

Development of Engineered Ceramic Matrix Composites

S. V. Raj¹ (PI), R. Bhatt² and M. Singh²

1) Glenn Research Center, Cleveland, OH

2) Ohio Aerospace Institute, Cleveland, OH

Acknowledgements

Technicians: Mr. Ray Babuder; Mr. Robert Angus; Mr. Ronald Phillips & Mr. Daniel Gorican

Program Manager: Dr. Koushik Datta

Funding: NASA's ARMD Seedling Fund Phases I & II

- Advanced aircraft engines require the use of reliable, lightweight, creep-resistant and environmentally durable materials.
- Silicon carbide-based ceramic matrix composite (CMC) technology is being developed to replace nickel-based superalloy blades and vanes.
 - Near term 1589 K (2400 °F) (cooled).
 - Medium term 1755 K (2700 °F) (cooled).

Composites are engineered systems, whose properties depend on:

<u>Typical Microstructures of As-Processed</u> BN-Coated Hi-Nicalon MI SiC Composites

NASA Aeronautics Research Institute

(Courtesy M. Singh)

Density ~ 96-97 %

February 20, 2014

NASA

Current SiC/SiC CMC Matrix Capabilities

- Matrix fills space and provides a thermally conductive path.
- Fracture toughness due to crack bridging and interface debonding.
 - Relatively low matrix cracking

strength - σ_{design} < $\sigma_{proportional limit}$

- Brittle at all temperatures.
- No crack tip blunting fast crack propagation.
- No self-healing.
- Oxygen ingress to fibers shortens fiber life.
- Free Si in the matrix limits temperature usage (melting point of Si: 1687 K; 1414 °C; 2577 °F).

Recession of BN and Formation of Glassy Phase in BN-Coated Hi-Nicalon MI SiC Composites

NASA Aeronautics Research Institute

(Courtesy M. Singh)

T = 973 K; σ = 250 MPa;1000 h in air

2BN (s) + 3/2 O₂ (g) = B₂O₃ (*l*) +N₂ (g) B₂O₃ - SiO₂: Low eutectic temperature of 372 °C

February 20, 2014

NASA Aeronautics Research Mission Directorate 2014 Seedling Technical Seminar

Important Question

NASA Aeronautics Research Institute

Can the matrix constituents be suitably engineered to develop a new generation of Engineered Matrix (Ceramic) Composites (EMCs) with improved properties and tailored for a specific component?

Crack Tip Blunting and Self-Healing

- High temperature matrix greater than 1589 K (1315 °C/2400 °F)
- Matrix plasticity increased reliability, compliant matrix.
- Chemical and thermal strain compatibility with the coated SiC fibers.
- Self-healing matrix prevents or minimizes oxygen ingress.
- Low free Si reduces fiber attack, reduces incipient melting, increased high temperature capability.
- Dense matrix high thermal conductivity.

Historical Perspective

- **Plasticity** Introduce a chemically stable metallic silicide.
- Temperature capability Choose silicides with melting points higher than that of Si (m.p. 1687 K; 1414 °C; 2577 °F).
- Thermal expansion Match thermal expansion of the engineered matrix (EM) with the SiC fibers.
- Self-healing capability Add constituents to heal cracks with low viscosity oxides or silicates.
- Low Si Melt infiltrate with silicide instead of Si.
- **Dense EMCs** Slurry infiltration and melt infiltration.

Silicide Additives

NASA Aeronautics Research Institute

- CrSi₂
- MoSi₂
- TiSi₂
- WSi₂
- CrMoSi alloy

February 20, 2014NASA Aeronautics

<u>Matching Thermal Strains:</u> <u>Theoretical Concept</u>

NASA Aeronautics Research Institute

February 20, 2014

Matrix Design Concept

NASA Aeronautics Research Institute

 $(\Delta L/L_0)_{\text{fiber}} = (\Delta L/L_0)_{\text{EM}} = V_{\text{silicide}} (\Delta L/L_0)_{\text{silicide}} + V_{\text{SiC}} (\Delta L/L_0)_{\text{SiC}} + V_{\text{Si3N4}} (\Delta L/L_0)_{\text{Si3N4}}$

<u>Concept</u>	<u>V_{silicide} (%)</u>	<u>V_{SiC} (%)</u>	<u>V_{Si3N4} (%)</u>
Traditional	0	100	0
Present investigation	X	(100-x-y)	У

- Evaluate different engineered matrices based on theoretical concepts.
- Proof of concept: Demonstrate thermal strain compatibility with SiC.
- Evaluate bend and oxidation properties.
- Evaluate self-healing compositions.
- Fabricate and test engineered matrix composites.

Matrix Processing Steps

Hot-Pressed Plate and Optical Micrograph

NASA Aeronautics Research Institute

CrMoSi/SiC/Si₃N₄ (CrMoSi-EM)

<u>50 x 50 x 4 mm</u>

Optical micrograph

Back Scattered Image and Energy Dispersion Spectra: CrMoSi/SiC/Si₃N₄ (CrMoSi-EM)

NASA Aeronautics Research Institute

February 20, 2014

NASA Aeronautics Research Mission Directorate 2014 Seedling Technical Seminar

Proof-of-Concept: Thermal Strains

<u>A CTE MoSi₂/SiC/Si₃N₄ Specimen</u>

NASA Aeronautics Research Institute

• MoSi₂/SiC/Si₃N₄ engineered matrix dropped from the program.

Isothermal Oxidation Behavior of Engineered Matrices

NASA Aeronautics Research Institute

 $TiSi_2/SiC/Si_3N_4$ and $WSi_2/SiC/Si_3N_4$ engineered matrices dropped from the program

Four-Point Bend Stress-Strain Curves for a CrSi₂ Engineered Matrix

NASA Aeronautics Research Institute

Crack blunting due to crack tip plasticity increases bend strength

February 20, 2014 NASA Aeronautics Research Mission Directorate 2014 Seedling Technical Seminar

Four-Point Bend Stress-Strain Curves for a CrMoSi Engineered Matrix

CT Scan and a Schematic of the BN-Coated SiC/SiC Preform

NASA Aeronautics Research Institute

CT Scan

Schematic of void distribution

<u>Void volume</u> fraction ~ 25% NASSIEPS in Engineered Matrix Composite Fabrication

Epoxy pressure infiltration unit

NASA Aeronautics Research Institute

February 20, 2014

NASA Aeronautics Research Mission Directorate 2014 Seedling Technical Seminar

CT Scans of TiSi₂/SiC/Si₃N₄ Particulate Epoxy and Si- Melt Infiltrated Preform

February 20, 2014

NASA Aeronautics Research Mission Directorate 2014 Seedling Technical Seminar

Particulate and Silicon Melt Infiltrated SiC/SiC Preforms

NASA Aeronautics Research Institute

NASA Aeronautics Research Mission Directorate 2014 Seedling Technical Seminar

Preliminary Studies: end Strengths of CrMoSi-SiC-Si₃N₄-Si EMCs

NASA Aeronautics Research Institute

Heat treated in air at 1600 K for 50 h

Preliminary Studies: Bend Strengths of CrMoSi-SiC-Si₃N₄-SiGe EMCs NASA Aeronautics Research Institute

CrB₂ addition shows the best ability to heal scratches

February 20, 2014

NASA Aeronautics Research Mission Directorate 2014 Seedling Technical Seminar

Self-Healing of CrMoSi-SiC with 5%CrB₂ at <u>1700 K after 100 h</u>

NASA Aeronautics Research Institute

<u>Top Face</u>

Rear Face

February 20, 2014

NASA Aeronautics Research Mission Directorate 2014 Seedling Technical Seminar

Self-Healing Characteristics of CrMoSi-SiC-CrB₂ Oxidized at 1700 K for 100 h

NASA Aeronautics Research Institute

February 20, 2014

Self-Healing Studies (in progress)

NASA Aeronautics Research Institute

<u>Cracks emanating from a</u> <u>Vickers indent</u>

Perform qualitative healing studies on indented matrices to demonstrate crack healing.

February 20, 2014

Dynamic Loading Studies (in progress)

NASA Aeronautics Research Institute

T = 1700 K

Notched specimens will be tested in air and inert gas to demonstrate that the air-tested specimens are stronger than those tested in inert gas due to self-healing of cracks.

Optical Micrographs of Single Edge Pre-Cracked Beam (SEPB) Specimens Studies

February 20, 2014

Cr-Si Binary Phase Diagram

NASA Aeronautics Research Institute

February 20, 2014

<u>Composition Analysis of the</u> <u>CrSi₂-SiC Fiber Interface</u>

NASA Aeronautics Research Institute

No reaction of $CrSi_2$ with SiC – consistent with thermodynamic calculations

February 20, 2014 NASA Aeronautics Research Mission Directorate 2014 Seedling Technical Seminar

- A concept for developing a new class of high temperature engineered matrix composites (EMCs) with crack blunting, self-healing and low Si capabilities using intermetallic silicides is proposed.
- The following concepts have been demonstrated:
 - > Thermal expansion of the engineered matrix can be matched with that of SiC.
 - > Increased matrix ductility can lead to higher bend strengths due crack blunting.
 - Promising self-healing additives have been identified.
 - CrSi₂/SiC/Si₃N₄ and CrMoSi/SiC/Si₃N₄ engineered matrices have been identified for 1589 K (2400 °F) and 1755 K (2700 °F).
- Several new compositions have been formulated for further studies.
- Fabrication of dense EMCs has proved to be challenging due to insufficient particle infiltration in the coated SiC/SiC woven preforms and due to poor capillarity action of the Cr-Si alloys.

• Applied for US Patent (May 30, 2013) –NASA Docket No: LEW 18964-1

Title: Engineered Matrix Self-Healing Composites

S/N: 13/905,333; Filed: 5/30/13

Inventors: Sai Raj, Mrityunjay Singh, Ramakrishna Bhatt

- S. V. Raj, M. Singh and R. Bhatt, "High-Temperature, Lightweight, Self-Healing Ceramic Composites for Aircraft Engine Applications", NASA Tech Briefs, vol. 37, No. 2, p. 40 February 2013; http://www.techbriefs.com/component/content/article/5-ntb/techbriefs/materials/15663-lew-18964-1.
- S. V. Raj, M. Singh and R. Bhatt, "Preliminary Studies on the Development of Engineered Matrices for SiC Fiber-Reinforced Ceramic Composites", 38th Annual Conference on Composites, Materials and Structures, Cocoa Beach, FL Jan 26-30, 2014
- Journal paper submitted for DAA 1676 management approval.

- The research has been transferred to ARMD's Aero Sciences Program (FY 14).
- Methods to increase particulate loading and silicide melt infiltration of the preforms are being studied.
- Dynamic fracture toughness tests are underway to quantify the self-healing capabilities of several engineered matrices.
- Bend and tensile creep tests of several engineered matrix specimens are planned.