution 3D data creates the potential to 
calculate sky-view factors (SVF) from the derived DEM. The SVF is a measure of the 
amount of sky visible at a particular location: it is a dimensionless parameter, ranging 
from 0 (obscured view) to 1 (unobscured view). SVFs were identified by Chapman and 
Thornes (2006) as a key geographical parameter affecting surface radiation budgets, and 
therefore critical in the accurate monitoring and forecasting of surface temperatures. 
Their results show that SVF plays a dominant role in the prediction of road surface 
temperatures. However, despite its importance, the calculation of SVFs is challenging. 
Conventional measurements have relied upon geometry: simple trigonometry from site 
surveys establish building/object heights and subsequently lines of sight (e.g. Oke 
1981). However, surveying techniques are somewhat limited and time consuming, and 
often rely upon a number of samples to calculate the full SVF. Use of photographic 
techniques with fish-eye lenses have greatly aided the collection of the initial data, 
allowing a full hemisphere to be viewed at once. Subsequent processing of the data is 
possible through manual analysis (e.g. Steyn, 1980) or through automated image 
processing techniques (e.g. Blennow, 1995; Grimmond et al. 2001; Chapman et al. 
2001). Although “automated”, such techniques require supervision and the separation of 
scene from sky is not always clearly delineated. In particular, the quality of the 
photographic recording of the photography is critical in the final analysis: consistent 
light levels are ideal, due to problems such as variations in light level (due to cloud), 



pixel saturation (due to direct sun) etc. Some of these issues can be partially resolved by 
using non-visible imagery (e.g. Postgard & Nunez, 2002; Chapman et al. 2007).  Many 
applications require the batch processing of imagery for thousands of sites and thus, 
semi-automated techniques which still require user-intervention are not ideal.  

Another technique that has attracted some attention for the derivation of SVF is 
the use of Global Positioning System (GPS) satellite visibility. This method relies upon 
the premise that the number of satellites “visible” to the GPS receiver at any location is 
related to the amount of open sky. In a pilot study (Chapman et al. 2002) using 112 sites 
it was found that 88% of variance in the SVF in urban areas could be explained by the 
GPS signals. A further study by Chapman and Thornes (2004) used an artificial neural 
network (ANN) to model the SVF based upon GPS signals. They noted that issues arose 
relating to lag/lead times for the GPS receiver to attain (and discard) signals, possibly 
due to the blocking effects of the buildings or vegetation. In urban areas the GPS-ANN 
technique explained 69% of the variance or photographically-derived SVF, but in rural 
areas this fell to 45%. This could be explained primarily due to greater image 
complexity with a greater fraction of vegetation cover (and variation), leading to greater 
segmentation of the SVF compared with the hard-engineering of urban areas. Thus 
land-use cover is itself a controlling factor in the accuracy of SVF retrievals. 

In the quest for continuous and automated measurements of SVF, the most 
recent approaches have largely been developed in a GIS environment.  Although this 
ray tracing approach is not new (e.g. Souza et al. 2003; Teller & Azar, 2001), this now 
appears to be the preferred choice for calculating SVF for large areas (e.g. Unger, 
2009).  Studies have utilised a variety of vector and raster datasets for calculation (e.g. 
Gal et al. 2009), however the accuracy of the input data is crucial.  To date no SVF 
study has directly utilised Lidar as a potential source of high resolution 3D raster data, 
therefore this paper investigates the usefulness of Lidar-derived DEMs in the generation 
of SVFs compared with existing photographic techniques. The potential of the Lidar 
system is to generate a spatial map of SVF which can be compared with point-location 
SVF as derived from current techniques: this ability to capture the spatial variability of 
SVF has significant advantages when used in the calculation of local and regional-scale 
energy budgets. 
 
2. Methodology 
A study area in southeast Cornwall (UK) was selected for the comparison between the 
photographic SVF retrieval and the Lidar SVF retrieval (figure 1). This region contains 
a diverse range of land uses including sea, urban, rural and woodland, providing a good 
range of SVF values. Lidar data was obtained from the UK Environment Agency 
covering an area of 2 x 2 km. The data has a nominal horizontal resolution of 2 m: 
heights were provided in mm, although the absolute accuracy is typically in the region 
of 60-160 mm. Figure 2 shows the area covered by the Lidar data: light areas indicate 
higher regions, which dark areas represent lower regions. In addition to the general 
topographical features, man-made features can be observed, such as hedgerows, 
buildings and roads. A suitable transect was selected and measurements taken at 30 
locations that were representative of land uses in this area. The positions of the sample 
sites were found by GPS to enable co-registration of the surface and Lidar data sets. 

Surface SVF were generated from digital photographs taken with a Nikon N950 
and Nikon fish-eye lens attachment. At each location, photographic imagery was taken 
at heights of 0, 1 and 2 m above the ground using a specially devised plate for the 



surface measurement and a tripod for the 1 and 2 m measurements. The images were 
taken at dusk with no cloud cover, thus minimising problems associated with variations 
in the light levels, leading to improved classication of the ‘sky’ in the resulting images 
(Chapman et al. 2001).  Despite the abundance of techniques to calculate SVF from 
fisheye imagery in the literature, no standard technique exists.  For this reason, the 
opportunity was taken to try a new approach which would yield comparable results 
whilst providing additional information pertaining to error in the delineation process. 
Images were processed using the Erdas/Imagine software to generate an unsupervised 
classification: this was chosen due to its speed and simplicity. Each image produced 3-4 
classes that could be associated with clear sky, about 9-10 classes that were associated 
with the surface and 2-3 classes that were deemed indeterminate. Additional post 
processing was undertaken to remove any spurious ‘sky’ in the non-sky region and vice 
versa. The remaining unassigned regions may be thought of as uncertainties in the 
photographic SVF classification scheme. An example of the imagery and subsequent 
processing can be seen in figure 3: the initial image (figure 3(a)) shows the fish-eye 
photograph orientated with the centre being vertically upwards. It can be noted the there 
is some variation in the lightness of the sky caused by atmospheric scattering. 
Processing of this image through an unsupervised classification scheme produces figure 
3(b), where the grey-shades represent each of the different classes. The final image 
(figure 3(c)) is generated by combing the sky classes and non-sky classes together, 
while leaving the indeterminate classes as a measure of uncertainty. A program was 
then used to calculate the fractional coverage of the sky, indeterminate and non-sky 
pixels in each image. This methodology was applied to all 30 locations at each of the 
three heights: an example of the photographically-derived SVF with height can be seen 
in figure 4. 

The Lidar-derived SVF map was calculated using a bespoke program: for each 2 
m Lidar sample all the surrounding points are scanned and the elevation angle between 
the current location and the distant point is calculated. The level of detail required was 
based upon a number of trials, consequently the SVF factor was based upon scan 
(azimuth) angles ranged from 0 to <360 degrees in increments of 0.1 degrees, with 
points up to 1000 m distant (or edge of data region) being considered in the calculations 
(see figure 5). The choice of the maximum distance is a critical factor and needs 
changing when considering the larger-scale surface morphology, but was deemed 
appropriate for the present study. The greatest elevation angle per azimuth angle was 
recorded and used to calculate the SVF as a fraction of the maximum possible SVF 
defined for a clear hemisphere of the sky. To match the surface samples at 0, 1 and 2 m, 
the Lidar-derived SVF was also generated at these heights. The resulting Lidar-derived 
SVF map can be seen in figure 6: the light areas indicate regions of relatively open sky 
(SVF~1) while the darker regions indicate lower SVF values. Man-made features 
dominate much of the textural information with the urban areas and hedgerows being 
apparent, together with woodland. Similar maps were generated for the surface +1 m 
and the surface +2 m. Of particular note is that the Lidar-derived surface SVF map 
revealed some fine-scale noise: this appeared to be associated with the scanning. This 
had the effect of increasing the relative pixel-pixel noise, and thus affecting the 
calculated SVF at each pixel. However, this effect was drastically reduced, if no 
eliminated using the +1 and +2 m SVF maps. 

Once the Lidar SVF map had been generated, it was interrogated to retrieve the 
Lidar-derived SVF for comparison with the photographic technique. The 



latitude/longitudes from the GPS unit were converted to the British National Grid and to 
the x/y of the lidar image, whereby the SVF for the matched pixel was retrieved. In 
addition to the calculated Lidar SVF, the minimum and maximum SVF of the adjacent 
pixels were also retrieved to help determine the variability of SVF in the locality and 
account for possible geo-registration problems. 
 
3. Results 
An initial pilot study was carried out to test the ability of the Lidar data to produce 
realistic SVF data. This study compared a number of photographic SVF images with 
those generated through remapping the Lidar data to a fish-eye projection, allowing 
direct visual comparison between the two images. Examples of this comparison are 
shown in figure 7. The first example, figure 7(a), shows an enclosed area with two tall 
tower blocks being visible in both the photographic and Lidar images, although there is 
slight mis-registration probably due to imprecise ground locations (i.e. GPS error). The 
second example, figure 7(b), is of a more open situation. The relative location of the 
buildings along the horizon in both the photographic and Lidar images is well 
represented, and even individual trees can be discerned. It is also clear from figure 6 
that the Lidar generates a visually realistic and comprehendible SVF map: the lowest 
SVF values are within the urban areas and in areas of woodland where the sky view in 
limited by the proximity to buildings and tree canopies. The highest SVF values are in 
the more open regions, particularly at the top of the local relief. 

To help ascertain the ability to Lidar to quantitatively derive SVF two 
approaches were used. The first compares the Lidar-derived and the photographically-
derived SVF along the transect of the route shown in figure 1. This SVF transect is 
shown in figure 8 and includes the surface, +1 and +2 m SVF for both methodologies: 
the continuous lines in figure 8 are the Lidar-derived SVFs, while the photographic SVF 
are represented by the dots. It can be seen that the SVF varies substantially along the 
transect, with the sections through the village having the lowest and most variable 
SVFs, while the more rural areas show higher SVF: this is true for both techniques. 
Taking the Lidar-derived SVFs, the surface values have some significant pixel-to-pixel 
variations, particularly along the open lane section. As noted in the methodology 
section, there was some noticeable noise in the Lidar data, consequently when 
calculating the SVF the noise within the values of the adjacent pixels propagated 
through the to the SVF value for that pixel.  By ‘increasing’ the height of the location 
by 1 (or 2) m raises it above this local noise and provides a much smoother transect than 
at the surface. A similar effect might be expected with the photographically-derived 
SVF, where the ‘noise’ is the ‘clutter’ close the point of observation, such as benches, 
signs, low vegetation etc. However, it is not clear from figure 8 whether this is 
significant due to the single point-retrievals of SVF using this method. Nevertheless, 
there is some degree of agreement between the two methodologies shown in figure 8. 

Further comparisons of the methodologies were performed through the plotting 
of the point-location SVF: these are shown the scatterplots in figure 9(a-c). These plots 
show generally good agreements between the photographic SVF and the lidar-derived 
SVF, although with obvious deviations where more obscured sky conditions exist: R2 
values of 0.71, 0.77 and 0.77 were obtained for the 0, 1 and 2 m levels respectively. 
These results are comparable, and indeed better, than GPS techniques which have 
become a standard technique in continuous SVF measurement (e.g. Chapman & 
Thrones, 2004).  The increase between the 0 and 1m level can be attributed in part to the 



removal of noise effects in the Lidar data. The improvement in the R2 value with 
increasing height may attributed in part to two factors. First, the calculation of the SVF 
in areas where there is overhanging vegetation (i.e. woodland or close to hedgerows) 
can be difficult for both photographic and lidar techniques. In particular, there is no 
guarantee that the Lidar ‘surface’ that is being used is the actual ground surface. 
Consequently in some wooded areas the Lidar ‘surface’ could relate to the canopy, thus 
generating a higher SVF than would be measured at the ground. Second, within urban 
areas with narrow street ‘canyons’ the horizontal sampling of the Lidar is critical. In this 
study a sampling resolution of 2 m was available which was probably too coarse to 
ensure that all the narrow streets are properly resolved in the final product.  

Despite inadequacies in the generation of SVF from photographic imagery the 
level of uncertainty is relatively small. It was found that using the unsupervised 
classification scheme and post-processing the highest degree of uncertainty was about 
±0.05: this tended to be for the locations where overhanging vegetation was greatest. 
Calculation of uncertainties in the Lidar SVF values is less direct. However, errors in 
can be attributed to a number of the sources including the (relative) accuracy of Lidar 
height measurements and the location of the sample point on the DEM, particularly in 
regions where there are large spatial variations in SVF. 
 
4. Conclusion 
This study has demonstrated the use of Lidar-derived DEMs to derive values of SVF 
spatially. Comparison with photographically-derived SVF indicates that there is 
reasonable agreement, except in areas where vegetation is dominant. In addition, errors 
from the geo-registration of the sample points vis-à-vis the Lidar data and the horizontal 
resolution can be significant. The increase in the horizontal resolution of the DEM to <1 
m would significantly increase the practical utility of the data. This, in particular, is 
critical for use in the urban environment where due to the greater variety of land uses 
the scale-length, or surface roughness, is much greater than that found in the open 
countryside. 

There is therefore a trade off between the better-quality point photographic 
method and the Lidar-derived method with spatial coverage and vastly reduced 
fieldwork costs. With improving horizontal resolutions, up to 0.25 m now available, the 
ability of the Lidar to identify and measure the surface features accurately and hence 
derive more accurate SVF will be possible. 
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Figure 1. Outline map of the 2 x 2 km study region location in southeast Cornwall 
(UK). Light grey stipple indicates sea; mid-grey, urban areas and; dark grey, woodland. 
Dots indicate locations along the transect where photographs for calculation of SVF 
were taken. 

 
 
 
 



 

 
 
Figure 2. Example of derivation of photographic SVFs: original photograph, 16-class 
unsupervised classification, and final SVF image with black=non-sky, grey=uncertain, 
white=sky. 
 
 
 

 
Figure 3. Example of photographic SVFs taken at heights of a) 0 m, b) 1 m and, c) 2m. 
The associated SVF values are 0.21, 0.34 and 0.50 respectively. 
 
 
 



 
 
Figure 4. Lidar-derived digital elevation model of the study in SE Cornwall: low 
elevations are dark, while higher elevations are light. Man-made and woodland features 
can be seen superimposed on the topological features of the ground surface. 



 

 
 
Figure 5. Schematic of the geometry for calculating the sky-view factor: P1 is the 
location of the site with a height h1, P2 is a distant point with a height of h2. Using 
trigonometry the site-distant point elevation angle θe can be easily calculated for all 
azimuth angles and ranges. 



 
 

 
 
Figure 6. Lidar-derived surface SVF data over the study area. White indicates a SVF of 
1 (i.e. clear hemisphere) while black indicates a SVF of zero. The calculation of the 
SVF highlights the surface texture of the area, in particular the field boundaries, 
forest/woodland and urban areas/buildings. 
 



 

  

  
 
Figure 7. Comparison of conventional fish-eye photographic imagery (left) with Lidar-
simulated fish-eye imagery for use in the derivation of SVFs. 



 
 
Figure 8. Lidar-derived (lines) and photographic-derived (points) SVF data for the 
survey transect. The lower line/points are for the surface (0 m), middle line/points for 
the 1 m measurements and, top line/points for the 2 m measurements. 



 

 
 
Figure 9(a). Comparison of Lidar-derived SVF and Photographic-derived SVF for 
surface +0 m. The points represent the samples with the vertical lines showing the 
uncertainties in the photographic SVF values, while the horizontal lines show the 
minimum/maximum range in the adjacent Lidar-derived SVF (R2 = 0.71). 
 



 
 
 
Figure 9(b). As figure 5(a), but surface +1 m. (R2 = 0.77). 
 
 



 
 
Figure 9(c). As figure 9(a), but surface +2 m. (R2 = 0.77). 
 
 
 


