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Technology improvements in the recovery of water from brine are critical to establishing 
closed-loop water recovery systems, enabling long—duration missions, and achieving a 
sustained human presence in space. A genre of ‘in-place drying’ brine water recovery 
concepts, collectively referred to herein as Brine Residual In-Containment, are under 
development. These brine water recovery concepts aim to increase the overall robustness 
and reliability of the brine recovery process by performing drying inside the container used 
for final disposal of the solid residual waste. Implementation of in-place drying techniques 
have been demonstrated for applications where gravity is present and phase separation 
occurs naturally by buoyancy—induced effects. In this work, a microgravity—compatible 
analogue of the gravity-driven phase separation process is considered by exploiting 
capillarity in the form of surface wetting, surface tension, and container geometry. The 
proposed design consists of a series of planar radial vanes aligned about a central slotted 
core. Preliminary testing of the fundamental geometry in a reduced gravity environment has 
shown the device to spontaneously fill and saturate rapidly, thereby creating a free surface 
from which evaporation and phase separation can occur similar to a terrestrial-like 
‘cylindrical pool’ of fluid. Mathematical modeling and analysis of the design suggest 
predictable rates of filling and stability of fluid containment as a function of relevant system 
dimensions; e.g., number of vanes, vane length, width, and thickness. A description of the 
proposed capillary design solution is presented along with preliminary results from testing, 
modeling, and analysis of the system. 
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TS1 =  Test Solution #1  
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I. Introduction 
NCREASING water recovery has been identified as a major challenge in the NASA Technology Roadmap TA06, 
Human Health and Habitation Systems.1 Closure of the water loop enables long-term operations both in 

microgravity and on planets. The water recovery goal set by the roadmap is 98-percent; this cannot be achieved 
without the recovery of water from wastewater brine.  A significant challenge with achieving this level of recovery 
is associated with management of a multi-phase waste stream as brine transforms from a liquid, to a sludge, and 
finally to a wetted semi-/dried solid state.  Additionally, the constituents of the waste water tend to be highly fouling 
to process hardware and toxic to crew. 

A technique of “in-place” wastewater processing is being developed at the NASA.  This technique involves 
processing waste water within the container used for final disposal of the solid brine residual.  By processing the 
wastewater within its final disposal container, the need for complex waste transfer systems is obviated and 
opportunities for the waste products to come into contact with the crew are greatly reduced.  The in-place drying 
technique is being applied to a genre of water recovery system concepts, collectively referred to herein as Brine 
Residual In-Containment (BRIC).     

At the NASA Johnson Space Center, feasibility of in-containment drying technology was demonstrated for 
applications in which a gravity field was present, e.g. for a lunar or Martian habitat.   The process is shown in Figure 
1A.  In this demonstration water was successfully evaporated from the brine into the gas phase and separated from 
the brine residual solid by buoyancy and/or forced convection.2  Similarly, the brine residual was contained in the 
disposable liner within the evaporation container from which removal/disposal and replacement of the used liner 
was demonstrated.   

In the absence of gravity, however, the process of containing the brine and maintaining an evaporative surface 
must be achieved by other means.  Such separation may be achieved passively with wicks and semi-permeable 
membranes, Figure 1B, or actively by imparting a body force vector through rotation, Figure 1C.  

Static phase separation is an attractive approach for exploration missions due to the higher reliability and 
robustness generally offered by systems with no moving parts. Other BRIC-type technologies are being developed 
that make use of passive phase separation using, for example, permeable membranes and wicking technologies.3,4,5 

The focus of the work presented in this paper was the development of a static phase capillary separation device 
that could maintain a free evaporative surface in microgravity; i.e. a ‘microgravity bucket’ or drying tray.  
Preliminary development focused on establishing a device geometry that would be expected to: (1) provide 
sufficient free surface area for unimpeded brine evaporation, (2) maintain stability of the brine pool when subjected 
to relevant loads, and (3) be capable of passive capillary pumping to fully saturate the device and maintain infilling 
rates during the dewatering process. A subscale model of the design was built and tested to prove that the 
fundamental aspects of the microgravity bucket would behave as theorized and to verify computational modeling to 
be used in future design work. 

I

 
 
Figure 1. BRIC concepts. Figures highlight various means of phase separation for BRIC applications. (A) Solution 
buoyancy in a natural gravity field.  (B)Uses surface force interaction for phase separation. (C) Uses solution 
buoyancy in an induced gravity field.Within each photo: (1) brine pool, (2) brine residual, and (3) the BRIC 
disposable element.    
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A. Capillary Stability Assessment 
 

Methods for Stability Assessment 
 For the capillary drying tray to work in microgravity it must ultimately be stable both at rest and when subjected 
to spurious forces that may otherwise destabilize the gas/liquid/solid interface.  Stability of fluids within a wedge 
can be defined as the effective dominance of surface tension forces relative to body forces that may be imparted on 
tray that might otherwise “spill” the container.  The stability of the device may be characterized with high 
confidence via critical bond number relationships.9  Eq. (3) provides the general bond number equation, where  is 
the density difference across the free surface, a is the applied force, and Lc is a characteristic free surface length.  

 

݋ܤ  ൌ 	 ఘ∙௔∙௅೎
మ

ఙ
 (3) 

 
The bond number Bo1 defined in Eq. (4) refers to the stability against forces applied axially across a cylinder 

where R is the radius of curvature or the approximate half width of the corner vane interface.  Similarly, the bond 
number Bo2 defined in Eq. 5 refers to the stability against forces applied longitudinally along the unit’s length, L. 
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Typically, for circular cylindrical geometries, bond numbers above 3 are considered to be always unstable, 

numbers less than 0.8 are considered always stable, and numbers between 3 and 0.8 are potentially stable or 
unstable, depending on the relative magnitude of the competing forces.  The method used to assess the capillary 
stability of the BRIC container was to set the bond numbers in Eq. (4) and Eq. (5) to a value of 3. The equation is 
then solved for a, the maximum force at which surfaces might be stable. The ratio of the threshold value, a, for 
stable surfaces to the destabilizing event was used to determine the factor of safety inherent in the design. For this 

design, it was desired that a factor of 
safety of at least 3 in each direction be 
achieved.   
The destabilizing force considered 
was a reboost of the International 
Space Station (ISS), estimated at 1.8 x 
10-3 g.  The preliminary dimensions 
for the BRIC capillary device were 
those previously described. The 
working fluid was assumed to be a 
brine generated from a wastewater 
solution comprised of pretreated urine 
and humidity condensate recovered to 
approximately 93.5%.  A further 
description of the solution, referred to 
as Exploration Life Support Test 
Solution 1 (ELS TS1), can be found in 
McQuillan et. al.10 For the stability 
analysis, the surface tension and 
density of the TS1 brine were 
estimated at 0.042 N/m and 1,090 
kg/m3 to 1200 kg/m3, respectively, 
based on previous measurement of the 
thermophysical properties of ELS TS1 
and other brines (data not provided).   

  
 

 
 

Figure 4.  Sensitivity Analysis on Raidal Vaned Capillary Stability.  
Presents affects of cylinder length, diameter, vane density, and fluid 
design and surface tension on longitudinal stability (Bo2) versus an ISS 
reboost event. 
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Results for Stability Assessment 

The resultant factors of safety from determined from Eqs 4 and 5 were 66 in transaxial direction and slightly less 
than 2 in the longitudinal direction.  Using this same model, a sensitivity analysis was performed to determine the 
effect of scaling dimensional parameters within the design, e.g., radius, length, vane number, density, and surface 
tension, on the safety factors ascribed to the Bo2 stability.   The results are plotted in Figure 4.  The data show that 
the combination of diameter, length, and vane number can be optimized to produce a more favorable stability 
profile.  This analysis tool can be used in future design work in order to optimize the stability of the capillary 
containment device.  However, the effects of such changes on the overall performance of the device, such as the 
amount of available evaporation area, will also need to be considered.   

B. Capillary Flow 
Methods for Flow Assessment 
 In addition to stability, a preliminary assessment of 
the flow characteristics of the microgravity bucket was 
undertaken.  Assessment of flow included the mechanics 
and rate of filling of the tray volume.  To do this, a series 
of six subscale test articles were designed and built in a 
radial vane configuration approximating that of the full 
device. The test articles varied in both length and radius. 
Test part sizes were determined based on predictive 
models for capillary flow, the short times associated with 
drop-tower testing, and the physical constraints 
associated with manufacturing the subscale parts. The 
design allowed the test articles to be dropped in various 
orientations to capture the maximum flow rate achievable 
with the proposed the geometric design. Figure 5A 
illustrates some representative CAD models of the 
developed parts as well as examples of parts 
manufactured using stereolithography (SLA) techniques 
in clear acrylonitrile butadiene styrene (ABS) like 
materials, Figure 5B.   

The test cells were dropped in the Dryden Drop 
Tower at Portland State University. Figure 5 shows a 
graphical representation of the drop tower and a 
schematic of the drop-tower experimental test rig. The 
test cells were released in an aerodynamically shielded 

chamber which free falls 
over 22 m (2.13 s).  The 
capillary devices were 
interfaced with a reservoir 
containing a test solution 
of highly wetting 0.65 
centistoke silicon oil 
(manufactured by Dow 
Chemical). The test 
solution was selected for 
its low viscosity and high 
wetting properties, which 
allow for fast response 
times. Despite the 
difference in the 
thermophysical properties 
of oil and brine, 
predictions of flow 

 
 

Figure 5.  Subscale Test Articles. (A) CAD model of 
subscale radial vaned capillary tray test parts. (B) 
Physical test parts manufactured by stereolithography 
in clear, ABS-like material. 

 
 

Figure 6.  Drop Tower Test Facility. A) Graphical representation of Dryden Drop 
Tower at Portland State University reproduced with permission from 
http://www.ddt.pdx.edu/node/599: B) Schematic of simple drop-tower package. 
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behavior are expected to differ significantly only in time of response. These differences can be predicted once 
models are developed for the flow in the subscale devices. Preliminary work in modeling these flows was initiated 
by comparing drop-tower test data and models for predicting cylindrical and compound capillary flow.11 The models 
cited in the paper are for bulk flow length in cylinders and for corner flow length and bulk flow associated with 
compound capillary rise. See Eqs. (2.6), (11.1), (11.2), and (11.3), respectively, in the Weislogel paper cited above.   

 Results for Flow Assessment 
 Figure 7 illustrates some of the 
BRIC subscale drop-tower testing 
performed. The figure shows a 3 
cm x 5 cm test cell placed upright 
in a reservoir of 0.65 centistokes 
silicon oil. Notable elements 
include the rapid onset of capillary 
rise and capillary corner flow in 
both the center core and lower 
portion of the radial vanes after 
0.14 seconds (t = 0.14 s). Capillary 
rise continues with time, but the 
rise is dominated by the flow of the 
liquid up the center channel core 
until it reaches the end of the test 
cell by t = 0.5 s. The liquid then 
“pins” on the upper edges of the 
test article; i.e., liquid does not 
move radially along the ceiling of 
the cell. Liquid pinning at the top 
of the test article is an artifact of 
the cell design.  Signs of radial 
infill become evident as the liquid 

boundary layer is observed to thicken outward through the 1.5 s and 2.0 s timeframes.  Interestingly, radial filling 
appears to occur by the continuous flow past the pinning edges at the top of the device, and back down and out along 
the path of highest capillary pressure where multiple corner angles are formed at the interface between the vanes and 
the lower end cap. The fill mechanism can be partially observed in the still photos by the movement of three small 
bubbles observed first at t = 0.14 s in the liquid reservoir near the inlet of the test cell. These bubbles are indicated 
by the yellow, green, and pink triangles in Figure 7. At t = 0.5 s, the bubbles are pulled closer to the inlet port.  At t 
= 1.5 s, the pink and green bubbles are pulled into the center core flow and are about three-quarters of the way up 
the center channel. At t = 2.0 s, the pink and green bubbles are pinned at the top of the cell, and the yellow bubble is 
observed to be about halfway up the center channel.   

Analysis and modeling of the 
drop-tower test data is continuing. 
A preliminary assessment of flow 
of the inverted test cells was 
completed using the model 
describing compound capillary 
flow.  The initial model 
predictions for compound 
capillary lengths and flow rate 
coefficients over predicted the 
experimental flow rates by 60 
percent to 75 percent. Model 
agreement was improved by 
adjusting the viscous resistance term, phi (. The original model predictions for capillary length and flow are 
shown with the model-adjusted values provided in Table 3. The offset in the model predictions suggests that the 
geometry of the baseline BRIC container may exhibit a new theoretical regime for compound capillary flow.  This 
finding is being further investigated and expected to be significant within the field of capillary fluidics.  

 
Figure 7.  Example of BRIC subscale drop-tower test 

Table 1.  Model Estimates of Compound Capillary Flow  

Physical Cell Flow Velocity (cm/s) Flow Coef.(mL/s1/2) 

Radius 
(cm) 

Length 
(cm) 

Volume 
(cm3) 

Model 
Predicted 

Model 
Adjusted 

Model 
Predicted 

Model 
Adjusted 

2 2 10 6.8 2.7 22.8 9.1 
3 5 48 11.2 4.5 69.1 27.7 
4 10 157 25.1 10.0 248.0 99.2 

15.2 38.1 7500 - 1.7 - 242.6 
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