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A unique numerical method has been developed for solving one-dimensional ablation 

heat transfer problems. This paper provides a comprehensive description of the method, 

along with detailed derivations of the governing equations. This methodology supports 

solutions for traditional ablation modeling including such effects as heat transfer, material 

decomposition, pyrolysis gas permeation and heat exchange, and thermochemical surface 

erosion. The numerical scheme utilizes a control-volume approach with a variable grid to 

account for surface movement. This method directly supports implementation of non-

traditional models such as material swelling and mechanical erosion, extending capabilities 

for modeling complex ablation phenomena. Verifications of the numerical implementation 

are provided using analytical solutions, code comparisons, and the method of manufactured 

solutions. These verifications are used to demonstrate solution accuracy and proper error 

convergence rates. A simple demonstration of a mechanical erosion (spallation) model is also 

provided to illustrate the unique capabilities of the method.  

Nomenclature 
 a = nodal coefficient 

 A = area, m2; Arrhenius pre-exponential, sec-1; slope of linear in-depth flux versus surface temperature  

 b = nodal coefficient 

 B = offset of linear in-depth flux versus surface temperature 

B   = nondimensional mass flux of ablation products away from the surface 

gB  = nondimensional mass flux of pyrolysis products into the surface 

cB  = nondimensional mass flux of surface material erosion 
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 c = nodal coefficient 

cp = specific heat at constant pressure, J/kg·K 

C = generic capacitance coefficient 

CH = Stanton number for heat transfer 

CM = Stanton number for mass transfer 

d = nodal coefficient 

E = activation energy, J/kmol 

Fr = curvature factor, m 

h = heat transfer coefficient W/m2·K; sensible specific enthalpy, J/kg 

h  = effective specific enthalpy, J/kg 

 Hr = recovery enthalpy, J/kg 

 Ie = Arrhenius integral 

kj
~

  = diffusion mass flux of the kth element summed over all species, kg/m2∙sec 

 K = mass fraction; generic diffusion coefficient 

kK
~

 = mass fraction of the kth element summed over all species 

 k = thermal conductivity, W/m∙K 

Le  = Lewis number 

 m  = reaction order 

m  = mass flow rate, kg/sec 

m    = mass flux, kg/m2∙sec 

m   = volumetric mass generation, kg/m3∙sec 

 MW = molecular weight, g/mol 

 N = the node number corresponding to the back surface 

Nsurf = the node number corresponding to the front (ablating) surface 

 P = pore pressure, Pa 

"q  = heat flux, W/m2 

q   = volumetric energy generation rate, W/m3 



Q   = energy generation rate, J/sec 

 Qp = heat-of-pyrolysis, J/kg 

 r = radius, m 

 R = ideal gas constant, J/g∙K; nondimensional nodal coefficient modifier for radius correction 

 Ru = universal ideal gas constant, J/mol∙K 

 s = surface location, m 

s  = erosion rate, m/sec 

S = generic source term 

 SC = constant portion of a generic source term 

 SP = linear coefficient in generic source term 

 t = time, sec 

 T = temperature, K 

 Tchem = combined parameter used for surface heat flux calculations, J/kg 

 u = velocity of boundary layer gas, m/sec 

 vD = Darcy velocity, m/sec 

 V = velocity of pyrolysis gases, m/sec 

 x = depth from the original location of the front surface, m; fraction of virgin mass loss associated with the  
  ith pyrolyzing component 

*Z  = mass transfer driving potential 

Greek 

  = overall extent-of-reaction 

 i = extent-of-reaction for ith pyrolyzing component 

 x = nodal spacing, m 

 x = cell thickness, m 

 t = time step, sec 

   = permeability, m2; thermal diffusion coefficient, kg/m∙s  

  = modified non-dimensional ablation rate used in blowing corrections 

   = total number of chemical elements 



  = parameter used in blowing correction model 

  = dynamic viscosity, N∙sec/m2 

  = bulk density, kg/m3 

̂  = actual density, kg/m3 

c  = effective capacitance, J/m3∙K 

  = volumetric porosity 

  = generic solution variable 

Subscripts 

 adv = advection 

 b = back surface 

 c = fully-charred 

 cond = conduction 

 conv = convection 

 chem = thermochemical 

 D = related to Darcy’s model 

 e = boundary layer edge; on the “east” side of the cell or node (away from the front surface)  

 f = formation 

 f.e.g. = with chemical composition at the boundary layer edge (frozen edge gas) 

 g = pyrolysis gas 

 gen = generation 

i = the ith pyrolyzing component; the ith specie 

 inc = incident 

 k = the kth chemical element 

 M = boundary layer mass transfer 

 N = last element number 

 o = conditions in the absence of blowing 

 old = at the previous time step 



 p = constant pressure 

 P = the local node or cell 

 r = recovery 

 ref = reference value 

 s = solid material; the solid surface 

 sto = storage 

 surf = surface 

 tch = thermochemical 

 v = fully-virgin material 

 w = at the surface (wall); on the “west” side of the cell or node (toward the front surface) 

 4w = the four-wall heating model 

  = generic solution variable 

 
  



Introduction 

Ablative insulators are commonly used in aerospace applications to protect structural components from extreme 

aerothermochemical environments. The physical phenomena associated with ablation heat transfer depend on the 

application, but most involve in-depth material pyrolysis (charring) and thermochemical surface ablation. Related 

physics are summarized in the pioneering work done by Aerotherm in the 1960s [1] - [6]. Numerical modeling 

requires the solution of an energy equation including the effects of pyrolysis on a domain that changes as the surface 

ablates. In addition, surface movement may occur due to material spallation [7], [8] and intumescence [9]. These 

effects further complicate the numerical treatment of the changing domain. A numerical modeling program (ITRAC) 

has been developed that includes capabilities for modeling these and other complex ablation phenomena [10] - [12]. 

At the foundation of the program is a variable grid control-volume method for numerical solution of the governing 

equations. This paper provides details on the mathematical models governing ablation phenomena along with a 

description of the numerical solution methods used in the program. In addition, verification cases are presented that 

support accuracy of the method and proper program implementation. 

 Various methods exist for the solution of moving boundary heat transfer problems, often referred to as “Stefan 

problems” after the early work of Stefan [13]. Crank [14] classifies related numerical methods into two types; 

“front-tracking” and “front-fixing.” With front-tracking methods, the ablating surface (front) is tracked as it moves 

into the material, and the spatial discretization is updated in some manner to account for the changing domain. This 

may be in the form of a completely new grid or a modification of the mesh near the ablating front. Crank describes 

difficulties using front-tracking methods associated with requirements for equal grid spacing in finite-difference 

schemes. He discusses modified finite-difference methods and special temporal discretization schemes that 

overcome these difficulties. With front-fixing methods, the location of the moving boundary is fixed in the solution 

domain by using a transformed spatial coordinate such as that of the commonly used method of Landau [15]. With 

this method, the ablating surface is fixed in the transformed coordinate and the spatial grid is unchanged at each time 

step. The influence of the moving boundary is accounted for in an additional advective term that makes its way into 

the transformed energy equation. Use of these methods can result in awkward interfacing between ablating materials 

and nonablating substrate materials. In addition, modeling of instantaneous spallation is not possible since the 

advective term in the transformed energy equation becomes infinite. 



 The most commonly used program for ablation modeling in aerospace applications is CMA [16], which was 

developed as part of the work by Aerotherm. CMA relies on surface thermochemistry tables generated by the 

companion ACE program [17]. Discretization in CMA is based on a transformed energy equation for the ablating 

material with special treatment of a transition node between ablating and nonablating materials. The transition node 

changes in size to accommodate surface recession and is dropped when the size reaches a specified minimum. More 

recently, Amar et al. [18] used a front-fixing method with a Landau transformation to successfully solve pyrolysis 

and thermochemical ablation problems. Their method reduces complexity by using a contracting grid that does not 

require nodal dropping at the interface. The work of Amar et al. also provides some consideration of program 

verification, which has been sparse within the available ablation modeling literature.  

 This paper gives details of the fundamental equations governing ablation heat transfer phenomena. The 

derivations include descriptions of related modeling assumptions and property definitions. In addition, details are 

provided on the general numerical solution method used to solve these coupled equations. As opposed to the more 

commonly used front-fixing methods, the approach here is based on a front-tracking scheme with a variable grid. 

The method simplifies treatment at material interfaces and does not require special discretization at an interface with 

a nonablating material. Nonuniformity in nodal spacing is naturally handled using the control-volume method of 

Patankar [19], which does not require uniform nodal spacing. The method allows simple implementation of complex 

erosion models, such as spallation, since nodes (and control-volumes) are removed from the front surface in a 

manner that mimics the actual physical process. Material swelling is also easily implemented. The ITRAC program 

supports various models for thermochemical and mechanical ablation, in-depth material pyrolysis, and material 

swelling. One-dimensional planar, cylindrical, and spherical coordinates are supported. Complete description of all 

the solution features in the program is beyond the scope of this paper, which focuses on the mathematical models 

and numerical solution schemes supporting general ablation heat transfer problems. The numerical approach is 

described in detail, and solution accuracy is verified using analytical solutions, manufactured solutions, and 

comparisons with accepted codes. While the resulting verification does not provide exhaustive assessment of the 

many features of the program, it does provide verification of the core solutions. 



Phenomena 

The primary phenomena associated with ablative insulators are illustrated in Fig. 1. The insulator can be heated 

by radiation and convection heat transfer at the front surface. As regions within the insulator increase in temperature 

the material decomposes (pyrolyzes), and a pyrolysis front progresses into the insulator leaving behind a layer of 

charred material. It is customary to define pyrolysis and char depths corresponding to the onset and completion of 

pyrolysis; the region between the two depths is then referred to as the pyrolysis zone. Pyrolysis gases are generated 

as the material chars. These gases flow through and exchange energy with the porous char structure. Meanwhile, 

erosion* of the surface material can occur due to chemical and mechanical interaction at the adjacent boundary. 

These primary phenomena are not inclusive of all of the complex physics that can generally influence ablation heat 

transfer. Some key assumptions and simplifications in the present modeling are: 1) internal gas generation is only 

due to material pyrolysis, 2) pyrolysis gas transport is driven only by permeation, 3) pyrolysis gas enthalpy is a 

unique function of temperature, 4) local thermal equilibrium exists between the pyrolysis gases and the porous char 

material, 5) thermal and chemical equilibrium prevail at the material surface, and 6) intermediately charred material 

properties are uniquely defined by the degree of char. As a result, the described model does not include such effects 

as gas generation from internal volatiles, internal multi-species transport and related chemical reactions, kinetically-

controlled reactions within the pyrolysis gases, the effects of in-depth condensation of pyrolysis products (coking), 

or the influence of heating rate on material properties. The significance of these assumptions and simplifications are 

specific to different applications and materials. However, the primary phenomena identified here are common to a 

wide range of ablation heat transfer applications, and form a foundation upon which additional fidelity can be added.  

Mathematical models are described below for these transient thermal, pyrolysis, and ablation phenomena. The 

models are for one-dimensional planar, cylindrical, or spherical geometries. Related solution variables are the 

temperature field T(x,t), the extent-of-reaction (degree-of-char) field (x,t), the pore pressure field P(x,t), and the 

location of the ablating surface s(t). In the present formulation, the eroding surface is labeled as the “front” surface 

and the “back” surface is fixed as shown in Fig. 2. Details of the mathematical models along with their numerical 

solution are presented in the sections below.  

                                                           
* Various uses can be found in the literature for the terms “erosion” and “ablation.”  Here “erosion” is used to refer to the loss of surface material 
due to chemical or mechanical effects, and “ablation” refers to total mass loss including the effects of both surface erosion and in-depth pyrolysis. 



Governing Equations 

Presentation of the governing equations begins with a description of models for material pyrolysis (charring) that 

occurs as the material is heated. This process is modeled using a bulk solid density s that decreases from an initial 

“virgin” value v to a final “fully charred” value c as pyrolysis progresses. The extent of this conversion process is 

quantified using an extent-of-reaction  that progresses from an initial virgin value of zero to a fully-charred value 

of 1. 

The second section describes models for pyrolysis gas permeation through the porous char structure generated in 

the charring process. These models capture the important physics of pyrolysis gas flow that affects in-depth thermal 

transport as well as thermal and chemical interactions at the material surface. The related governing equations are 

based on mass conservation applied to the gas phase. The primary solution variable is the pressure field P within the 

porous material.  

The third section describes energy transport within the material. Mechanisms include thermal conduction and 

storage, generation effects of material conversion (charring), and heat exchange between the porous solid and the 

permeating gases. The related solution variable is the temperature field T within the material. 

The final two sections describe surface phenomena related to heat transfer and thermochemical erosion. Related 

models in these sections provide important thermal boundary conditions as well as models for the final solution 

variable s representing the location of the ablating surface. Details are given below. 

Pyrolysis Kinetics 

The extent of material pyrolysis is quantified using an overall extent-of-reaction  based on the bulk density of 

the decomposing solid s related to densities in the fully-virgin and fully-charred conditions v and c. The 

relationship is 
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It is convenient in the derivation of the governing equations to express the rate of change of solid density in 

terms of the rate of change of . From Eq. (1) the relationship is 

 
tt cv

s






 

)(  (2) 



The pyrolysis process is modeled as a combination of multiple reactions, each with its own extent-of-reaction i. 

The fraction of the total virgin mass loss as a result of the ith reaction is denoted xi. Assuming that the material 

volume is constant during the decomposition process, the bulk density of the decomposing solid is related to the 

component reactions by 

 
i

iivvs x  (3) 

A fully-charred condition corresponds to a value of unity for each i giving the following for the fully-charred 

density 
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Combination of Eqs. (1), (3), and (4) gives the following expression for the overall extent-of-reaction 
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The rate for each component is modeled using the following Arrhenius expression 
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According to Eq. (5), the overall rate of change is related to the individual rates by 

 


 






i
i

i

i
i

x
t

x

t




 (7) 

In-Depth Mass Balance 

A control-volume for gaseous mass balance within the porous pyrolyzing material is shown in Fig. 3. The figure 

shows a gaseous mass generation term genm 
 
associated with pyrolysis, advection of mass in the form of the mass 

flux gm  , and storage of gas having density g̂  in the solid pores. Considerations of the storage, advection, and 

generation terms are described below. The resulting terms are combined into a governing mass balance equation. 

Storage 

For a cross-sectional area A the storage rate is  
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where  is the local volumetric porosity. 

Advection 

The local mass flux gm   is defined as positive when flowing toward the surface against the positive x-direction. 

In terms of the mass flux, the net advection into the control-volume is then 
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Generation 

The volumetric gas generation rate genm   is equal to the negative of the rate of change of solid density ts  . 

This, along with Eq. (2), gives 
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Mass Conservation Equation 

Conservation of mass for the gaseous phase requires a balance of storage, net advection, and generation such that 

 gennetadvsto mmm   ,  (11) 

Combination of Eqs. (8) - (11) gives the mass balance as  
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Ideal gas behavior is assumed so that 
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In terms of the Darcy velocity ݒ஽, also defined as positive against the x-direction, the mass flux can be written as 

 Dgg vm ̂  (14) 

According to the Darcy model, the Darcy velocity can be written in terms of the pressure gradient as follows 
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where   is the material permeability, g  is the pyrolysis gas viscosity, and the positive sign on the right-hand-side 



of the equation is due to the directional definition of Dv  as positive against the x-direction.  

Porosity is modeled as a linear function of the degree-of-char as follows 
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Incorporating Eqs. (13) - (16) into Eq. (12) gives the following for the gaseous mass balance 
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For planar, cylindrical, and spherical coordinates this becomes 
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planar 
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cylindrical 
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spherical 

The radius r used in Eqs. (19) and (20) is related to the local x-position according to the concavity and the radius of 

the front surface rs. For a concave geometry, the radius increases with x, for a convex geometry it decreases. The 

corresponding relations are 

 xrr s   (21) 

concave geometry 

 xrr s   (22) 

convex geometry 

In-Depth Energy Balance 

A control-volume for energy balance within the porous pyrolyzing material is shown in Fig. 4. Energy is stored 

in both the solid and gas phases within the control-volume, while energy enters and leaves through gaseous 

advection and conduction. In addition, the pyrolysis process contributes volumetric generation (usually 

endothermic) as illustrated. Each contribution to the balance of energy within the differential element is considered 

below. 



Storage 

For a cross-sectional area A the storage rate is  
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Conduction 

Net conduction into the control-volume is 
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Advection 

 Net advection into the control-volume is given by 
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Generation 

Generation is a function of the pyrolysis rate and the heat-of-pyrolysis Qp. With Qp a positive value for 

endothermic pyrolysis, the generation rate is 
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Energy Conservation Equation 

Conservation of energy requires the following balance of storage, conduction, advection, and generation 
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Combination of Eqs. (23) - (27) gives 
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After combining with Eqs. (2) and (12) this can be written as 
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The solid enthalpy hs is assumed to be a linear function of the overall extent-of-reaction  based on fully-virgin 

and fully-charred values hv and hc as follows 
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This gives the following for the rate of change of solid enthalpy 
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Combining Eq. (31) with Eq. (29) and incorporating specific heats ( ThcP  ) gives 
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where thermal equilibrium has been assumed between the gas and solid phases. Effective capacitance and solid 

enthalpy terms are defined as follows 
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Incorporating these into Eq. (32) gives the following general equation representing energy conservation 
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For planar, cylindrical, and spherical coordinates this becomes 

 
t

hhQ
x

h
m

x

T
k

xt

T
c cvgp

g

























  ))((g  (36) 

planar 
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cylindrical 
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spherical 

with radius definition given in Eqs. (21) and (22). 

Surface Energy Balance 



Kendall et al. [20] provide a model for coupling chemically reacting boundary flow to an ablating material. This 

approach is predominantly used within the ablation modeling community. With this model, coupling is based on 

transfer coefficients to capture the effects of species diffusion through the concentration boundary layers and heat 

transfer through the temperature boundary layer. Surface conditions, including the surface heat flux and ablation 

rate, are determined based on the assumption of chemical equilibrium at the surface temperature and pressure. The 

surface temperature, an unknown in the modeling, must be determined in a manner that reconciles surface energy 

conditions with an in-depth energy balance. Three modeling options are provided based on different conditions 

within the reacting boundary gasses. The options correspond to conditions of 1) unity Lewis number Le, 2) non-

unity Le, but equal diffusion coefficients for the various species within the boundary flow, and 3) nonunity Le and 

unequal diffusion coefficients. The models are based on the energy terms depicted in Fig. 5. Brief descriptions are 

given in the sections below which categorize the terms according to thermochemical convection, radiation, mass 

transfer, and in-depth conduction. A final subsection discusses the overall surface energy balance equations. 

Thermochemical Convection 

Heat transfer from a chemically reacting flow includes the effects of energy transfer through a temperature 

gradient and enthalpy transfer from species diffusion through concentration gradients. Within the ablation modeling 

community, these separate forms of energy flux are often referred to as "convective" and "chemical" heat fluxes. 

Here, the combined effects are referred to as "thermochemical convection," and the term tchq   is used to denote this 

type of energy transfer. Different transfer coefficient models are used according to the assumed conditions in the 

boundary gases. For the case of unity Le, thermochemical convection is modeled by 
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For nonunity Le with equal diffusion coefficients the model becomes 
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equal diffusion coefficients 

For the general case of nonunity Le and nonequal diffusion coefficients the model is 
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equal diffusion coefficients 



Radiation 

Radiation from adjacent boundary flow is common in ablation heat transfer applications. Here, incident radiation 

absorbed at the surface or "wall" is denoted by inc,radq w , with w representing the wall absorptivity. The surface 

also reradiates according to the wall emissivity w  and temperature wT . Hence the term 4
ww T  in Fig. 5 to account 

for reradiation. 

Mass Transfer 

Energy is transferred with mass transfer to and from the eroding surface. Mass flow into the surface includes the 

mass flux of pyrolysis gases gm   and the mass flux of charred surface material cm   consumed in the surface 

reactions. The gross mass flux of reaction products away from the wall is given by w)( V . Related enthalpies are 

those of the pyrolysis gases gh , the charred surface material ch , and the wall reaction products wh . Energy fluxes 

into the surface are then gg hm   and cc hm  , while energy out of the surface is whV w)( . 

In-Depth Conduction 

The energy conducted into the solid material is given by condq  .  

Energy Balance 

The surface energy terms are combined into an overall balance given by 
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Incorporating the models of Eqs. (39) - (41), and rewriting the balance with condq   on the left-hand-side of the 

equation gives: 
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equal diffusion coefficients 
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The models are written in terms of nondimensional mass fluxes of pyrolysis gas, surface (char) consumption, 

and total gaseous flow away from the wall ( gB , cB , and B ). The nondimensional “B-prime” definitions are given 

below 
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The parameter B is commonly used to represent a nondimensional blowing rate at the wall [21]. The non-

dimensionalization is usually based on mass transfer coefficients in the absence of blowing. The prime notation in 

the definitions of Eqs. (46) - (48) is used to denote nondimensionalization based on mass transfer coefficients that 

have been adjusted for blowing effects. The adjustment is based on correlations for transpiring boundary layers and 

is given by the following relation [16] 
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and 

 gc mmm    (51) 

In these equations, CH is the Stanton number, CHo is the Stanton number prior to the blowing adjustment, that is, the 

value undisturbed by mass injection, m   is the total mass flux of gaseous products injected into the boundary layer, 

and  is a parameter of the semi-empirical model used to account for different flow conditions. A value of 0.4 is 

commonly used for turbulent flows; with a value of  = 0.5, the correlation reduces to that provided by Kays and 

Crawford [22]. 



The various parameters required in Eqs. (43) - (45) are provided in thermochemical (B-prime) tables that list the 

parameters as functions of gB  and cB . These tables are generated, for example, using the ACE surface 

thermochemistry program [17]. 

Surface Erosion 

The selected surface energy balance model of Eqs. (43) - (45) must be reconciled with the in-depth energy 

solution. Once this is completed (at each time step), the thermochemical erosion rate is calculated from the resulting 

cB  as follows 
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Numerical Solutions 

Domain Discretization 

The domain is discretized into control-volumes following the method of Patankar [19]. An illustration is 

provided in Fig. 6. Each control-volume is labeled as CVi and corresponding nodes are labeled as Ni. Interfaces 

between control-volumes are denoted by Ii. The initial grid is defined by specifying the thickness ∆ݔ௜ of each 

control-volume. Corresponding nodes are centered within the control-volumes with the exception of the front and 

back boundary nodes, which are placed at the edge as shown. Nodal spacings ݔߜ௜ are calculated accordingly. 

Numbering of the control-volumes and nodes begins at ݅ ൌ 1 for the front surface and increases in-depth to a final 

value of B for the back boundary. 

Variable Grid Methodology 

The grid is modified for surface ablation as illustrated in Fig. 7. The location s of the ablating surface for each 

time step is determined based on the calculated ablation rate ݏሶ from the previous time step. As time progresses, s 

moves deeper into the domain and the grid is partitioned into active and inactive parts as shown. Solutions are then 

performed only on the active portion of the grid, which continuously decreases in size as control-volumes are 

deactivated. At each time step, an assessment is made as to which control-volume contains the new surface. Once 

this is determined, control-volumes at the surface are adjusted and the new surface node is labeled NS. This defines 

the active portion of the grid to be associated with nodes NS through NB. Adjustments of the surface control-volumes 



are made according to where s falls within the discretized domain. Four cases are considered as shown in Fig. 7, 

which shows the old grid on the left and the modified grid on the right. Each case is discussed below. 

Case I 

 Here the surface falls within CVi and above Ni (Fig. 7a). CVi is split as shown on the right of the figure. Ni is not 

moved. NS is identified as Ni-1 which is repositioned at the new surface location (x = s). The upper boundary of CVi-1 

is defined by the new surface location. The interface Ii-1 is repositioned midway between Ni-1 and Ni. xi, δxi-1 and 

xi-1 are modified as shown. 

Case II 

 Here the surface falls directly on Ni (Fig. 7b). In this case NS is identified as Ni, and the lower half of the old CVi 

becomes the new CVi. The location of Ni is unchanged so that it is now positioned at the upper boundary of CVi. The 

location of Ii is unchanged. xi is adjusted accordingly. 

Case III 

 Here the surface falls below Ni (Fig. 7c). NS is identified as Ni, and the lower portion of the old CVi becomes the 

new CVi. Ni is moved to the upper boundary of CVi (the new surface location), and the location of Ii is unchanged. 

xi	and δxi are adjusted accordingly. 

Case IV 

 Here the surface falls directly on Ii (Fig. 7d). NS is identified as Ni, and CVi is split into the new CVi and CVi+1 as 

shown. Ni is moved to the upper boundary of the new CVi (the surface location), and Ii is repositioned midway 

between Ni and Ni+1. xi and δxi are adjusted accordingly. 

Extent-of-Reaction Solutions 

Extent-of-reaction solutions depend only on the local temperature history (Eq. (6)). As a result, local solutions 

can be obtained at each node by direct integration of Eq. (6) with respect to time. This is done at each time step after 

separating variables. The equation for the ith extent-of-reaction i is then 
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where i,o is the “old” value (at the beginning of the time step) and ai and  are dummy integration variables. The 

term on the right-hand-side of Eq. (53) is the Arrhenius integral IE,i, that is 
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Assuming that the old temperature To prevails over the time step, IE,i is 
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Performing the integration on the left-hand-side of Eq. (53) and solving for i results in Eq. (56) or (57), depending 

on the value of the reaction order mi. 
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Once each i has been determined the overall extent-of-reaction  is calculated using Eq. (5) and the overall 

reaction rate is calculated as 
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Numerical difficulties can be associated with Eq. (56). In particular, if the reaction order mi is less than 1.0, 

inaccuracies and stability issues can arise if time steps are too large. Consider the special case of mi = 0.5, for which 

the exponent on the bracketed term of Eq. (56) has a value of 2.0. This case is illustrated in Fig. 8, which 

corresponds to i,o = 0.0, a particular value for IE,i, and various time steps. For these conditions, the results become 

unrealistic for time steps beyond 0.1 sec since i values begin to reduce, even becoming negative, with increased 

time steps beyond that value. The term in brackets from Eq. (56) is also shown in the figure. It can be seen that the 

region beyond the peak i value corresponds to negative values of this quantity. For other reaction orders (< 1.0), 

the bracketed term becomes complex, resulting in stability problems. In order to correct for these conditions, the 

bracketed term is monitored and if it becomes negative, the calculation is bypassed and the maximum i value of 1.0 

is applied. 

Numerical difficulties can also be encountered for mi = 1.0. If IE,i becomes too large, the exponential term in Eq. 

(57) can exceed machine precision, resulting in an “infinite” result. In order to avoid this, an upper limit of 50.0 is 

imposed on IE,i.  

  



Pore Pressure and Temperature Solutions 

The general governing equations for pressure and temperature are the mass balance of Eqs. (18) - (20) and the 

energy balance of Eqs. (36) - (38). These equations can be summarized in terms of a storage term, a diffusion term, 

and a source term as follows 
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where n has the value 0, 1, or 2 for planar, cylindrical, and spherical conditions respectively, and the source term is 

written as a linear function of the solution variable. Table 1 gives corresponding definitions for , C, K, SC, and SP 

for the mass equation and the energy equation. Discretization equations are derived for each node (cell) of the 

domain. Special considerations are made for internal nodes and the boundary nodes. In the discretization of the 

governing equations, the solution variable is generally treated as temporally uniform and spatially linear. This results 

in a scheme that is first-order in time and second-order in space. Details are given in the sections below. 

Internal Nodes 

Discretization equations are generated for each internal node by integrating the governing equation, Eq. (59), in 

space (over the corresponding cell) and time (over the time step). Special considerations are made based on 

concavity, which is illustrated in Fig. 9 for a cell surrounding the Pth node; cell boundaries are denoted by the dotted 

lines. The integration is given by 
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Each of the four integrals is considered separately below. 

The first integral in Eq. (60) represents capacitance. Here, temporal integration is based on the assumption that C 

is fixed over the time step. In addition, the solution value is assumed to be uniform over the cell. With these 

assumptions, the integral is 
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Where Fr is a correction factor that accounts for curvature and has the definitions listed in Table 2. 

The second integral in Eq. (60) represents diffusion. Here, temporal integration is based on the assumption that K 

is fixed over the time step. The solution variable is treated implicitly, with new values prevailing over the time step. 

Finite difference approximations are used for spatial derivatives of the solution variable. The resulting integral is 
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 (62) 

where Ke and Kw are values of K at the interfaces of the cell. Following Pantakar, these values are calculated as the 

harmonic mean of values evaluated at the nodes on either side of the interface. 

The third integral of Eq. (60) represents the constant portion of the source term. With CS  fixed, this integral is 
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The fourth integral of Eq. (60) represents the linearly-dependent source term. Here the solution variable  is 

assumed to be uniform over the cell and fixed at the value at the end of the time step (implicit treatment). The 

resulting integral is 
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Combination of Eqs. (60) - (64) results in the following linear equation for the Pth node 
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with supporting Eqs. (66) - (70). 
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To support code implementation it is convenient to recast Eq. (65) using notation for the ith node as follows 
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The nodal coefficients for the ith nodes from Nsurf + 1 to N – 1 are then 
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Front Boundary Node 

The front boundary condition is applied by imposing a value for the solution variable (temperature or pressure) 

on the front node. This is done by defining the following nodal coefficients for the Nsurf node  

 

fNsurf

Nsurf

Nsurf

Nsurf

d

c

b

a









0

0

1

 (73) 

where f is the value for the solution variable (temperature or pressure) on the front boundary. For pressure, this 

value is simply a specified value. For temperature, this value is iterated until consistency is found between the in-

depth solution and the boundary condition specification (one of Eqs. (43) and (44)). Details of the iterative surface 

energy balance are given in a subsequent section. 

Back Boundary Node 

For a specified value of the solution variable (pressure or temperature), the coefficients are simply 
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where b is the value for the solution variable (temperature or pressure) on the back boundary. In addition to a 

specified temperature, general thermal boundary conditions are supported for the back surface, although they are not 

discussed here. The nodal coefficients are found by performing the integration of Eq. (57) over the back element 

(illustrated in Fig. 10). 

Matrix Solution 

The resulting set of N – Nsurf + 1 equations of the form of Eq. (71) forms a tridiagonal system as shown in Eq. 

(75). The matrix is solved using the Thomas Algorithm. 
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Surface Energy Balance 

At each time step, the heat flux conducted into the front surface must be consistent with that determined by the 

front surface boundary condition. The method for reconciling these two terms is described here. 

Heat Flux from the In-Depth Solution 

Solution of the in-depth Energy Equation is accomplished through the solution of the following temperature-

based form of the system of Eq. (72) 
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Once a surface temperature has been selected, the full matrix system can be solved and the corresponding heat 

flux conducted in-depth condq   can be determined from the resulting temperature profile. However, solving for the 

heat flux in this manner requires a full matrix solution at each iteration, which is computationally expensive. A 

method is incorporated that avoids the need for a full matrix solution at each iteration. Instead, an expression is 

developed, based on the values of the matrix coefficients, that casts condq   as a linear function of the surface 

temperature Tw associated with the current iteration. This expression then takes the place of the full matrix solution 

in the iteration process. The method is adapted from a similar approach used in the CMA code and is described 

below. 

First, the coefficients for the Nsurf node are recast in terms of the unknown surface heat flux condq  . As a result, the 

definitions of Eq. (73) are temporarily replaced. Integration over the front element yields the following 

modifications for the Nsurf coefficients  
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Gaussian elimination is then used to reduce the system to lower-triangular form. The result is 
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with 
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For the Nsurf node, the modified *
id  coefficient can then be written as 
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The Nsurf equation from the system of Eq. (78) is then 
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Rearrangement gives 
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or 
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Eq. (83) represents the heat flux conducted into the surface associated with a surface temperature of Tw (= Tsurf). 

Generation of this linear relation requires only one “half-pass” through the matrix to determine the coefficients and 

can be used to represent the in-depth heat flux response to a particular surface temperature during the iteration 

process. 

Surface Heat Flux from Boundary Conditions 

For convenience, a Tchem parameter, adapted from previous developers, is defined and incorporated into a table, 

which is referred to as a “Tchem-Table.” The Tchem parameter is defined, based on the various terms in the surface 

boundary condition, such that the surface heat flux may be written generically as 

 4
,w)( wwincradchemrHeecond TqTHCuρq    (86) 

According to the models of Eqs. (43) - (45), the appropriate definitions are  
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unequal diffusion coefficients 

Values for Tchem are tabulated versus gB , cB , and temperature as illustrated in Table 3. The various terms 

required for Tchem are calculated through equilibrium analyses using, for example, the ACE program. The table is 

constructed with predetermined combinations of gB  and cB . The temperature, and other thermodynamic conditions, 

are uniquely determined for each set of gB  and cB . During the solution process, gB  is treated as an independent 

variable with values determined from the in-depth solution at the previous time step, Eq. (15) provides the Darcy 

velocity from which the surface mass flux is determined, and Eq. (46) provides the gB  value. With this in mind, the 

table is organized in sections of constant gB  with varying cB  as shown in Table 3. The lines in the table are 

numbered within each gB  section as shown. The remaining terms (temperature, etc.) are uniquely related to the 

particular combination of gB  and cB , that is, to the particular line number within a gB  section. The heat flux of Eq. 

(85) can then be thought of as a unique function of the line number of the table within the appropriate gB  section. 



Reconciliation 

Balancing the energy at the front surface is accomplished through the reconciliation of condq   as calculated by an 

in-depth solution (Eq. (83)) with that calculated according to the specified boundary condition (Eq. (86)) with 

supporting Tchem table). That is 

 )( chemrHeeNsurf THCuρBAT   (90) 

with TNsurf set equal to the temperature from the current line of the Tchem table. The reconciliation is accomplished 

using a Newton-Raphson scheme to iterate on the line number until the equation is balanced. During this iteration, 

the line number is treated as a real (as opposed to an integer) variable, and linear interpolation against this parameter 

is performed for the dependent variables in the table. Typical convergence occurs at some intermediate (non-integer) 

value for the line number corresponding to an intermediate condition between table entries. Other variables could be 

used as the independent variable instead of the line number, for example temperature or cB . However, there are 

regions within certain types of tables for which one or the other of these parameters may be constant within the 

table. This is the motivation for using the line number as an independent variable. Alternatively, the enthalpy could 

be used. 

Solution Verifications 

The methodologies described above, along with additional capabilities, have been implemented into the ITRAC 

program, and extensive verifications have been performed to ensure that the program provides accurate numerical 

solutions of the governing equations [12]. These verifications have been made by comparing solution results to those 

from analytical solutions, manufactured solutions, and numerical solutions from other accepted programs. In 

addition to the confirmation of solution accuracy, assessment of convergence rates with respect to discretization 

refinement have been investigated. This provides additional verification of proper numerical implementation. An 

exhaustive description of the many verification cases is beyond the scope of this paper. Instead, some selected 

results are summarized. Some comparisons are shown only visually, without detailed descriptions of error norms or 

solution differences. This is done for brevity, with the belief that a visual assessment provides a sufficient level of 

confidence. All verifications shown here that involve pyrolysis have been performed using properties of the 

fictitious TACOT (Theoretical Ablative Composite for Open Testing) material [23]. This material has been defined 

to support evaluation of ablation modeling codes using material properties appropriate for open literature. Six 



verification cases are presented below. These are limited to planer cases highlighting different features of interest. 

Extensive verifications including those in cylindrical and spherical coordinates can be found in the program 

verification reference [12]. 

Case 1 (Pyrolysis Solution) 

Here the focus is on evaluation of pyrolysis (extent-of-reaction) solutions. To evaluate these calculations, a 

constant temperature of 1000 K was imposed on the entire domain of a model, and the extent-of-reaction was 

calculated as a function of time. Pyrolysis kinetics for the charring material were based on the two-component 

model of the TACOT material. Results are compared to those obtained using numerical solution of the governing 

equations (Eqs. (5) and (6)) with Mathematica software [24]. Fig. 11 provides a plot of the two results. The spatial 

domain has no influence on the results here since the temperature versus time history is spatially uniform. 

Accordingly, the results shown correspond to the entire spatial domain. Excellent agreement can be seen, supporting 

verification of pyrolysis solutions. 

Case 2 (Pore Pressure Solution) 

This case provides a comparison of pore pressure solutions against porous media modeling using Fluent [25], a 

computational fluid dynamics program. Here the pressure was initiated at 100 kPa throughout the entire domain of a 

10 cm slab of a porous material. Pressure conditions on the front and back surfaces were prescribed at 200 and 100 

kPa, and the transient response was modeled. Material porosity and permeability were fixed at constant values of 0.1 

and 1 x 10-13 m2, respectively. Viscosity and molecular weight for the flowing fluid were based on fixed values for 

air at 300 K. Results of the calculated pore pressure response are shown in Fig. 12 along with Fluent results. The 

plots show pressure profiles at various times. Excellent agreement is seen, supporting verification of the pore 

pressure solutions. 

Case 3 (Temperature with Moving Boundary Solution) 

Here comparisons are made to an analytical solution. A constant surface temperature Ts of 2000 K and a constant 

erosion rate ݏሶ of 1.27 mm/s were applied to the front surface. A thickness of 0.6 m was modeled, sufficient to ensure 

semi-infinite behavior. The entire domain was initialized at a temperature Ti of 300 K, and constant thermal 

properties were used. The simulation was run for a model time of 400 s, and discretization was based on 2000 

elements of equal thickness and a time step size of 1 s. As time progresses in this type of model, the temperatures 



ahead of the moving surface approach a quasi-steady profile for which an analytical solution can be derived. 

Carslaw and Jaeger [26] provide the analytical solution, which can be written as 

 /rxs
si eTTT   (91) 

where xr is the depth relative to the front surface and  is the thermal diffusivity. Fig. 13 provides plots of the 

solutions, in the form of temperature profiles, versus those based on Eq. (91). The times compared are sufficient for 

quasi-steady conditions to be reached. The comparison shows excellent agreement for this thermal solution 

including the effect of a changing domain. 

Case 4 (Pyrolysis, Pore Pressure, and Temperature Solutions) 

This case considers coupled solutions for in-depth heat transfer, material pyrolysis, and pore pressure. The 

problem definition is that used as an initial test case for code comparisons as part of the recent Ablation Modeling 

Workshop [27]. A surface temperature of 1664 K was applied to one side of a 5 cm domain, while the other side 

remained adiabatic. The entire domain was initialized at a temperature of 298 K, and the simulation was run for a 60 

second duration. Properties for the TACOT material were used. No analytical solution is available for this type of 

test case. Instead, results are compared with those from the familiar CMA code to ensure that solutions are 

consistent with a commonly accepted approach. The solutions were obtained using 1000 elements of equal thickness 

and time steps of 0.01 s. CMA [16] solutions were run with 600 elements and a maximum time step of 0.1 s. Both 

models were evaluated for discretization convergence. Results are shown in Fig. 14 and Fig. 15. The first figure 

shows temperature comparisons at six depths relative to the front surface. The second figure shows depths of the 

pyrolysis and char fronts, defined as 2% and 98% charred, respectively. Excellent agreement is seen between the 

two codes. This verifies consistency with an accepted solution method for charring materials including the effects of 

heat transfer, material pyrolysis, and pyrolysis gas flow. 

Case 5 (Pyrolysis, Pore Pressure, Temperature, and Thermochemical Erosion) 

This is another case from the Ablation Modeling Workshop [28]. In addition to material charring, this case 

includes the effects of surface thermochemistry and erosion. A 5 cm thick sample of the TACOT material was 

heated on one side by thermochemical convection from air flow, while the other side remained adiabatic. The heat 

transfer coefficient was ramped linearly from an initial value of zero to its full value at 0.1 s, then held constant 

through 60 s. The value of the enthalpy-based heat transfer coefficient was 0.3 kg/m2∙s, and the corresponding 



recovery enthalpy was 2.5 x 107 J/kg. The entire domain was initialized at a temperature and pressure of 300 K and 

101.325 kPa. Supporting thermochemistry (B-prime) tables were created using a modified ACE program [17] with 

air chemistry for the adjacent boundary flow. Mole fractions of 0.21 and 0.79 were used for oxygen and nitrogen, 

respectively, and the unity Le model was used. The insulator and pyrolysis gas chemistry were defined based on that 

for the TACOT material. Verifications were made against solutions from the CMA program. Discretizations were 

based on 1000 elements and 0.01 s time steps. The CMA model used 600 elements and a 0.1 s maximum time step. 

Both models were evaluated to ensure discretization convergence. Results showing temperatures at various depths 

from the original surface location are shown in Fig. 16. Results for the eroded surface, the pyrolysis front (2% 

charred), and the char front (98% charred) are shown in Fig. 17. Excellent agreement is seen between the two 

models verifying consistent solutions with accepted methods for a charring material with chemical surface ablation. 

Case 6 (Discretization Convergence Rates) 

The rate of solution convergence with respect to discretization refinement is assessed in this verification case, 

which considers heat transfer with constant properties and a moving surface. The convergence rate is evaluated 

based on the behavior of the L2 norm of the error with respect to an analytical solution. Specifically, derivatives of 

the L2 norm with respect to spatial and temporal discretization sizes are evaluated to confirm that the error norm 

converges toward zero at expected rates. The method of manufactured solutions [29], [30] is used in the assessment.  

Method of Manufactured Solutions 

An analytical solution is obtained using the method of manufactured solutions. With this approach, a solution 

rather than a problem statement is chosen. The corresponding problem statement is then derived using a variable 

source term in the governing equation. In this manner, a problem statement with its corresponding analytical 

solution is obtained. The method is applied here including the effect of a moving boundary. 

For planar conditions with constant properties Eq. (59) can be rewritten as 
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Even though this case considers no pyrolysis, the source term is included to support the method of manufactured 

solutions. For temperature solutions, this takes the form of the familiar heat equation 
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Eq. (93) represents the equation solved in this verification case with q  calculated as a function of space and time 

according to the manufactured solution described below. 

The changing spatial domain is illustrated in Fig. 18, which shows the original location of the front (ablating) 

surface at 0x , the current location of the front surface at sxx  , and the fixed location of the back surface at 

bxx  . The overall length of the spatial domain ܮ, which changes with time due to the movement of
 sx , is  

 sb xxL   (94) 

Nondimensional spatial coordinates   and   are defined for convenience. These are illustrated in Fig. 19 and are 

defined as 
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In addition, the time domain is nondimensionalized with respect to the total (final) simulation time ft  as follows 
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A manufactured temperature solution mT
 
is then defined using these nondimensional coordinates as  
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and  
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With constant properties, substitution into Eq. (93) provides the required source term as 
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where  is the thermal diffusivity. 

For this case, the exponents b, c, and d in Eq. (98) were chosen to be 2, 2, and 1 respectively, and the coefficient 

a was 1 ൈ 10ହ. This provides an exact solution with a constant temperature of zero at the endpoints of the domain 

(even as ablation progresses) and a quartic trace on the interior that increases linearly with time. The original length 

L of the domain is 0.1 m, the ablation rate s  is held constant at 5 ൈ 10ିସ m/sec, and the thermal diffusivity  is 

1 ൈ 10ିହ m2/sec. 

Error Convergence 

 Error in the numerical solution at any point in time and space is defined as the difference between the 

numerical solution T and the exact solution Tm from Eq. (98), that is 

 ),(),(),( xtTxtTxte m  (102) 

At any point in time, the overall spatial error norm is calculated as 
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This is integrated over the temporal domain to provide the total error as follows 
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 Solution convergence is assessed by evaluating the total error versus discretization levels. Derivation of the 

discretization equations employed a zeroth-order (constant) temporal representation and a first-order (linear) spatial 

representation. As a result, errors associated with discretization should be expected to follow 
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In regions where temporal error dominates (highly refined x) this leads to  
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When spatial error dominates (highly refined t) the expected behavior is 
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Differentiation provides the following when temporal errors dominate 
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When spatial errors dominate the relation is 
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The expected rates of convergence for temporal and spatial discretization are then 1 and 2, respectively. Error norms 

have been calculated with various discretization levels to assess the actual convergence rates. Gaussian quadrature 

was used for the integration of the error norm. 

Results 

 The numerical verification of the variable grid method was accomplished using an array of temporal and spatial 

discretization values. These values were selected to span a range for the specified source term, derived as part of the 

method of manufactured solutions. Fig. 20 and Fig. 21 illustrate results for coarse and fine spatial discretization, 

respectively. For the coarse model of Fig. 20, initial spatial discretization included 10 elements with uniform nodal 

spacing of 0.01 m while temporal discretization used equal times steps of 1.0 sec. For the refined model of Fig. 21, 

spatial discretization included 80 elements with 0.00125 m nodal spacing and 0.1 sec time steps. As expected, 

improvement is seen with an increased level of discretization. To assess the convergence rates, error norms were 

calculated with various levels of refinement. Table 4 shows results where temporal error dominates. Time steps here 

range, in factors of 10, from 10 to 0.001 sec. Logs of the time step and error are listed in the table along with the 

numerical derivative representing the convergence rate. Similar results for spatial refinement are given in Table 5; 

here, spatial effects were dominant. The numerical derivatives listed in the tables show the expected convergence 

rates of 1 and 2. The accuracy illustrated in Fig. 21, along with the proper convergence behavior, provide evidence 

for accuracy and proper code implementation, including the effects of a moving boundary. 

Solution Example 

A unique advantage of the present method is the ease with which surface movement can be controlled. This 

supports, for example, the modeling of materials with char layers that fail under certain structural loading 

conditions. To help investigate related effects, several mechanical erosion submodels are included in the ITRAC 

program. These include a limiting thickness for the char layer, an instantaneous spallation of the char layer after 

reaching a spallation criterion, and a mechanical erosion rate that augments the chemical rate. In any of these 



models, the ablation augmentation is accounted for by simply moving the surface to the appropriate location using 

the grid modification scheme previously described.  

A common need for mechanical erosion modeling is related to elastomeric insulators such as those used 

internally in solid rocket motors. Char characteristics for these materials are notoriously weak and difficult to 

characterize. As a result, successful models are often calibrated to available test data, and the capabilities of the 

present solution scheme allow for these investigations to be performed in a meaningful way. As a demonstration, 

consider the behavior of an elastomeric insulator in a subscale solid rocket test motor where the material is known to 

exhibit a pyrolysis depth of 7.6 mm at a particular station with an exposure time of 48 sec. The material behavior 

and boundary conditions are hypothesized, but are typical of actual material behavior. Predictions using 

thermochemical surface ablation give the transient response shown in Fig. 22. The figure shows the modeled depths 

for the surface, the char line, and the pyrolysis line, where the char and pyrolysis lines correspond to 98% and 2% 

extent-of-reaction, respectively. Here the surface has moved, due to thermochemical surface ablation, to a depth 

around 2.7 mm and the overall pyrolysis depth is just under 4.0 mm. It is speculated that the deeper pyrolysis depth 

of 7.6 mm is a result of mechanical material failure and a model is constructed that forces a spallation event to 

periodically occur. In this case the spallation is based on a limiting char layer thickness; whenever the char layer 

reaches a specified thickness, a spallation event removes any material with an extent-of-reaction higher than 0.5. 

This is accomplished within the model by simply moving the surface to the appropriate depth when the criterion is 

met. Results including the spallation model are shown in Fig. 23. The spallation event can be seen in the program 

output, and the pyrolysis depth is augmented to a value near the 7.6 mm observation. Surface temperatures 

corresponding to the two models are shown in Fig. 24. This simple example illustrates the usefulness of the 

modeling approach for modeling and investigating complex ablation phenomena including effects of mechanical 

erosion. 

Discussion 

The numerical method described herein has been used to create the Insulation Thermal Response and Ablation 

Code, or ITRAC. Only a fraction of the capabilities of the ITRAC program have been presented in this paper, and 

the verifications presented have been limited to those highlighting general solution accuracy and comparisons with 

the long-accepted CMA program. Those comparisons have focused on problems for which agreement with CMA 



solutions should be expected. Details of additional solution capabilities and extensive verifications can be found in 

complete theory, user, and verification manuals [10] - [12]. The ITRAC program provides a modern alternative 

lacking the numerical issues commonly encountered with the CMA program; these include unexpected solution 

instabilities and failure to converge with discretization refinement under certain conditions. Other advantages of the 

ITRAC program include various modeling options, some of which have been described here. For brevity, many of 

the unique features have been omitted from this discussion entirely, but they include various options for mechanical 

erosion, full pore pressure solutions for applications where related mechanical loading is of importance, multi-

component pyrolysis analysis with no limits on the number of components, alternative surface ablation models 

including heat-of-ablation techniques, temperature-based boundary conditions, multiple options for defining 

property dependence, an option for implicit solution coupling, internal diffusion of absorbed constituents such as 

moisture, and capabilities for user-defined thermal and erosion boundary conditions based on other solution 

parameters. The program is extensively used within the ablation modeling community and consistently provides 

stable solutions even with conditions of extreme heat flux and ablation conditions. For complete descriptions of the 

program, the reader is referred to the ITRAC manuals. 

Summary and Conclusion 

Ablation heat transfer modeling equations have been presented. These mathematical models include the effects 

of heat transfer, material pyrolysis, internal permeation and heat exchange, and thermochemical surface ablation. 

Detailed derivations have been provided so that modeling assumptions are clear, and the models have been put into a 

form that supports coupled numerical solution. A one-dimensional numerical solution scheme has also been 

presented. The scheme is based on a control-volume formulation with a variable grid to account for the effects of 

surface movement. The solution method has been implemented into a new computer program and accuracy of the 

method has been verified. The variable grid method used in the program allows for easy implementation of surface 

movement models associated with phenomena such as mechanical erosion. A simple case was presented 

demonstrating this capability through the application of a spallation model used to simulate periodic mechanical 

char removal of an ablative. This general modeling approach is expected to provide a foundation for continued 

development and improvements in the important area of ablation heat transfer. 
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Fig. 1 Phenomena. 
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Fig. 2 Surface definition. 
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Fig. 5 Control-surface for surface energy balance. 

  

 

 

 

 



 
Fig. 6 Spatial discretization. 
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a) Case I: surface falls above the ith node 
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Fig. 7 Control-volume modifications at the ablating surface. 
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Fig. 9 Concavity of the Pth cell. 
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Fig. 10 The back-side half-cell. 
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Fig. 11 Results for verification case 1. 
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Fig. 12 Results for verification case 2. 
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Fig. 13 Results for verification case 3. 
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Fig. 14 Temperature results for verification case 4. 
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Fig. 15 Depth results for verification case 4. 

 
 
  

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

0 20 40 60

x 
(m

)

t (s)

pyrolysis - ITRAC

char - ITRAC

pyrolysis - CMA

char - CMA



 
 

 

Fig. 16 Temperature results for verification case 5. 
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Fig. 17 Depth results for verification case 5. 
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Fig. 18 Changing domain. 

 
  



 

Fig. 19 Nondimensional coordinates. 
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Fig. 20 Results for verification case 6 with coarse discretization. 

  

0

1000

2000

3000

4000

5000

6000

7000

0 0.02 0.04 0.06 0.08 0.1

T
(K

)

x (m)

Analytical, t=20s

Analytical, t=40s

Analytical, t=60s

Analytical, t=80s

Analytical, t=100s

ITRAC, t=20s

ITRAC, t=40s

ITRAC, t=60s

ITRAC, t=80s

ITRAC, t=100s



 

Fig. 21 Results for verification case 6 with fine discretization. 
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Fig. 22 Application with only chemical erosion. 
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Fig. 23 Application with chemical erosion and spallation. 
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Fig. 24 Surface temperatures. 
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Table 1 Generic parameter definitions for the energy and mass/momentum equations. 

Equation  C K SC and SP 

Mass P(x,t) 
RT


 

gRT

P




 
SC:    

tcv 

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 )(  
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Table 2 Curvature correction factor definitions. 

Curvature Fr 
Planar geometry ( 0n ) 1 

Cylindrical geometry ( 1n ) 
2

we rr 
 

Spherical geometry ( 2n ) 
2

22
wwee rrrr 

 

 
  



Table 3 Tchem table format. 

Line # (L) gB  cB  Tw Tchem 

n 1,gB  ncB ,  Tn Tchem,n 

    

3 1,gB  3,cB  T3 Tchem,3 

2 1,gB  2,cB  T2 Tchem,2 

1 1,gB  1,cB  T1 Tchem,1 

n 2,gB  ncB ,  Tn Tchem,n 

    

3 2,gB  3,cB  T3 Tchem,3 

2 2,gB  2,cB  T2 Tchem,2 

1 2,gB  1,cB  T1 Tchem,1 

    

 
 
 

  



Table 4 Error norms with temporal dominance (x = 0.00002 m). 

t log t log E log(E)/log(t) 

10 1 2.925341 

1 0 1.982851 0.942490 

0.1 -1 0.988789 0.994062 

0.01 -2 -0.010576 0.999365 

0.001 -3 -1.010097 0.999521 

 
 
 
  



Table 5 Error norms with spatial dominance (t = 0.001 s). 

 

x log x log E log(E)/log(x) 

0.01 -2.000000 2.498373 

0.005 -2.301030 1.872606 2.078753 

0.0025 -2.602060 1.251767 2.062383 

0.00125 -2.903090 0.638797 2.036242 

0.000625 -3.204120 0.033858 2.009564 

 


