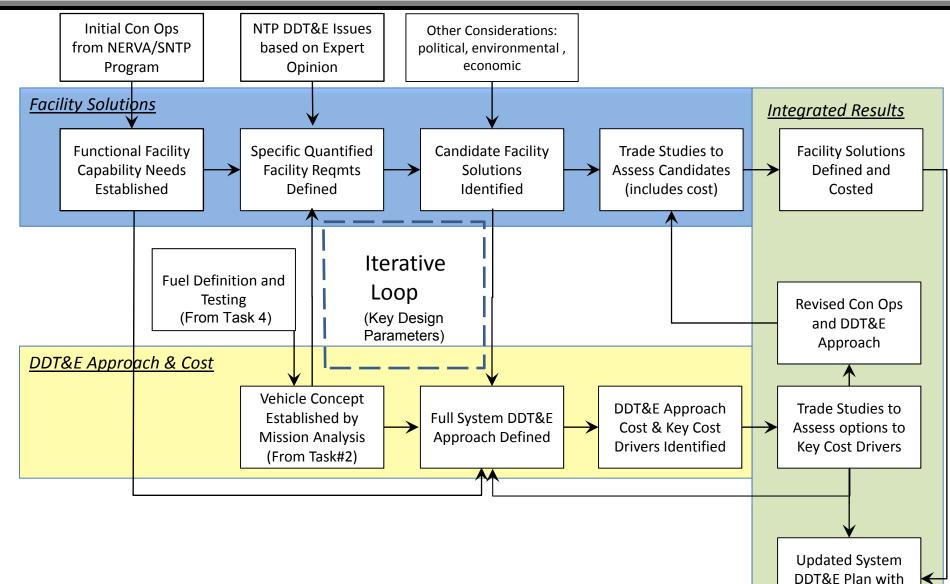


🗠 https://ntrs.nasa.gov/search.jsp?R=20140008579 2019-08-29T14:00:45+00:00Z



### Nuclear Cryogenic Propulsion Stage (NCPS) Task 6: Affordable Development Strategy & Space Capable Cryogenic Thermal Engine Authors: Harold Gerrish, Jeremy Kenny, David Coote, Libby Creel, and Glen Doughty

### AES NCPS Task 6



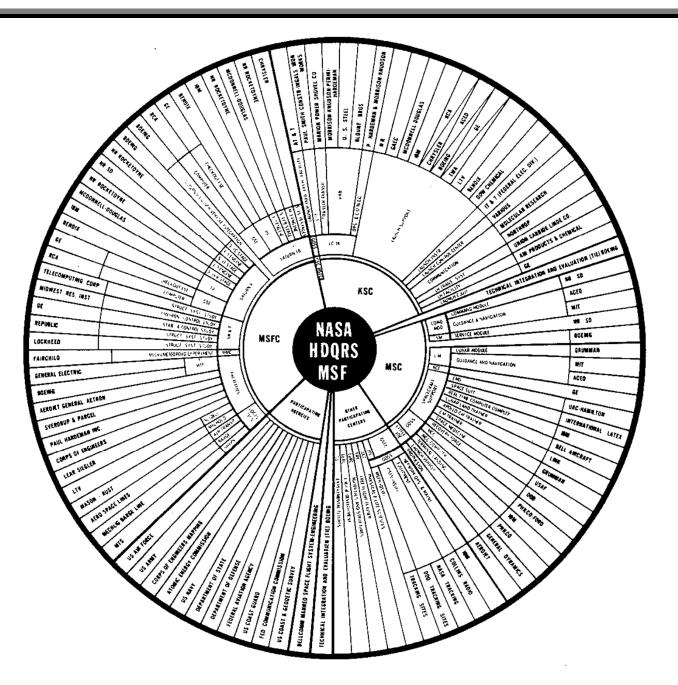

- Scope
  - In support of FY14 AES funded, NCPS activities
- Purpose:
  - Establish a methodology for evaluating and estimating technical approaches, cost, and schedule that will be used in further studies in FY15 and beyond.
    - Establish a Nuclear Rocket Engine Development Team
    - Develop Partnerships:
      - Stennis Space Center
      - Center for Space Nuclear Research
      - Glenn Research Center
      - Nuclear Regulatory Commission
      - Department of Energy
  - Establish baselines in the following areas:
    - Approach > Technical Solution
      - Engine Test Facility Full Containment
      - Low Enriched Uranium(LEU) Engine
    - Cost Cost-to-design based
    - Schedule WBS Based, Unconstrained

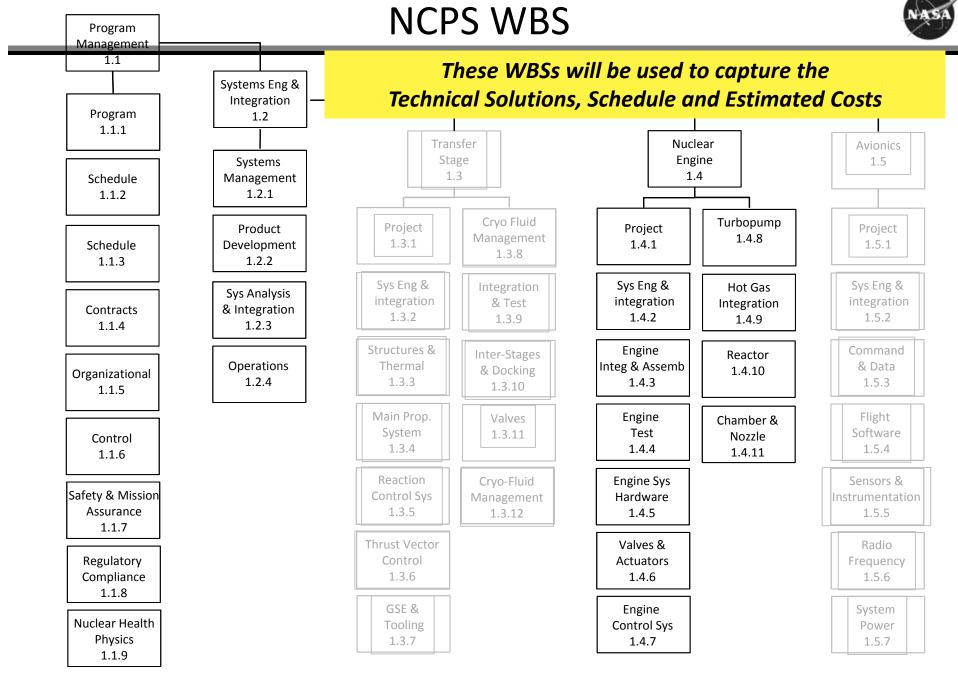
### Logic Flow

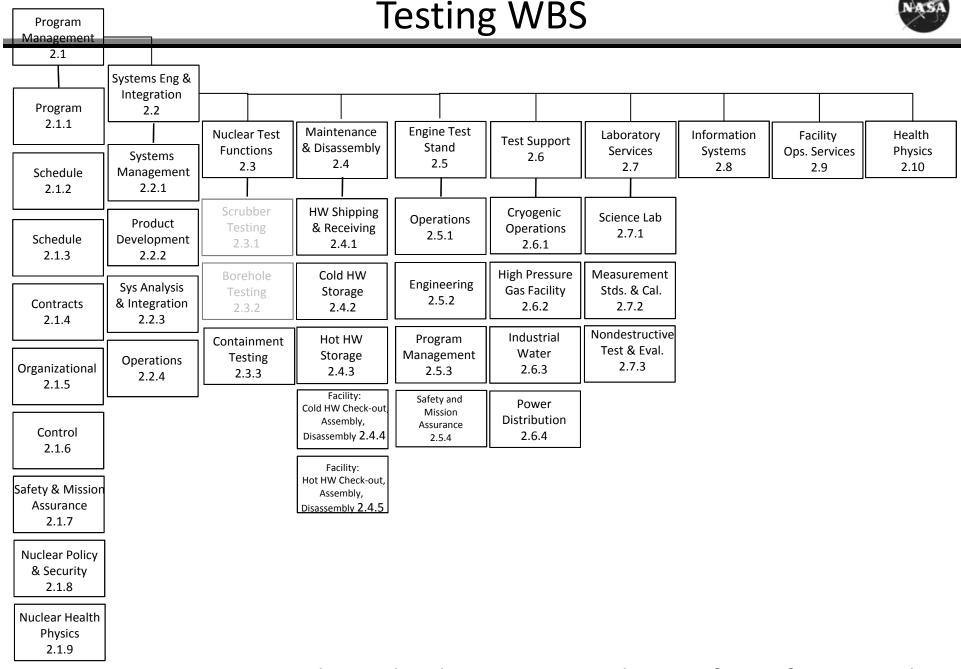


Cost



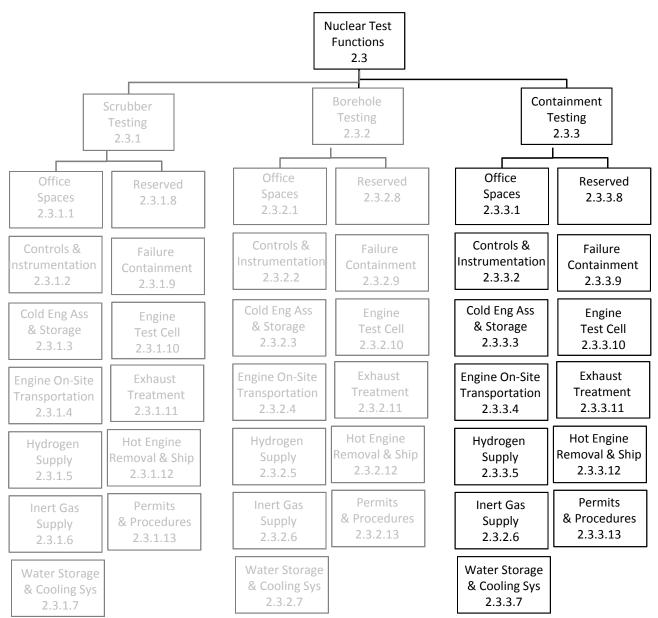




# Work Breakdown Structure (Study)

### Apollo Interface Diagram









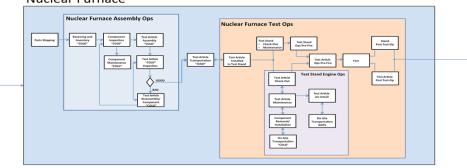

# Testing WBS 2.3 Decomposition



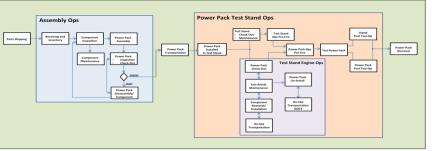




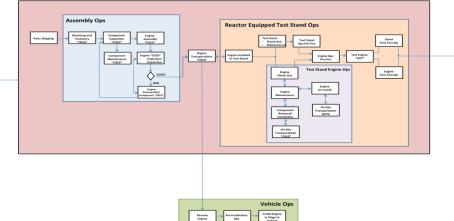




# **Concepts of Operations**

# Single Page Layout of the Con-Ops



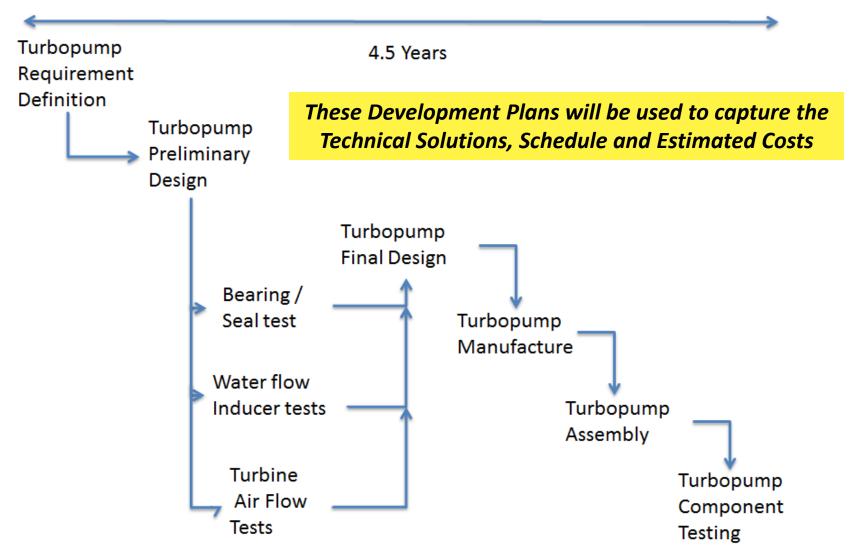




#### Nuclear Furnace



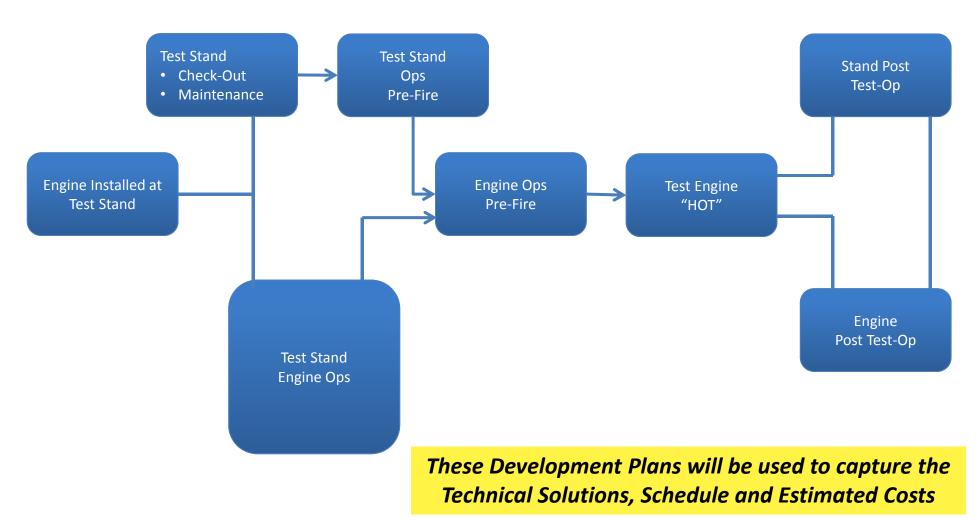
#### Liquid Rocket Engine Component Development




#### Integrated Engine System Nuclear Hot Development

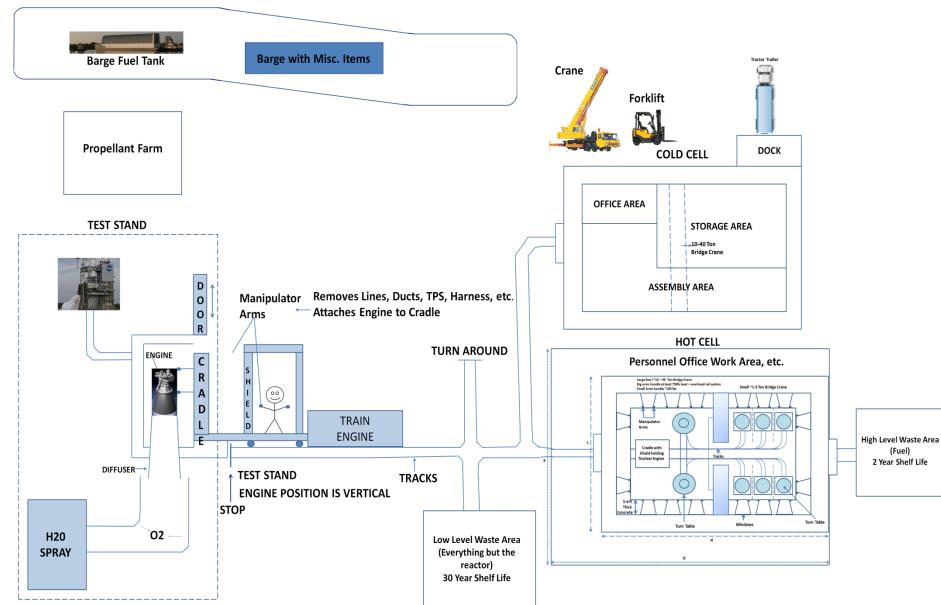




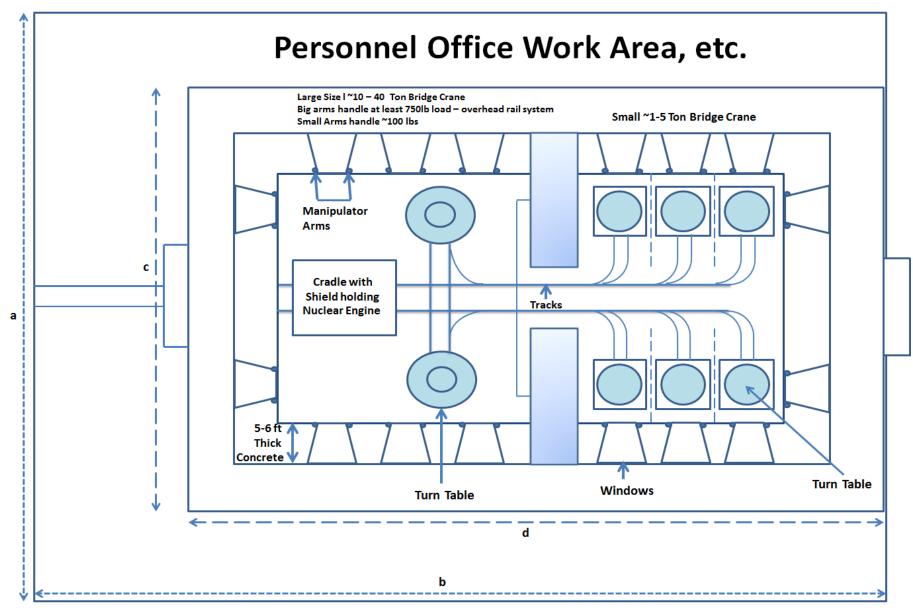



#### Turbopump Development Flowchart for a Nuclear Rocket Engine



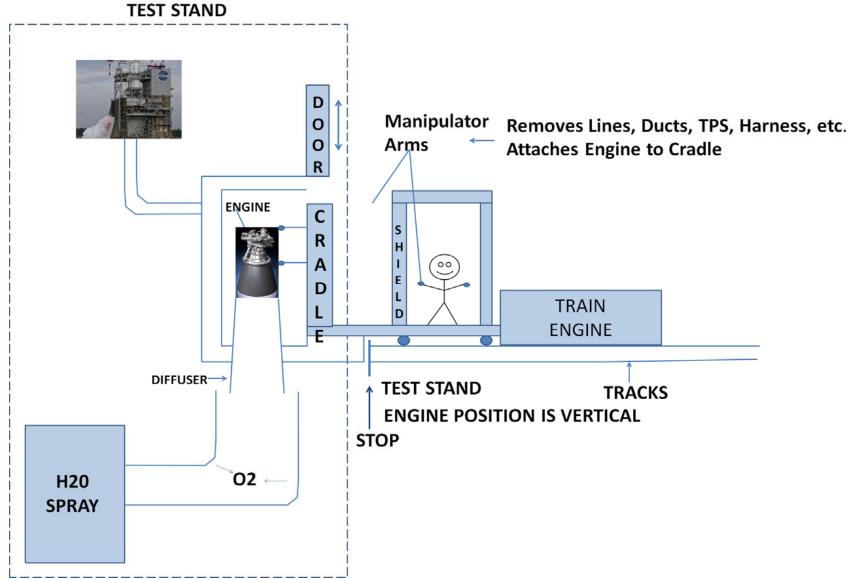



#### **Reactor Equipped Test Stand Ops**



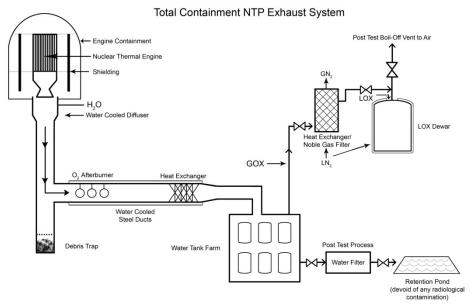

#### NCPS AES FY13 Engine Test Con-Ops











### NCPS AES FY13 Test Stand Operations





# **Total Containment NTP Exhaust System**





#### Strategy:

- Fully contain NTP exhaust during burns
- Slowly drain containment vessels after radiation levels drop to favorable levels
- Subscale test at significant fraction (7%) of system needed for full-thrust NTP testing
- Simulate NTP exhaust with hot hydrogen generator
- Full control over modular system
- Develop maintenance and clean-up approaches

#### How it works:

- Hot hydrogen exhaust from the NTP is run into a water cooled diffuser.
- The diffuser transitions the flow from supersonic to subsonic to allow more efficient burning in the afterburner
- O<sub>2</sub> rich afterburner-burns all H<sub>2</sub>; Products include steam, excess O<sub>2</sub> and a small fraction of noble gases (e.g., xenon and krypton)
- Heat exchanger and water spray pulls heat from steam to lower the temperature and condense
- Water tank farm collects H<sub>2</sub>0 and radioactive particulates. Drainage is filtered.
- Heat exchanger-cools residual gases to LN2 temperatures (freezes and collects most noble gases). Starts the flow of LOX
- LOX dewar stores LO<sub>2</sub>. Drainage via boil-off
- Meets any standards/regulations for post test release





# **Functional Analysis**

### Functional Facility Capability Needs Summary



- Nuclear Engine Specific Test Functions
  - Scrubber Testing
  - Borehole Testing
  - Fully Contained Testing
- Nuclear Engine Maintenance and Disassembly Specific Test Functions
  - Hardware Shipping and Receiving
  - Cold hardware storage
  - Hot hardware storage
  - Facility for cold hardware check-out, assembly, disassembly, inspections
  - Facility for hot hardware check-out, assembly, disassembly, inspections.
- Engine Test Stand
  - Operations
  - Engineering
  - Program Management
  - Safety and Mission Assurance
- Test Support
  - Cryogenic Operations
  - High Pressure Gas Facility
  - Industrial Water
  - Power Distribution
- Laboratory Services
  - Science Lab
  - Measurement Standards and Calibration
  - Nondestructive Test and Evaluation

- Information Systems and Computer Services
- Facility Operational Services
- Health Physics
- E-MAD Type Capabilities
  - Transportation
  - Receiving and Storage
  - Cold Bay
  - Hot Bay
  - Equipment Maintenance
  - Process Cells
  - Hot Hold and Transfer
  - Hot Cells
  - Master Control Room
  - Shops
  - Facility Support Systems
  - Security
  - Decontamination Facilities
  - Shelter Area



- Scrubber Testing
  - Exhaust Containment and Collection
  - Supersonic Diffuser
  - Hydrogen Injection
  - Turning Elbow
  - Subsonic Diffuser
  - Debris Screen
    - Coarse
    - Fine
  - Heat Exchanger
  - Transition Duct
  - HEPA Filter
  - Cryogenic Heat Exchanger
  - Activated Charcoal Nobel Gas Filter
  - Flare Stack
  - H2 Liquefaction
- Borehole Testing
  - Exhaust Containment
  - Supersonic Diffuser
  - Subsonic Diffuser
  - Water Injection

- Containment Testing
  - Exhaust Containment and Collection
  - Supersonic Diffuser
  - Subsonic Diffuser
  - Oxygen Injection
  - Heat Exchanger
  - Turning Elbow
  - Transition Duct
  - Water Tank Farm
  - Water Filter
  - Cryogenic Heat Exchanger
  - Vent

- Hardware Shipping and Receiving
- Cold hardware storage
- Hot hardware storage
- Facility for cold hardware check-out, assembly, disassembly, inspections
  - To include component-specific workstations
- Facility for hot hardware check-out, assembly, disassembly, inspections
  - All processes controlled remotely via manipulator arms, cranes, etc.
- Shielded transportation of hot and cold test articles/components between different bays/cells/test stand
- Shielded installation equipment for test stand installation and removal
- Central Control Room
  - Control of manipulators/cranes in hot areas
  - Management of personnel ingress/egress from area to area (shielding doors)
  - Radiation monitoring (gamma, neutron monitors)
  - 24-hour security management
  - Facility Support Systems
- Machine shop, electrical shop
- Decontamination area
- Shielded shelter area for personnel safety during hot article transportation
- Health Physics/Medical area
- Note: More detail is available at the end of this section on the EMAD facility



- Test Stand Services
  - Operations
    - Touch Labor
    - Maintenance
    - Non-Construction of Facilities Construction
  - Engineering
    - Systems Engineering
    - Analysis and Simulation
    - Configuration Management
  - Program Management
    - Legal/Contracts
    - Schedule
    - Budget
    - Procurement
  - Safety and Mission Assurance



- Cryogenic Operations
  - Liquid Hydrogen
- High Pressure Gas Facility
  - Air Supply Systems
    - Missile Grade
    - Confined Entry
  - Helium Supply System
  - Nitrogen Supply System
  - Hydrogen Supply System
  - Welding and Construction Support
- Industrial Water
- Power Distribution
  - Nominal Operations
  - Emergency Power Generation

### Laboratory Services



- Science Lab Services
  - Environmental Laboratory
  - Gas and Material Science Laboratory
- Measurement Standards and Calibration Laboratory
  - Standards Laboratory
  - Dimensional Laboratory
  - Electrical Calibration and Instrument Repair Laboratory
  - Pressure Laboratory
  - Flow Laboratory
  - Mechanical Laboratory
  - Vibration Laboratory
  - Temperature Laboratory
  - Cleaning Laboratory
  - Fabrication and Development Laboratory
- Nondestructive Test and Evaluation Laboratory
  - Radiographic Inspection
  - Ultrasonic Testing
  - Liquid Penetrant Testing
  - Magnetic Particle Testing
  - Leak Testing
  - Eddy-Current Testing
  - Visual Inspection
  - Hardness Testing
  - Bubble Leak Testing
  - Test Article Leak Testing



- Software Development
- Applications Systems
- Data Systems and IT Operations
- Telecommunications
- IT Security Services
- Information Resources Management

### **Facility Operating Services**



- Operating Engineering Services
  - Engineering Services
  - Documentation
  - Spares Provisioning of Pressure Vessels
  - Construction Services
  - Safety Services
- Facilities Services
  - Work Processing
  - Facilities Support
  - Maintenance Engineering
  - Carpentry and Paint
  - Equipment Operations
  - Mechanical and Plumbing
  - Electrical inc High Voltage
  - HVAC
  - Custodial Services
  - Roads and Grounds
- Institutional Services
  - Logistics
  - Institutional Services
  - Information Services
  - Procurement
  - Drayage and Labor
- Technical Services
  - Construction Management
  - Component Processing Facilities
  - Weld and Fabrication Shop
  - Machine Shop
  - Quality Services
  - Component Support

### **Health Physics**



#### • Full Health Physics Staff

- Management/Health Physicists/Technicians
- Surveillance
  - Periodic radiological surveys of areas
- Access/Egress Control
  - Radiation Work Permits
  - Monitor all items and personnel exiting controlled areas

#### Portable Radiation/Contamination Monitoring

- Alpha, Beta, Gamma/X-ray, Neutron Monitors
- Smears/wipes

#### Fixed Radiation Monitoring

- Gamma and neutron monitoring systems
- Gamma monitoring system for personnel areas adjacent to process areas
- Gamma monitoring for site boundary
- Airborne Contamination Monitoring
  - Portable samplers for personnel monitoring
  - Fixed area monitors
- Personnel Monitoring
  - Beta/gamma/neutron dosimetry
  - Hand and foot monitors at access/egress points
  - Whole body counter for determining internal deposition

### **Health Physics**



- Counting Lab
  - Smear/wipe and air sample counters/scalers
  - Multichannel analyzer for isotopic determination of air samples and smears/wipes
- Training
  - Initial and periodic radiation safety training for all site staff
- Emergency Monitoring
  - Plume tracking
  - Surface airborne/radiation monitoring
  - Soil/vegetation monitoring
- Decontamination
  - Personnel
  - Portable items
  - Areas and fixed items
- Shipping /Disposal
  - Packaging
  - Shipping papers
- Training
  - Initial and periodic radiation safety training for all site staff

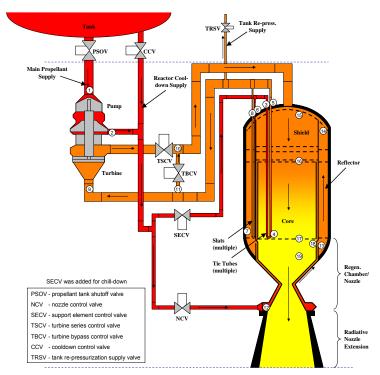




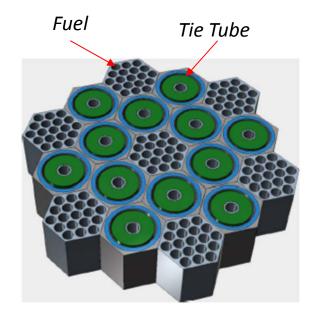
# Nuclear Cryogenic Propulsion Stage (NCPS) Space Capable Cryogenic Thermal Engine



- NCPS has begun effort to mature an engine design to aid:
  - Low enriched uranium (LEU) engine cycle identification which can satisfy various mission applications
  - Directed choice of reactor fuel(s) to help drive and shape fuel development and testing
  - Matured inputs into Development Planning efforts
- Effort known as the Space Capable Cryogenic Thermal Engine (SCCTE) study
  - Effort based within context of Pre-Phase A / Phase A life-cycles; but not formally anchored to all Pre-Phase A / Phase A study attributes
- SCCTE effort occurring over three main phases in FY14
  - System Requirements Establishment and Engine Cycle Trades
    - Size NTP engine that satisfies vehicle mission requirements
    - Top-level reactor design and engine system cycles are traded down and selected
    - Mainstage operation considered
  - Preliminary Engine System Concept Design
    - Refine NTP engine design with inputs from rocket engine component engineers
    - Top-level reactor design and engine cycle features are finalized
    - Mainstage and transient operations considered
  - Final Engine System Concept Design
    - Engine component designs are matured to a SDR level
    - Engine outer mold line defined
    - Mainstage and transient operations considered
    - Technical development challenges and associated risk mitigation work for development efforts defined


### **SCCTE Task Products**




#### Conceptual Engine Design, Power Balance, and System Requirements

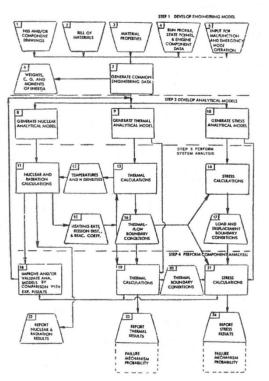
- Engine system analysts working with nuclear thermal reactor designers to select engine cycle, power balance, and reactor characteristics to deliver NTR performance values
  - Thrust ~ 25,000 lbf; lsp ~ 900 sec
  - Weight and size determined from vehicle mission studies
- Engine power balance and reactor design will mature to consider both mainstage and transient operation
- Engine Integration Considerations, Con Ops
- <u>Status:</u> engine cycle selected as closed expander, tie-tube design; initial reactor sizing completed

Closed Expander Engine Cycle Turbine Enthalpy from Tie Tubes

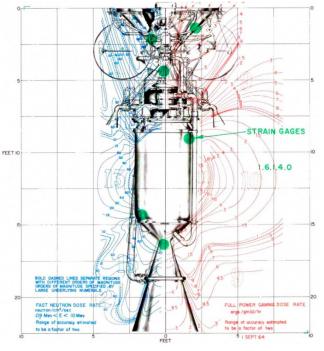


Notional Reactor Lattice for LEU Materials (from CSNR)




### SCCTE Task Products (cont.)




#### Engine Analysis Approach Plan

- Identification of traditional and unique analysis needs for NTR engine design and certification
  - · Review standards from 'terrestrial' nuclear thermal reactors to identify applicability to rocket designs
  - Important to address design margin and metrics (e.g., factors of safety)
  - Stress / structural dynamics, fluid dynamics, internal and external thermal environments, radiation
- Need to address analysis approaches to engine CDR level
- Status: Reviews of historical and current nuclear reactor design approaches ongoing

Historical Analyses Approach Plan from NERVA



NERVA Engine Predicted Radiation Pattern

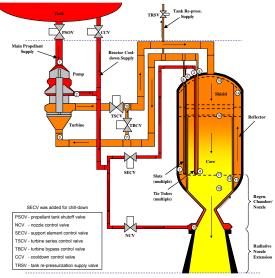




#### Materials Characterization and Development Plan

- Understand NTR-relevant material options and existing databases
- Identification of knowledge gaps in material capability based on projected engine operation
- Develop material characterization plan to eliminate knowledge gaps for future NTP engine development
- <u>Status</u>: Existing materials database compiled; working towards addressing future needs.

#### Component DDT&E Plans

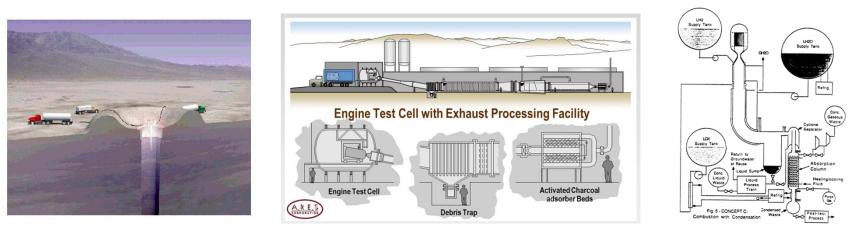

 Develop engine component development plans based on concept design work and understanding with nuclear-specific testing requirements

SCCTE Engine Cycle

With Major Components

Identified

- What materials do we use?
- What analyses do we need?
- How do we test these components?
- What are the in-space operation issues?
- Engine components include:
  - Reactor
  - Chamber and nozzle
  - Turbopump
  - Valves, ducts, and lines
  - TVC system
  - Startup / shutdown pressurization systems
  - External shield
  - Avionics / controllers
- Identify Key Design Requirements, engine cycle demands, conceptual designs, and development work
- <u>Status</u>: Reviews of prior NTR engine component developments ongoing; initial sizing beginning with engine power balance definition.






# Back Up Sides

### NTP Ground Test Options





Bore hole

♦ Bore Hole

Above ground scrubber with filters

<u>Total containment with combustion</u> <u>and condensation</u>

- Collected past test reports from Nevada Test Site showing significant effects of water saturation, turbulent flow rate, hole depth, and pressures on soil permeability.
- Above Ground Scrubber
  - Nuclear Furnace (NF-1) ground test scrubber of Rover/NERVA appears successful
  - Collected other past studies looking at exhaust filtering before flaring the hydrogen
  - Obtained nuclear filter info
    - DOE and ASME standards for nuclear air cleaning and gaseous waste treatment
    - How long to get new filter licensed and by who.
- Total Containment
  - Initial analysis results show hydrogen exhaust can burn at high temperatures with oxygen and produce steam to be cooled, condensed, and collected.





# Nuclear Cryogenic Propulsion Stage (NCPS) Task 6.0 SME Issues



Initial Con Ops from Rover/NERVA/SNTP Programs

- How to best transport a fully assembled NTP engine?
- Any special tests needed to license ground transportation? Include how to transport/dispose of hot engine components after examination.
- Is the final fuel design and fabrication going to be classified? This could affect engine assembly and disassembly.
- Where is best for engine assembly and acceptance test? Who is responsible?
- What is going to be acceptance testing? Is zero power criticality required?
- How long does it take to manufacture various engine components (e.g. fuel elements) for subsystem and system tests? Long lead components affect development schedule.



Functional Facility Capability Needs Established:

- Is a special power pack facility needed? What are the requirements?
- Is a special turbopump facility needed? What are the requirements?
- Can a space reactor facility be designed to accommodate NTP, NEP, FSP, Bi-modal? Recommend two cells for short and long duration testing.
- Can the full scale engine cold flow test facility be at MSFC?
- List the current irradiation facilities to consider and what are the capabilities, pro's/con's of each?
- If some of the performance requirements need a prototype flight test to qualify, should we include the flight demo as a functional capability and what do you get from it?
- How much disassembly is required to breakdown a hot engine for shipment to hot cells for close examination? How hot can the parts be for loading into special cask?



Specific Quantified Facility Reqmts Defined:

- Start off with factors of safety (FOS) from liquid rocket engines and solid rocket motors. Future management could reduce the FOS and accept the risk.
- Does an NTP standard need to be worked before ATP with NTP development? What committee is needed?
- We need a breakdown of the facility operating requirements for each candidate.
- Can a short burn time NTP be run again after minor repairs?
- Guidelines from DOE needed to determine the facility requirements for reactor development.
- Combine the engine design performance requirements with the human rated standards and guidelines to determine the facility requirements for each ground test.



Other Considerations:

- Who has a model to best determine how much noble gas can be released and not exceed NEPA standards?
- Determine the amount of filtering required based on NEPA and test site location.
- How long to wait after engine firing before engine can be transported or repaired? Is a graph possible showing radiation level vs time with a red line indicating acceptable level?
- Allowed dosages to the work force? Correlate to long life facility radiation expectations.
- When to have public meetings at sites requiring EIS?



#### Railroad Transport System

- Manned Control Car provides electrical power and compressed air for installation and removal of engine from the test facility
  - Shielded control cab
- Engine Installation Vehicle installs, removes, and transports engine, has tilt/positioning functions
- L-3 locomotive, prime mover for railroad transportation system, controlled from the Manned Control Car
  - Train Includes spacer cars, flatcars, special test cars, and reactor shipping instrumentation cars (controlled environment, power, lighting, equipment mounts)

#### **Receiving and Storage**

- Bonded hardware storage room
- Security vault
- Tool crib, storage racks & cabinets
- Airlock entry way

#### Cold Bay

٠

٠

- Railroad tracks with a 360-degree turntable for rotation of transport cars to off-load onto an auxiliary transport
- 40-ton bridge crane
- Access to electrical and machine shops, receiving and storage area



- Hot Bay
  - High bay with concrete shield walls, lead glass viewing window
  - Tracks for entrance & exit of rail transport system
  - Has same 360-degree turntable capability as the Cold Bay
  - Handling systems designed for assembly and disassembly operations via remote manipulator system
  - Handling Systems include:
    - Wall-mounted
    - Floor-mounted
      - Portable turntables, mobile carriage, railroad dolly
    - Overhead positioning system
      - Traveling bridge, carriage, telescoping mast, auxiliary manipulator
  - Post Operative Cell Material Transfer System
    - Transfer between cells
  - Periscopes for inspection and photographs
  - Shielded storage pit below the hot bay floor
  - Shielded door air-lock for transport in and out



#### Equipment Maintenance

 Maintenance of the crane, overhead positioning system, manipulators, and other support equipment performed in a concrete-shielded area adjacent to the hot bay

### Process Cells

- Shielded
- Used for disassembly of the reactor core
- Operations performed using remote manipulators and overhead cranes
- Operations viewed through shielded viewing windows
- Steel shield door isolates the cell

### Hot Hold and Transfer Tunnel

- Connects the hot bay to the disassembly and examination cells
- Serves as a holding and transfer area for radioactive components
- Visual observation provided by closed-circuit TV

## Hot Cells

- 12 hot cells
- Special car for moving material



### Master Control Room

- Management control center for all hot areas
- Control of overhead crane, overhead positioning system, wall-mounted and floormounted handling systems, shielding doors, swing-out rails and turntables
- Communication and visual systems
- Controls all personnel and equipment access doors
  - Each access point consists of two shielding doors, and only one can be opened at a time

#### Shops

- Machine shop, welding shop, electrical shop
- Capabilities for normal facility equipment fabrication, check-out, maintenance, repair, overhaul
- Spare parts for all specialty equipment (manipulators, cranes, rail system, etc)



### Facility Support Systems

- Hot water boilers for emergency power generation
- Underground facility air compressors, conditioning, refrigerators, facility vacuum pumps and chilled water distribution, heating, ventilation, etc. controlled by a central underground control room
- Electrically and radiation shielding work center for rad safe swipe and sample counting
- HVAC consists of filtration systems for removal of radioactive particulate prior to release through two exhaust stacks
  - Air exhausted from hot areas is filtered to remove all particulate larger than 0.3 microns
  - Hot air handling is separated from cold air handling to prevent radioactive contamination in cold areas
- Liquid waste system
  - Radioactive waste piped to waste holdup tanks or to a tile field (includes floor drains from all shielded areas)
- 24-hour security personnel
- Health physics office
  - Management of personnel health



#### Radiation Monitoring

- Neutron monitoring system
- Gamma monitoring system for process areas
- Gamma monitoring system for personnel areas adjacent to process areas
- Embedded sampling systems
- Each radioactive source has a portable neutron monitor which travels with the source, provides remote read-out
- Fixed gamma detectors in processing areas that provide remote read-out, supplemented with portable gamma detectors
- Hand and foot counters at access points into the process areas

## Decontamination facilities

- Rail system
- High pressure water
- Steam cleaner
- Chemical cleaning tanks

#### Shelter Area

- Shielded area for personnel safety during external transport of hot test articles

# Schedule



| D  | Task Name                                                                             | Start    | Finish   | % Complete | tr 4, 2012<br>Aug Sep | Oct Nov Dec |       | 2, 2013<br>Feb Mar |          | Qtr 3, 2013<br>May Jun |                    | 4, 2013<br>Aug S |
|----|---------------------------------------------------------------------------------------|----------|----------|------------|-----------------------|-------------|-------|--------------------|----------|------------------------|--------------------|------------------|
| 1  | NCPS Engine Development                                                               | 9/3/13   | 8/29/14  | 2%         |                       |             | 5     |                    |          |                        |                    |                  |
| 2  | Review Milestones                                                                     | 1/31/14  | 8/29/14  | 0%         |                       |             |       |                    | -        |                        |                    |                  |
| 3  | Review 1                                                                              | 1/31/14  | 1/31/14  | 0%         |                       |             | ۵.    | 1/31               |          |                        |                    |                  |
| 4  | Review 2                                                                              | 4/30/14  | 4/30/14  | 0%         |                       |             | II TT |                    |          | ♦ 4/30                 |                    |                  |
| 5  | Review 3                                                                              | 8/29/14  | 8/29/14  | 0%         |                       |             |       |                    | 55       |                        |                    | 0 8/2            |
| 6  | Task 2 Pre-Conceptual Design                                                          | 11/1/13  | 8/29/14  | 0%         |                       |             |       |                    | -        |                        |                    |                  |
| 7  | Preliminary Engine Requirements                                                       | 11/1/13  | 11/14/13 | 0%         |                       | _           |       |                    |          |                        |                    | 75               |
| 8  | Lock Down FY14 Study Engine Requirements                                              | 11/1/13  | 12/2/13  | 0%         |                       |             |       |                    | -        |                        |                    |                  |
| 9  | Preliminary FY Study Mission Profile                                                  | 11/1/13  | 11/14/13 | 0%         |                       | <b>—</b>    |       |                    |          |                        |                    |                  |
| 0  | Lock Down FY Study Mission Profile                                                    | 11/1/13  | 12/2/13  | 0%         |                       |             |       |                    | -        |                        |                    |                  |
| 11 | Task 2.X Preconceptual Design                                                         | 11/1/13  | 8/29/14  | 0%         |                       | V           |       |                    | -        |                        |                    | -                |
| 12 | SCCTE Team Training Course                                                            | 12/2/13  | 12/2/13  | 0%         |                       | *           |       |                    |          |                        |                    |                  |
| 13 | SCCTE GR&A                                                                            | 11/1/13  | 3/31/14  | 0%         |                       |             |       |                    | <b>V</b> |                        |                    |                  |
| 14 | MPS& Engine Element Initial Requirements from<br>Mission                              | 11/1/13  | 12/2/13  | 0%         | 1                     |             |       |                    |          |                        |                    |                  |
| 5  | Design & Operational Requirements from Task 6                                         | 11/27/13 | 11/27/13 | 0%         |                       | A 11/27     |       |                    |          |                        |                    |                  |
| 6  | Design & Operational Requirements Revisions to<br>Task 6                              | 3/31/14  | 3/31/14  | 0%         | 1                     |             |       | ſ                  | 3/31     |                        |                    |                  |
| 7  | Preliminary Engine System Design                                                      | 11/1/13  | 8/29/14  | 0%         |                       | <b>V</b>    |       |                    |          |                        |                    | -                |
| 18 | MPS Mission Based Design Requirements                                                 | 11/1/13  | 1/31/14  | 0%         |                       | *           |       |                    |          |                        | $\left  - \right $ |                  |
| 19 | Cycle Downselect for SCCTE                                                            | 11/1/13  | 1/31/14  | 0%         |                       |             | C D-  |                    |          |                        | _                  |                  |
| 20 | Baseline Engine Cycle Design                                                          | 12/2/13  | 7/14/14  | 0%         |                       |             |       |                    | -        |                        |                    |                  |
| 21 | Steady State Eng. Model                                                               | 2/3/14   | 8/1/14   | 0%         |                       |             |       |                    |          |                        |                    | 8                |
| 22 | Transient Analysis                                                                    | 2/3/14   | 8/29/14  | 0%         |                       |             |       |                    |          |                        |                    | -                |
| 23 | Preliminary Reactor (Rx) Design                                                       | 2/3/14   | 8/29/14  | 0%         |                       |             |       |                    | Ne e     |                        |                    |                  |
| 24 | Schematic                                                                             | 2/3/14   | 8/29/14  | 0%         |                       |             |       |                    |          | a sa ca-               |                    |                  |
| 25 | Design Points                                                                         | 2/3/14   | 8/29/14  | 0%         |                       |             |       |                    |          |                        |                    |                  |
| 26 | Engine OML CAD                                                                        | 2/3/14   | 8/29/14  | 0%         |                       |             |       |                    | 1        |                        |                    |                  |
| 27 | Engine Mass Estimates                                                                 | 2/3/14   | 8/29/14  | 0%         |                       |             |       |                    |          |                        |                    | T                |
| 28 | Engine FY14 SRD & Design Description                                                  | 7/31/14  | 7/31/14  | 0%         |                       |             |       |                    |          |                        |                    | 7/31             |
| 9  | Analysis Approach Plan                                                                | 11/1/13  | 8/29/14  | 0%         |                       | <b></b>     |       |                    |          |                        |                    |                  |
| 30 | Analysis Approach Plan (PDR)                                                          | 11/1/13  | 1/31/14  | 0%         |                       |             |       |                    |          |                        |                    | 0.5              |
| 31 | Analysis Approach Plan (CDR)                                                          | 2/3/14   | 4/30/14  | 0%         | _                     |             | 1     |                    | 1        | 4                      |                    |                  |
| 2  | Final Analysis Approach Plan                                                          | 5/1/14   | 8/29/14  | 0%         | _                     |             |       |                    |          | 1                      |                    |                  |
| 3  | Analysis Approach - Institutional Needs                                               | 5/1/14   | 8/29/14  | 0%         |                       |             |       |                    |          |                        |                    | 1                |
| 34 | Analysis Capability Development Costs                                                 | 5/1/14   | 8/29/14  | 0%         |                       |             |       |                    |          |                        |                    | 1                |
| 35 | Analysis Ouppoint Development Costs<br>Analysis Approach Plan FY14 Final Report Input | 7/31/14  | 7/31/14  | 0%         |                       |             |       |                    |          |                        |                    | 7/31             |
|    | Analysis Approach and the third Report liput                                          | FINDU    | FINIT    | 0.10       |                       |             |       |                    |          |                        |                    |                  |

# Schedule



| ID | Task Name                                           | Start    | Finish     | % Complete | tr 4, 2012 |          |     | Qtr 1, 201 |      |          | tr 2, 201  |     | -   | Qtr 3, 20 |     |     | tr 4, 20 |    |
|----|-----------------------------------------------------|----------|------------|------------|------------|----------|-----|------------|------|----------|------------|-----|-----|-----------|-----|-----|----------|----|
| 36 | Engine & Component Conceptual Designs &             | 11/1/13  | 8/29/14    | 0%         | Aug        | Sep      | Oct | Nov        | Dec  | Jan      | Feb        | Mar | Apr | May       | Jun | Jul | Aug      | Se |
|    | DDT&E Inputs                                        | 11/1/13  | 0009425400 | 1942       |            |          |     | •          |      |          |            |     |     |           |     |     |          |    |
| 37 | Component Development Requirements - Facility       | 11/1/13  | 1/31/14    | 0%         |            |          |     |            |      |          | -          |     |     |           |     |     |          |    |
| 38 | Component Requirements Category List (KDRs)         | 11/1/13  | 1/31/14    | 0%         | _          |          |     | -          |      |          | -          | -   |     |           |     |     |          |    |
| 39 | Component Dev. Needs (TRL)                          | 2/3/14   | 4/30/14    | 0%         |            |          |     |            |      |          |            |     |     |           |     |     |          |    |
| 10 | Final Component Requirements with KDRs<br>Specified | 2/3/14   | 4/30/14    | 0%         |            |          |     |            |      |          | -          |     |     |           |     |     |          |    |
| 41 | Component DDT&E Plan Inputs                         | 5/1/14   | 8/29/14    | 0%         |            |          |     |            |      |          |            |     |     |           |     |     |          | 5  |
| 42 | Component Conceptual Designs                        | 5/1/14   | 8/29/14    | 0%         |            |          |     |            |      |          |            |     |     |           |     |     |          | 5  |
| 43 | Component DDT&E FY14 Final Report Input             | 7/31/14  | 7/31/14    | 0%         |            |          |     |            |      |          |            |     |     |           |     | Ŵ   | 7/31     |    |
| 14 | Engine DDT&E Schedule                               | 5/1/14   | 7/31/14    | 0%         |            |          |     |            |      |          |            |     |     | 1         |     | -   |          |    |
| 45 | S&MA Plan Inputs                                    | 11/1/13  | 7/11/14    | 0%         |            |          |     | -          |      |          |            |     |     | <b>A</b>  |     | -   |          |    |
| 46 | Material Characteristic Inputs                      | 11/1/13  | 1/31/14    | 0%         |            |          |     |            |      | 0        | н          |     |     |           |     |     |          |    |
| 47 | Preliminary Material Gap Analysis - Component       | 2/3/14   | 4/30/14    | 0%         |            |          |     |            |      |          | <b>—</b>   |     |     | -         |     |     |          |    |
| 18 | Preliminary Material Characteristic Dev. Plan       | 2/3/14   | 4/30/14    | 0%         | _          |          |     |            |      | 4        | ×          |     |     |           |     |     |          |    |
| 19 | Final Material Gap Analysis - Component             | 5/1/14   | 7/11/14    | 0%         |            |          |     |            |      |          |            |     |     |           |     |     |          |    |
| 50 | Final Material Characteristic Dev. Plan             | 5/1/14   | 7/11/14    | 0%         |            |          |     |            |      |          |            |     |     | 1         |     |     |          |    |
| 51 | Task 6 Affordable Dev. & Qual Strategy              | 9/3/13   | 8/29/14    | 7%         |            | <u> </u> |     |            |      |          |            |     |     |           |     |     |          | Ψ  |
| 52 | Stennis Space Center (SSC)                          | 11/1/13  | 5/29/14    | 0%         |            |          |     |            |      | <u> </u> |            |     |     |           |     |     |          |    |
| 53 | Borehole Concept                                    | 11/1/13  | 1/31/14    | 0%         |            |          |     |            |      |          | Ь          |     |     |           |     |     |          |    |
| 54 | Requirements Complete                               | 12/2/13  | 12/2/13    | 0%         |            |          |     | ੍          | 12/2 |          |            |     |     |           |     |     |          |    |
| 55 | Technical Assessment Complete                       | 12/31/13 | 12/31/13   | 0%         |            |          |     | ſ          |      | 12/31    |            |     |     |           |     |     |          |    |
| 56 | Borehole Design Concept                             | 1/6/14   | 1/31/14    | 0%         |            |          |     |            |      | *        | <u>بار</u> | 2   |     |           |     |     |          |    |
| 57 | Self Contained Concept                              | 11/1/13  | 1/31/14    | 0%         |            |          |     |            |      |          | h          |     |     |           |     |     |          |    |
| 58 | Requirements Complete                               | 12/2/13  | 12/2/13    | 0%         |            |          |     | ┢          | 12/2 |          |            |     |     |           |     |     |          |    |
| 59 | Technical Assessment Complete                       | 12/31/13 | 12/31/13   | 0%         |            |          |     | ľ          | 1    | 12/31    |            |     |     |           |     |     |          |    |
| 60 | Self Contained Design Concept                       | 1/6/14   | 1/31/14    | 0%         |            |          |     |            |      | Y        | <u>بار</u> | -   |     |           |     |     |          |    |
| 61 | Flair Concept                                       | 11/1/13  | 1/31/14    | 0%         |            |          |     |            |      |          | Ь          |     |     |           |     |     |          |    |
| 62 | Requirements Complete                               | 12/2/13  | 12/2/13    | 0%         |            |          |     | ┢          | 12/2 |          |            |     |     |           |     |     |          |    |
| 63 | Technical Assessment Complete                       | 12/31/13 | 12/31/13   | 0%         |            |          |     | ľ          | 1    | 12/31    |            |     |     |           |     |     |          |    |
| 64 | Flair Design Concept                                | 1/6/14   | 1/31/14    | 0%         |            |          |     |            |      | <b>Y</b> | ) —        | -   |     |           |     |     |          |    |
| 65 | Site Infrastructure Shortfall analysis              | 2/3/14   | 3/3/14     | 0%         |            |          |     |            |      |          |            | h   |     |           |     |     |          |    |
| 6  | Site Infrastructure Cost Estimate                   | 3/4/14   | 4/30/14    | 0%         |            |          |     |            |      |          |            |     |     | ±ł.       |     |     |          |    |
| 67 | Borehole Design Cost Estimate                       | 2/3/14   | 4/30/14    | 0%         |            |          |     |            |      |          |            | 1   |     |           |     |     |          |    |
| 68 | Borehole Design Development Schedule                | 3/4/14   | 5/29/14    | 0%         |            |          |     |            |      |          | 1          |     |     |           |     |     | 1        |    |
| 69 | Self Contained Design, Cost Estimate                | 2/3/14   | 4/30/14    | 0%         |            |          |     |            |      |          |            |     |     |           |     |     |          |    |

# Schedule



| ID | Task Name                                                  | Start         | Finish   | % Complete                                                                                                      | tr 4, 2012 | Qt  | 1,201        | 3          | G   | tr 2, 20 | 13  |           | Qtr 3, 201 | 3   | Q   | r 4, 2013 |
|----|------------------------------------------------------------|---------------|----------|-----------------------------------------------------------------------------------------------------------------|------------|-----|--------------|------------|-----|----------|-----|-----------|------------|-----|-----|-----------|
|    |                                                            | CONCESSION OF |          | Contraction of the second s | Aug Sep    | Oct | Nov          | Dec        | Jan | Feb      | Mar | Apr       | May        | Jun | Jul | Aug S     |
| 70 | Self Contained Design Development Schedule                 | 3/4/14        | 5/29/14  | 0%                                                                                                              |            |     |              | 12.2010.00 |     |          |     |           |            |     |     |           |
| 71 | Flair Design Cost Estimate                                 | 2/3/14        | 4/30/14  | 0%                                                                                                              |            |     |              |            |     |          |     |           |            |     |     |           |
| 2  | Flair Design Development Schedule                          | 3/4/14        | 5/29/14  | 0%                                                                                                              |            |     |              |            |     | T        |     |           |            |     | -   | 2063      |
| '3 | Marshall Space Flight Center (MSFC)                        | 9/3/13        | 8/29/14  | 13%                                                                                                             |            | _   | _            | -          |     |          | -   |           |            |     |     |           |
| 4  | Test Cell Preliminary Design                               | 11/1/13       | 11/27/13 | 0%                                                                                                              |            |     | P            | 0 0        |     |          |     |           |            |     |     | 121-12    |
| '5 | Test Stand Disassembly Design                              | 11/1/13       | 11/27/13 | 0%                                                                                                              |            |     | -            |            |     | 2        |     |           |            |     |     |           |
| 6  | Test Stand Facility Design Requirements                    | 10/21/13      | 11/1/13  | 0%                                                                                                              |            |     | S            |            |     |          |     |           |            |     |     |           |
| 7  | Engine Cost Margin approach                                | 11/1/13       | 1/31/14  | 0%                                                                                                              |            |     |              | (          | - 6 |          |     |           |            |     |     |           |
| 78 | NCPS DDT&E Final Study Report Outline                      | 11/1/13       | 1/31/14  | 0%                                                                                                              |            |     |              |            |     |          |     |           |            |     |     |           |
| 79 | GSE Logistical Equipment List                              | 11/1/13       | 11/27/13 | 0%                                                                                                              |            |     | - <b>-</b> - |            |     |          |     |           |            |     |     |           |
| 30 | Preliminary S&MA Plan                                      | 11/1/13       | 11/27/13 | 0%                                                                                                              |            |     |              |            |     |          | 2   | 14        |            |     | _   |           |
| 31 | Preliminary Con Ops                                        | 9/3/13        | 11/1/13  | 100%                                                                                                            |            |     |              |            |     | -        |     |           |            |     |     |           |
| 2  | Preliminary Facility Function                              | 9/3/13        | 11/1/13  | 100%                                                                                                            |            |     |              |            |     | 5        |     |           |            |     |     |           |
| 33 | Preliminary WBS (Joint Product w/ Task 2.X)                | 9/3/13        | 11/1/13  | 0%                                                                                                              |            |     |              |            |     | 8        |     |           |            |     |     |           |
| 34 | Preliminary Cost Estimate (Joint Product w/Task 2.X & SSC) | 11/4/13       | 1/31/14  | 0%                                                                                                              |            | 1   |              | _          |     | <b>*</b> | J   |           |            |     |     |           |
| 5  | Preliminary DDT&E Final Study Report Outline               | 11/1/13       | 1/31/14  | 0%                                                                                                              |            |     | _            | -          |     | -        |     |           |            |     |     |           |
| 36 | Engine Test Requirements                                   | 12/9/13       | 12/13/13 | 0%                                                                                                              |            |     |              | 0          |     |          |     |           | 1          |     | _   |           |
| 7  | Update S&MA Plan                                           | 7/14/14       | 8/1/14   | 0%                                                                                                              |            |     |              |            |     |          |     |           |            |     | *   |           |
| 88 | Update Con Ops                                             | 3/31/14       | 4/30/14  | 0%                                                                                                              | _          |     |              |            |     |          |     | <b>**</b> |            |     |     |           |
| 9  | Updated WBS                                                | 3/31/14       | 4/30/14  | 0%                                                                                                              |            |     |              |            |     |          |     |           |            |     |     |           |
| 90 | Updated Cost Estimate                                      | 3/31/14       | 4/30/14  | 0%                                                                                                              |            |     |              |            |     |          |     |           |            |     |     |           |
| 91 | GSE Cost Estimate                                          | 2/3/14        | 4/30/14  | 0%                                                                                                              |            |     |              |            |     | *        |     |           |            |     |     |           |
| )2 | NCPS DDT&E Approach                                        | 8/4/14        | 8/22/14  | 0%                                                                                                              |            |     |              |            |     |          |     |           |            |     |     |           |
| 3  | NCPS DDT&E Schedule                                        | 8/4/14        | 8/22/14  | 0%                                                                                                              |            |     |              |            |     |          |     |           |            |     |     |           |
| 4  | NCPS DDT&E Cost                                            | 8/4/14        | 8/22/14  | 0%                                                                                                              | _          |     |              |            |     |          |     |           |            |     |     |           |
| 95 | NCPS DDT&E Sensitivities                                   | 8/4/14        | 8/22/14  | 0%                                                                                                              |            |     |              |            |     |          |     |           |            |     |     |           |
| 6  | NCPS DDT&E Open Issues                                     | 8/4/14        | 8/22/14  | 0%                                                                                                              |            |     |              |            |     |          |     |           |            |     |     |           |
| 97 | NCPS DDT&E Final Study Report                              | 8/18/14       | 8/29/14  | 0%                                                                                                              |            |     |              |            |     |          |     |           |            |     |     |           |