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SUMMARY

Unconventional multi- and many-core processors (e.g. IBM� Cell B.E.TM and NVIDIA� GPU) have
emerged as effective accelerators in trial climate and weather simulations. Yet these climate and weather
models typically run on parallel computers with conventional processors (e.g. Intel�, AMD�, and IBM)
using Message Passing Interface. To address challenges involved in efficiently and easily connecting
accelerators to parallel computers, we investigated using IBM’s Dynamic Application VirtualizationTM

(IBM DAV) software in a prototype hybrid computing system with representative climate and weather
model components. The hybrid system comprises two Intel blades and two IBM QS22 Cell B.E. blades,
connected with both InfiniBand� (IB) and 1-Gigabit Ethernet. The system significantly accelerates a solar
radiation model component by offloading compute-intensive calculations to the Cell blades. Systematic
tests show that IBM DAV can seamlessly offload compute-intensive calculations from Intel blades to
Cell B.E. blades in a scalable, load-balanced manner. However, noticeable communication overhead was
observed, mainly due to IP over the IB protocol. Full utilization of IB Sockets Direct Protocol and the
lower latency production version of IBM DAV will reduce this overhead. Copyright � 2011 John Wiley
& Sons, Ltd.
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1. INTRODUCTION

Like most of high-performance computing (HPC) applications, typical climate and weather models
are written in Fortran and Message Passing Interface (MPI) and run on a parallel computer system
with conventional processors (e.g. Intel, AMD, IBM). With the advent of unconventional multi-
and many-core processors (e.g. IBM Cell B.E. and NVIDIA GPU) enabling an order-of-magnitude
performance speedup [1–4], there emerges a tremendous interest in utilizing these unconventional
processors as accelerators in a parallel computer system. Since the programming paradigms in these
accelerators are very closely related to their hardware and distinctly different from conventional
parallel programming based on MPI, those hardware-specific programming paradigms must be
encapsulated for the accelerators to be widely accepted. Therefore, a software tool that can connect
the accelerators to the parallel computer system in a user-friendly, efficient, and scalable manner
is highly desirable.

There are several options available to facilitate the integration of accelerators, though most have
major shortcomings. Socket programming is flexible and efficient; however, it is low-level and
error prone. MPI seems like a natural choice, but we found several issues with it. In particular,
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using MPI for a connection requires the existing applications to modify their MPI communica-
tors to accommodate the accelerators [5]. For typical climate and weather models [6–8], code
modifications could take significant time and effort, due to both high complexity and immense
length, possibly encompassing hundreds of thousands of lines of code. Remote procedure call
(RPC) is a good candidate, given its user-friendly interface. However, traditional RPC mechanisms
allow applications to call functions from libraries running on remote machines, which requires the
client application to use a specific API, thus forcing an application rewrite. The time and effort
required is significant and, as a result, offloading functions using traditional RPC mechanisms are
not often viable. Such RPC mechanisms can also create maintenance problems, since changes in
the API require rewriting the client applications. In the industrial domain, these problems are a
major barrier to offloading computation to systems optimized for particular types of processing,
such as computer systems based on the IBM Cell B.E. processor, which is heavily optimized for
numerical computing.

The Virtualizer component of IBM Dynamic Application Virtualization (IBM DAV) was devel-
oped to address this offloading problem [9, 10]. However, it has only been used for accelerating
financial business applications, such as offloading Microsoft Excel calculations to IBM Cell B.E.
blades.

There is a great interest in utilizing the accelerators to speedup the compute-intensive simulations
such as climate and weather simulations. A typical climate and weather model consists of dynamics
component solving fluid dynamics equations on a numerical grid (e.g. latitude–longitude grid) and
physics components resolving the physical processes (e.g. cloud) on the subgrid level. In particular,
physics components typically only have a vertical dependence (i.e. column-based) and have been
shown to be easily ported to GPU [3] and Cell B.E. [4] with nearly an order-of-magnitude speedup.
In this paper, we will investigate utilizing IBM DAV with a representative, well-studied climate
and weather model component, solar radiation [4, 11], running on a prototype hybrid computing
system composed of Intel blades and IBM Cell B.E. blades.

2. DESCRIPTION OF IBM DAV

The detailed IBM DAV architecture is shown in Figure 1. A user simply inserts IBM DAV-specific
tags into a descriptor file (i.e. a header file in C-language code) and the Virtualizer can generate

Figure 1. IBM DAV software enables C/C++, Java, and Excel applications to easily offload
compute-intensive routines to remote accelerators via an IBM DAV Service Broker. IBM DAV Services

run on other IBM HPC architectures, including Cell B.E., Power, BlueGene, and x86.
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libraries that exactly mimic the interface of the local computer libraries. As a result, using IBMDAV
eliminates application code changes normally required to offload functions to remote computers.
The client application needs only relink to the Virtualizer-generated libraries, instead of the native
code libraries. The Virtualizer currently generates C, C++, and Java stub libraries. Furthermore,
IBM DAV can be extended to support other languages and applications, if required.

3. HYBRID COMPUTING PROTOTYPE SYSTEM

To evaluate the IBM DAV in a production-quality computer system such as NASA NCCS Discover
[12], we have constructed a prototype hybrid computing system: There are two Intel blades: d01
has two dual-core Intel Xeon Dempsey 3.2GHz processors and d02 has two quad-core Intel Xeon�

Harpertown 2.5GHz processors. Both of these blade types are in use on Discover. In addition, there
are two IBM QS22 blades, p01 and p02. Each blade has two IBM PowerXCellTM 8i processors,
containing one PPE and eight SPEs. The PPE is a dual-thread PowerPCTM Architecture processor
with 3.2GHz and 512KB L2 cache and the SPE has 256 kB local storage for instructions and data.
Both 1-Gigabit Ethernet and 4X DDR InfiniBand (16Gbit s−1 bandwidth) are used to connect the
Intel blades with the Cell B.E. blades.

The IBM DAV client is installed on the Intel blades, whereas the IBM DAV server is on the Cell
B.E blades. Since most HPC applications use MPI for parallel communication and execution, we
developed a test driver with MPI. This driver can launch a user-specified number of MPI processes
in d01 and d02. Each MPI process is able to make a request to the IBM DAV broker for the service
provided by the Cell B.E. After the broker receives the requests, it arranges them in a queue and
dispatches them to the service provider located on the PPEs. For maximum scalability, the broker
should not run on a node that also performs the compute-intensive tasks. In our prototype system,
the broker is located on a PPE of p01. Since the compute-intensive tasks are carried out at SPEs,
the broker’s overhead is believed to be insignificant. Figure 2 illustrates the offloading with IBM
DAV for one configuration involved with d02 and p01.

In our prototype system, IBM’s GPFSTM file system is used. Although IBM DAV does not
require a file system, it is typically used in a production computer system such as NCCS Discover.
Hence, files are accessible in the same directory in both Intel and IBM Cell B.E. blades. Since there
are two different computer architectures among those blades, caution must be used in compiling
files and running a job. For example, an IBM DAV-designated ‘client’ directory should be used
in the Intel blades, while an IBM DAV-designated ‘server’ directory should be used in IBM Cell

Figure 2. In the hybrid computing prototype system, compute-intensive functions can
be offloaded from Intel processor cores to IBM Cell B.E. through the Service Broker

of IBM Dynamics Application Virtualization software.
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B.E. blades. In some cases, a directory specific for a particular architecture is used to prevent such
a problem.

The IBM DAV Virtualizer reads the ‘semantic markup’ or ‘tags’ applied to the function proto-
type(s) to be virtualizer within the supplied header file. These tags provide the IBM DAVVirtualizer
with information about the sizes of data to be transported to and back from the accelerator. Based
on the function prototype(s) and tags, IBM DAV performs automatic code generation for client
stub and server skeleton codes each time the IBM DAV Virtualizer is launched. When a compute
kernel interface is stabilized, we use a directory such as ‘CommonFiles’ to hold the compute kernel
with the interface of IBM DAV-generated client stub and its driver with the interface of IBM DAV-
generated server skeleton. Establishing the underlining IBM DAV system software environment
could be non-trivial. Therefore, we developed a bash script to facilitate the setup process: (1) Set
up environmental variables such as the paths of IBM_DAV_PATH, IBM_DAV_SERVER_PATH,
and IBM_DAV_VIRTUALIZER. (2) Launch the IBM DAV code generator to create client stub
and server skeleton codes. (3) Copy the offloaded compute kernel along with its input data from
a user directory such as ‘CommonFiles’ to the IBM DAV-designated directory, ‘client’. (4) Build
the .so library of the offloaded compute kernel at IBM DAV servers. Since our IBM DAV server is
PowerPC architecture (Cell B.E./PPE), the offloaded computer kernel has to be built on the PPE,
so ssh is used to build the .so library there. We will look into the Cell SDK cross-compiler in the
Intel processor in the second stage of investigation, so that we can build the IBM DAV server on
the Intel processor. (5) Launch IBM DAV deployer on IBM DAV servers. (6) Compile the codes in
the ‘client’ directory. After running this script, a user can launch a driver in the ‘client’ directory
to invoke the service running on the Cell B.E. blades.

To evaluate the user interface of IBM DAV, we first offloaded the solar radiation function to the
PPE. After that, we maintained the same IBM DAV client stub interface and extracted the compute
kernel and further dispatched them to eight SPEs through pthread, just like the standalone solar
radiation function dispatches its compute kernel from PPE to SPEs. Now the PPE mainly serves
for transferring the data between the client on the Intel processor and the compute kernel on the
SPE accelerators. It is important to note that IBM DAV uses its automatic code generators for the
client stub code. Hence, as long as the interface definition defined in the .h header file does not
change (typically true, since it just defines the input and output variables), a user can select the
offloaded functions from a variety of accelerators without changing its calling function. This is a
very efficient and convenient way of encapsulating the special programming paradigms that are
closely associated with specific accelerators. For example, a user can choose to replace the solar
radiation function normally running at one x86 processor with the one running on the PPE or SPEs.

We believe that this argument is likewise valid for NVIDIA GPU, which IBM DAV also supports.
In the case of NVIDIA GPU, the IBM DAV client for PPE is replaced with the one for an x86
processor which hosts the GPU. IBM DAV clients have already been demonstrated offloading
to an IBM DAV service that makes CUDA calls to an NVIDIA Quadro� Plex S4 system. The
IBM DAV Service calls into the CUDA library which runs the kernel on the attached GPU’s.
A BlackScholes option-pricing calculation was virtualized using the IBM DAV Virtualizer. The
generated IBM DAV Service was running on an IBM x3455 server. This was a Quad-Core 2.3GHz
AMD OpteronTM single processor system running SLES 10.1 64-bit. The attached NVidia Quadro
Plex S4 has GPU Type Quadro FX 5600 with 128 CUDA Parallel Processor Cores. The IBM DAV
Service was making CUDA calls to the attached GPU’s thus allowing the IBM DAV Client to
utilize the remote GPU capabilities.

To deploy IBM DAV in production-quality climate and weather models, the IBM DAV-offloaded
functions have to be easily incorporated into model build environments. There are two issues
to be resolved. First, the top-level model drivers are written in Fortran. Second, almost all such
model build environments are based on Makefiles. For example, climate models such as NASA
GEOS5 and weather models such as WRF use Makefiles where the code is compiled into object
files (.o) and libraries (.a), then linked together to create an executable. Hence, it is clear that the
IBM DAV-offloaded functions have to be callable by a Fortran driver, thus compiled into .o or .a
files, and then substituted for the corresponding .o or .a library of the original functions when the
acceleration option is chosen.
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Figure 3. Schematic of IBM DAV-offloading computing from an x86 processor to SPEs through PPE.

Figure 4. Schematic of IBM DAV-offloading computing to SPEs through a C
wrapper function and Fortran 2005.

Currently, IBM DAV requests a C++ program to call the IBM DAV-offloaded function, which
is compiled as a .so library as shown in Figure 3. To find out whether we can make this .so library
callable by a Fortran driver, we developed a Fortran test driver and C wrapper code, which is
derived from the IBM DAV-generated C++ test driver of this .so library. We have successfully used
this C wrapper to create a .o library, and used Intel’s Fortran 2005 compiler to enable a standard
way for the Fortran test driver to call the IBM DAV-offloaded function in the .o library. Thus, we
have shown that IBM DAV-offloaded functions can be incorporated into the model build system
based on Makefiles. Figure 4 illustrates the whole code structure in this test.

It is worth noting that the IBM DAV client can be installed under a system directory or under
a user’s home directory. This option makes deployment of an IBM DAV client in a production
computer system more convenient and less intrusive.

4. RESULTS

To measure the performance of IBM DAV, we used the C version of the solar radiation code,
which has been ported to Cell B.E. previously [4]. With IBM DAV, 256 columns in the solar
radiation model can be processed in a Cell B.E processor. There are 20 input variables in one-
or two-dimensional arrays with the types of integer, character, and float. The total input size is
7 717 008 bits. There are eight output float variables in one- or two-dimensional arrays. The total
output size is 1 245 184 bits. (IBM DAV tags the output variables as ‘inout’.) In both Intel and
Cell blades, gcc with –O2 is used.

We used MPI to communicate between Intel processor cores in two Intel blades. In each MPI
process, a request call for the service provided by Cell B.E. is launched. The IBM DAV broker
located in Cell blade p01 receives all the requests and evenly arranges them in a queue in Cell blade
p01 and p02, respectively. Since each Cell blade has two Cell B.E. processors, two Cell blades have
four Cell B.E. processors in total. Systematic testing has been carried out with various numbers of
requests. We have observed that in cases having four requests or less, the speedup increases nearly
linearly with the number of requests. For the cases having six or eight requests, we have seen that
some requests take up to ∼66% more time to complete than that for a single request. Hence, IBM
DAV speeds up the performance through a broker in a scalable and load-balance manner. This
feature could be used to help optimize the overall computing power in a hybrid computer system.
For example, what is the optimal ratio of conventional processors to accelerators?
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Table I. IBM DAV Performance compared with the standalone cases with Intel Xeon core
and Cell B.E. processor (microseconds).

Total time

Communication
over IPoIB
network

Data rearrangement
before transferring

via DMA

Compute kernel
invocation, and

execution

One Intel Xeon core 2 044 162
One Cell B.E.
processor

65 676

One Cell B.E.
processor with IBM
DAV

132 555 45 775 13 451 73 329

To quantify the overhead of IBM DAV, we took the use case with one request. The performance
data is listed in Table I. We found that the total time is 132 555ms. The total time includes
(1) Transferring the input data from the Intel core to PPE with IP over IB protocol (IPoIB). (2) PPE
converts two-dimensional arrays into one-dimensional arrays and arranges the data to be transferred
to SPEs via Cell B.E.’s Direct Access Memory (DMA). (3) PPE creates threads and invokes the
compute kernels at eight SPEs. (4) Eight SPEs fetch the input data from PPE via DMA, perform
the calculations, and return the output data to PPE via DMA. (5) Transfer the output data from
PPE to the Intel core with IPoIB. It took 73 329ms in Steps 3 and 4, 13 451ms in Step 2, and
45 775ms in Steps 1 and 5.

Without IBM DAV, the solar radiation code takes 2.044162 s in one core of Intel Xeon Dempsey
dual processors. So offloading a solar radiation function from one core of Intel Xeon Dempsey
processor to one Cell B.E. with eight SPEs yields a ∼15.4x speedup. However, the overhead in
transferring the data over IB network is ∼102%. In this prototype system, IBM DAV has used
IPoIB for communication between the Intel and Cell B.E. blades, which is believed to contribute
to most of this overhead.

To further understand the communication overhead from IPoIB, we installed OpenMPI with
IPoIB on both Intel blades and Cell B.E. blades, which is the only MPI implementation currently
supporting big-endian and little-endian conversion. It took ∼16010ms to send 20 one-dimensional
float arrays with 12 057 elements from d01 to p01, whose total size is equivalent to 7 717 008
bits, the input data size when using IBM DAV. So the corresponding bandwidth is ∼482Mbs−1,
which is much less than the IB peak bandwidth. When we used the bandwidth of OpenMPI, it
took ∼18595ms for sending the data, 8 962 192 bits, which combines both input and output data
transferred by IBM DAV. So communications using OpenMPI is ∼2.46 times faster than using
IBM DAV. One factor contributing the IBM DAV’s large communication overhead compared to
OpenMPI is that IBM DAV marshals parameter data to enable disparate application programming
languages (i.e. Excel/Java) to interact directly with C-based routines. If this marshalling layer
were removed, on the assumption of a C-to-C distributed system, the communication overhead
would be reduced significantly.

IBM DAV can be extended to use the IB Socket Direct Protocol (SDP), which will further
reduce the latency. Additionally, the array conversion step could also be removed, decreasing the
overhead considerably.

IBM DAV has a problem using –O3 compilation flag, which will be investigated later.

5. DISCUSSION

As discussed above, IBM DAV appears to be a good candidate for connecting an accelerator to
processors on a computer cluster in terms of scalability and being user-friendly. Furthermore,
this approach lends itself toward an architecture that would allow computing centers to augment
existing clusters with GPUs in a very cost-effective manner. However, to adopt this technology in
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a production-quality computer system, we have to further examine other aspects such as system
cost, code release, programming model, etc.

The accelerationmodel used in our prototype requires high-speed connections for communication
between CPU processors (e.g. Intel) and accelerators (e.g. Cell B.E. and GPU). In order for this
architecture to be cost effective, the connection communication time must be smaller than the time
saved by offloading the calculations to the accelerators in order for this architecture to be cost
effective.

In addition, the offload acceleration model duplicates the memory storage requirement for the
data used in the offloaded calculations, which adds to the system cost. Hence for the offload
acceleration model to be economical, two important features need to be in place. First, the offload
engine needs to have low-latency and high-bandwidth access to the CPU, preferably through
RDMA. Second, the offloaded job has to have a rather high ratio of computing to communication. In
this scenario, it is quite possible that a formerly compute-bound job may become a communication-
bound job in the offload acceleration mode.

Climate and weather models have numerous model components. Typically, a code release
depends on a number of third-party system libraries (e.g. MPI) and application libraries (e.g.
NetCDF and HDF5), and tunes for a few popular compilers (e.g. Intel, IBM, or PGI). It can be
quite challenging to adapt the accelerated code to frequently evolving versions of climate and
weather models. We believe that making the accelerated code rely less on third-party libraries, and
compiling the accelerated code as a library, are two effective ways of ensuring that the accelerated
code will be included in each new model release. IBM DAV appears to achieve that goal.

In our current acceleration configuration, we have two memory systems, causing an inhomo-
geneous programming model. An optimal configuration for acceleration is to have the accelerator
sharing the same memory with the host processors. In this way, there is no need for dupli-
cated memory storage, which simplifies the programming model and reduces the communication
cost. Particularly in climate and weather models, a frequent calculation is to add the tendency
from dynamics and physics components to the values at the current time step to obtain values
for the next time step. In that operation, involved variables must be retrieved to perform the
operation. If that operation is carried out in the host CPU processors, the involved data in the
accelerator memory must be fetched to complete the calculations. That clearly degrades overall
performance.

It is very interesting to see how computer processor vendors address this kind of inhomogeneous
acceleration programming problem. For instance, the AMD Fusion combines general processor
execution as well as 3D geometry processing and other functions of modern GPUs into a single
package. This seems to be a step toward resolving the issue.

6. SUMMARY

We have investigated the software for connecting the accelerators to a parallel computer system
(hybrid computing system) for climate and weather applications. In particular, we have studied
IBM DAV with a solar radiation model component running in a prototype hybrid computing
system consisting of both IBM Cell B.E. and Intel blades. We found that the IBM DAV is
very competitive in the areas of user-friendliness and scalability. Its broker service could be
used for optimizing the ratio of conventional processors and accelerators in a hybrid system.
However, its current release needs to be improved in communication overhead, in particular
through supporting low latency protocols such as the SDP. To adopt the accelerator in a computer
system, other factors such as system costs, code release, and programming model have to be also
considered.
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