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o nixrlflerllr%iw Introduction

» Current aero-engine performance requirements necessitate light-weight

materials that meet high-temperature strength and environmental durability
requirements

» Melt-infiltrated (MI) SiC fiber-reinforced SiC ceramic matrix composites
(CMCs) are a leading class of candidate materials.

» Environmental barrier coatings (EBCs) are applied to CMC substrates to

protect Si-based components from rapid surface recession in high temp. H,O
containing environments.

» In many applications, EBC-CMC engine components will be subjected to
multi-dimensional thermal gradients and complex stresses.

T
s

SiC/SiC vane sub-element
coated with an environmental

barrier coating and containing
/ cooling holes in the trailing

edge.

Tested SiC/SiC
combustor liner from
NASA'’s High Speed
Research program
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sty Motivation

» Desire for a simple NDE technique(s) to evaluate damage development in
EBC-CMC systems during testing in thermal gradient environments

» Room-temperature (RT) tensile testing has successfully shown electrical
resistance (ER) measurements as a damage monitoring technique for CMCs

> It is therefore advantageous to investigate ER response as a condition
monitoring technique for testing under simulated, high-temperature, engine
environments

» This study is aimed at investigating the electrical response of candidate
materials under high-temperature thermal gradients in air:

1. Application of thermal loads
2. Damage Accumulation

3. Time-dependent effects




Ofgl{r() I'Slty High Heat Flux Laser-based tensile loading
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» Asymmetrical heating by a 3.5kW CO, high heat flux laser generates multi-axial
(thru thickness and longitudinal) thermal gradients

» Thru thickness thermal gradients can be increased by the addition of active
backside air-cooling

» The front and backside temperatures of the heated region are monitored by
optical pyrometers

» The specimen is held by ceramic grip inserts in a screw driven test machine

(Instron 5569)
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» The fracture energy of solids is
released as elastic stress
waves, and these waves can
be captured through the use of
wide-band acoustic sensors
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» Accumulated acoustic energy
has been shown to be directly

related to transverse crack 15
density [Morscher 2004]

» 1.e. as damage accumulates,
so does the energy sensed
by the acoustic sensors

» Modal AE is therefore used to
characterize stress dependent

crack accumulation

\ s
0

Modal Acoustic Emission (AE) - briefly

(Channel 1)
Reflections

Exlteﬂr:mal ’—‘

Flexural (with some
superimposed extensional)

%0 100 150 200 250

007;RT p.=80°
cracks/mm

Normalized AE energy and crack
ns
o
(6}

017;RT p.=120°
cracks/mm

044 crack density
measured after stress-
rupture failure

007 crack O
e density K
o 0.4 - measured after 017 crack density
stres;-rupture 0O measured after
0.3 failure stress-rupture
failure
0.2
0.1 44, RT p.=9.50°
. cracks/mm
0 ' , :
100 200 300 400
Stress, MPa

ICACC ’14 Daytona Beach, FL — January 28, 2014




of

» Electrical Resistance
measured by four-point probe
method (micro-Ohmmeter,
Agilent Model E34420A; 10

mA constant current)
» For high temperature

A

testing, the ER
measurements are taken

Constant
current to outer
electrodes

from the gripped areas

» When implemented, AE
sensors are attached £+40mm
from center (event location is
determined and only events
in the gage are used in AE
analysis)

Voltage
difference
measured by
inner
electrodes

-+

Heated
Region
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High heat flux laser-based tensile loading
of r51ty :

3 18 . Room Temp AE
Though the high temperature thermal gradient g :j * High Temp AE
sample failed early, the AE shows behavior 212
similar to room temperature (RT). We can E 1
assume similar stress dependent matrix 5 0
cracking behavior. -y
YDOI (TZ£7 Jm), AT-RE SHcate (ZUsS 1) é -
ran 0 =
ER appears to be quite sensitive to damage | o Shoms([Fh] e

onset and accumulation as well. The response 1

I 0.9 2 0.9
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= 2 0.8 0.8 -2
T 300 5 - M =
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High heat flux laser-based tensile creep
Of rSIW 0.2 18
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» Materials produced by Si Melt Infiltration (MI) process

> Fiber Architecture: ZMI fiber, 0/90 2D woven, SiC/BN/SiC
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High heat flux laser-based tensile creep
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dhe. High heat flux laser-based tensile creep
f NIVCTSItY R
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» Recall all test performed at constant stress of 69 MPa

» RT AE data of specimens from the same panel show
microcracking initiation at ~35MPa and rapid crack
accumulation beginning around 75 MPa

» Can compare crack density/morphology via post tested
optical microscopy

Pre-stressed sampled
showed high density of
bridged matrix cracks
( 2.5 cracks/mm)

The other samples
showed un-bridged
cracking
( 0.6 cracks/mm ZMI-1,
0.45 cracks/mm ZMI-3)

Norm Cum AE

1]
0.8
06 -
04

0.2
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Post-test damage assessment

- 139A-1
« 139A-3
. 139A5 L
- 139A-7 e
- 139B-2
13984

150 200 250 300
Stress, MPa

EBC
demonstrated
good
environmental
durability
(sintering cracks
observed, but no
large scale coating
delamination)



Thermal-Electrical Modeling
of}{mo ity (undamaged CMC)

» Recall that ER measurements are taken from the gripped ends of the
specimen.

» Therefore, experimental ER data vs. temperature measures the total
resistance of the specimen under a thermal gradient

> i.e. not directly give us discrete values of ER vs. T

» A specimen could however be described as a series of temperature
dependent resistors. This circuit could then used to calculate the total
resistance of a undamaged CMC specimen.

Ry

RTl RTZ RTS




of r51ty Heat Transfer Analysis

kt, VT + 2h, T + 2eeT* = 20T, + 2ecT?
y

» A steady-state 1D heat transfer
model was developed to gy Temeeure i The Pt iy S Solton
determine the longitudinal
thermal gradient from heated
zone to ER electrode:

» Radiation and convection
losses on specimen face

Y-coordinate, meters

X
» Constant thermal conductivity ;l:
» Constant cross-section Heated AT TR
> Constant temperature in laser-  Region e
heated region (has been 200 - Tompersure he 2 Foncen ofthe Y Coerinate
verified experimentally through i T LS NS S M ——
thermography) L e e

900

es-Kelvin

> T(O) = Theated region

800

, degre

700

600

Temperature

» Temp. distribution solved
numerically using damped
Newton iteration technique

200 i i i i i i
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07

Y-coordinate, meters




ity Thermal-Electrical Modeling

» The previously modeled temperature distribution can then be populated with
experimental resistivity data (20-900°C) measured using the commercially
available ZEM3 unit.

ZEM3 Resistivity vs. Temp. Data: ZMI fiber
reinforced MI SiC/BN/SiC

0.16
§
t 0.14 PR S
- P ok -
) P il
> 0.12 e
E
2 0.1 P ol
[ o A small sample of CMC is
E K heating isothermally in a
g 0.08 o furnace, and a 4pt resistance
b= i measurement is taken to
2 0.06 determine temp_er;_at_ure
= dependent resistivity

0.04

0 200 400 600 800 1000

Temperature (°C)



lhe. Thermal-Electrical Model Experimental Verification
Of nI‘}eIlrSIW Laser Heated Thermal Cyclic Data: ZMI fiber

reinforced MI SiC/BN/SiC

1600
*» Hot Zone Temp.

> A ZMI fiber reinforced CMC tensile 1400 - Specimen End Temp.
bar was laser heated under zero 1200
stress conditions with no applied 1000
cooling air

» The ZEM3 data for this material was 600
used to calculate the total resistance 400 |
of the specimen based on the 200 §
temperature profile generate from . -— e .
the heat transfer analysis 0 1000 2000 3000 4000 5000 6000

Time (sec.)

800

Temperature (°C)

» This was then compared to
experimental data with good Laser Heated Thermal-Electric Data: ZMlI fiber

agreement reinforced MI SiC/BN/SiC

» This allows us to model the total
thermal-electric response of the
specimen and compare it with the
data measured during testing from
the grip section
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200 400 600 800 1000 1200 1400
Temperature (°C)



o rSIW Early ER-Damage Model

» Current room temp. ER model (Baker, Maillet, Morscher, T
Appleby) under development ;
» Based on brittle composite cracking/fiber-sliding Bonded LI Debond crack
micromechanics model interface front (Mode I
| — crack tip)
» From known stress based crack density (from AE), the Debonded [ | L o
composite is modeled as a series circuit of 3 types of _'”tf‘*‘.f“’.“ { L I | f
resistors with friction T | L'} |. " _
Matrix crack = | R L
1 | P
Rundamaged = Rp Rgepona = Rs Ry, = Rfiber Matrif—t> |
! =t ~Fibre|
» Rjis a sliding contact resistance at the fiber/matrix [Interfacef———=> !
interface; proposed as a function of radial stress on the | '
fiber and interfacial shear stress 1 =
» Added complexity of high temperature thermal gradient b
testing i_
» Temperature dependence of electrical ’
resistance of constituents: fiber, matrix and R R R
interphase p 5 u

» Thru thickness thermal stress gradient induced
by asymmetric heating

> Addition of EBC coating
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o nﬁ%r%iw Conclusions

» Convoluted Electrical Response of EBC/CMC’s
» Thermal, Mechanical, Environmental and Time-Dependent

» ER able to assess temperature changes

» ER sensitive to damage onset and accumulation

» Deviation from AE curve suggests ER sensitivity to fiber sliding effects as well as
crack density

» Proved to be useful in identifying damage from excessive thermal stresses caused
during laser malfunction (not evident directly from load data)

» Proved helpful for overall health monitoring and material inspection

» ER increase during creep caused by time-dependent deformation and
environmental effects under constant stress condition

» More sensitive to material condition than strain measurement alone

> Need to further investigate EBC contribution and effects
> e.g. benefit of stable EBC to increased high temperature stress-rupture life




Ofgl{ro ISity Current and Future Work

» Carefully crafted “proof of concept” testing and more sophisticated
models are still required to fully understand the nature of electric
response.

» Further development of thermal-electric model to include through thickness
thermal gradient

» Use of thermal-electric model and high-temperature experimental data to
separate contributions of constituents (fiber, matrix, coating) to ER

» Use thermal-electric constituent data to further develop ER damage model

» Current Testing focusing on EBC cracking/delamination detection using AE
monitoring possible EBC contribution to ER response shows promise; however
further testing required.
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