
🚳 https://ntrs.nasa.gov/sea

Status of Propulsion Technology Development un the NASA In-space Propulsion Technology Progr

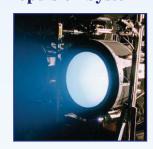
David Anderson, Hani Kamhawi, Mike Patterson, John Dankanich, Eric Pencil, a Space Propulsion 2014, Cologne, Germany May 21, 2014

.uis Pinero

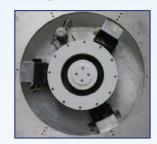
NASA's In-Space Propulsion Technology (ISPT) Program

Zelenta y Sciento

NASA's ISPT Program develops critical propulsion, entry vehicle, and other spacecraft and platform subsystem technologies to enable or significantly enhance future planetary science missions.


- Enable access to more challenging and interesting science destinations or benefit future robotic science missions
- By significantly reducing travel times to distant bodies, increasing scientific payload capability, or reducing mission cost and risk.
- The current ISPT focus is TRL 3-6+ product development.

Propulsion System Technologies


AMBR High-Temp Rocket Engine

7 kW NEXT Ion Propulsion System

4 kW HIVHAC Thruster & Hall Propulsion System

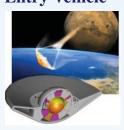
Spacecraft Bus & Sample Return Technologies

Mars Ascent Vehicle

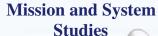
Spacecraft Bus Components

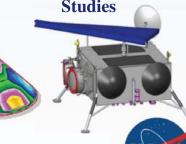
Extreme

Environments


Entry Vehicle Technologies

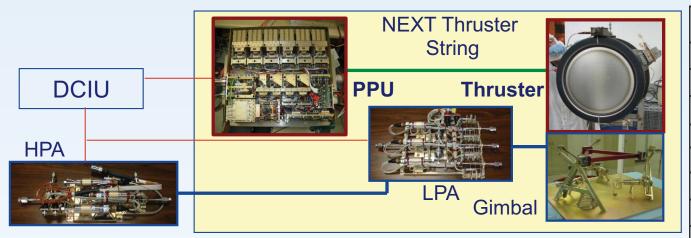
Aerocapture


Multi-Mission Earth Entry Vehicle



Systems & Mission Studies

Mission Analysis Tools



NASA's Evolutionary Xenon Thruster (NEXT) Expanding SEP Applications For Science Missions

<u>Objective:</u> Improve the performance and life of gridded ion engines to reduce user costs and enhance/enable a broad range of NASA SMD missions

*	Rated Capability Goal 300Kg → Design/Qualification Goal (1.5x Rated) 450Kg
	Demonstrated Life Limit >900Kg → Potential Rated Capability >600Kg

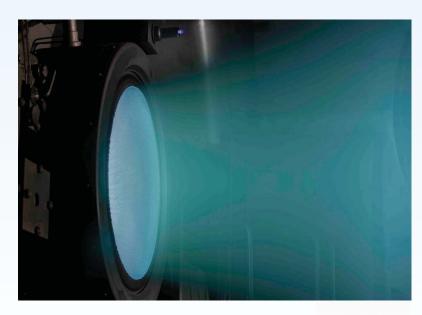
Characteristic300	NSTAR (SOA)	NEXT
Thruster Power Range (kW)	0.5= 2.3	0.5-6.9
Max. Thrust (mN)	92	236
Max. Specific Impulse (sec)	>3100	>4100
Max. Thruster Efficiency	>61%	>70%
Total Impulse (x10 ⁶ N-sec)	>5	35.5
Propellant Throughput (kg)	135	918
PPU Specific Mass (kg/kW)	6.0	4.8
PMS Single String Mass (kg)	11.4	5.0
PMS Unusable Propellant Residual	2.40%	1.00%

- NEXT development included critical components for ion propulsion system
- Single-String & Multi-String System Integration Tests completed
- NEXT TRL assessments completed by multiple mission center customers
- Unprecedented diagnostics used for NEXT thruster performance characterization and spacecraft interaction effects testing ongoing
- Thruster and feed system are ready-to-go. 2nd design iteration of PPU being planned.



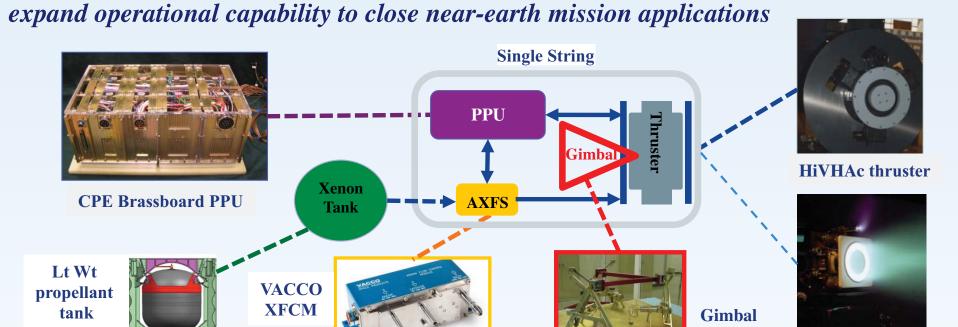
What the NEXT LDT Demonstrated in 9 yrs of Testing

- NEXT Long Duration Test (LDT) was voluntarily concluded on 1 April 2014
 - Collected end-of-test data with repaired and fully functional diagnostic suite to compare with beginning-of-life data
 - Post-test inspection an analysis is underway
- The NEXT thruster exceeded design requirements
 - Throttle thruster to a deep space mission profile
 - Goal ≥450Kg qualification level propellant throughput
 - Characterized thruster operation over a wide operating table
 - NEXT LDT sets Throughput and Duration World Records
 - 51,200 hours of operation
 - 918.2 kg Xenon throughput
 - 35.5 MN-s of total impulse delivered



What the NEXT LDT Demonstrated in 9 yrs of Testing

- Demonstrated that thruster life-limiting phenomena and wear mechanisms associated with ion thruster operations have been addressed in the NEXT design
 - NEXT LDT post-test inspections/analysis will help confirm
- Improved models for future mission planning and operation
 - Compared measured thruster wear rates with those predicted from life models
 - Carbon back-sputter and enhanced charge-exchange facility impact analysis completed
 - Engineering correction factor on wear-rate test results determined
 - <4% reduction for carbon back sputter
 - ~8-10% increase for charge-exchange
 - Current Life prediction is 870Kg ±70Kg

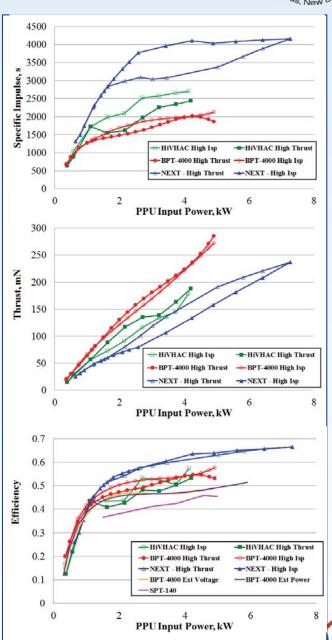


<u>High Voltage Hall Accelerator (HIVHAC)</u> Electric Propulsion for low cost Discovery-class Missions

<u>Objective:</u> Develop key components of a HiVHAc Hall propulsion system (thruster, PPU/DCIU, feed system) to TRL 6 to enable/enhance new SMD Discovery missions;

- The HiVHAc thruster offers improved performance and mission benefits over SOA
- Developing a Power Processing Unit (PPU) with a Digital Control Interface Unit (DCIU) to advance the HiVHAc propulsion system readiness
- A flight-qualified Xenon Flow Control Module (XFCM) was delivered to NASA GRC in March 2012 and has been integrated with the HiVHAc thruster. Designed to work with the above PPU.

BPT-4000 thruster



HiVHAc Development Status

- Testing of the thruster was performed in NASA GRC's Vacuum Facility 5 (VF5) during the Fall of 2013
 - Testing of the thruster was performed at various background pressure conditions
 - Measurements included: performance mapping, plasma mapping, and thermal characterization
- Testing of the EDU2 HiVHAc thruster with a brassboard PPU and the VACCO Xenon Feed System was completed in GRC's VF12 during March of 2014
- A HiVHAc thruster with a modified magnetic circuit was recently tested
 - The discharge erosion starts downstream of the magnetic poles, which protects the poles for a 2 times increase to the projected throughput

Characteristic	BPT-4000	SOA Hall (BPT-4000). HIVHAC
Thruster Power Range, kW	0.3-4.5	0.3-3.9
Throttle Ratio	15:1	12:1
Operating Voltage, V	150-400	200-700
Specific Impulse, sec	710-2100	860-2700
Thrust, mN	22-260	20-207
Efficiency	0.25-0.58	0.32-0.62
Propellant Throughput, kg	450	>300

Hall Propulsion Power Processing Unit

- PSD's In-Space Propulsion Technology (ISPT) Program has been working with a promising Small Business Innovative Research (SBIR) project to develop a low-cost 4.5-kW class wide output range Hall Power Processing Unit (PPU) for Discovery-class planetary missions.
 - Colorado Power Electronics (CPE) has successfully developed a PPU and is poised to take the design to flight certification (TRL 6) by September 2016
 - Qualification Model (QM) PPU will incorporate control electronics for the PPU power modules, VACCO TRL 7 xenon feed system, and thruster/PPU telemetry
 - CPE has submitted a cost proposal and NASA programs have committed funding to start the effort
- The PPU is being designed to operate several Hall thrusters:

- NASA's High Voltage Hall Accelerator (HiVHAc), Aerojet-Rocketdyne XR-5 (BPT-4000), Space Systems Loral SPT-140.
- Thruster acquisition and Hall propulsion system development to be addressed by mission proposal teams.

<u>Ultra Lightweight Tank Technology (ULTT)</u> for future planetary missions

Objective:

- Develop a Composite Overwrapped Pressure Vessel (COPV) tanks for propellants and pressurants for Mars Sample Return (MSR) mission
- To design ultra-lightweight propellant and pressurant tanks sized for Mars Skycrane with an option to manufacture and qualify.

Benefits

- 19.5 kg mass savings are achievable for 3 tanks sized for the Skycrane (40% mass reduction)
 - Mass savings can be passed on to the scientific payload or increase mass margin
- Broad impact to virtually ALL space missions as most use liquid propellants or pressurant
 - Europa Explorer tank mass can be reduced by 60 kg

Accomplishment Status

- Critical Design Review CDR) held Feb 2014
- Mars 2020 mission will use build-to-print Skycrane tanks
- Conclude NDI techniques, and no further design or fabrication due to funding limitations and no Mars 2020 adoption

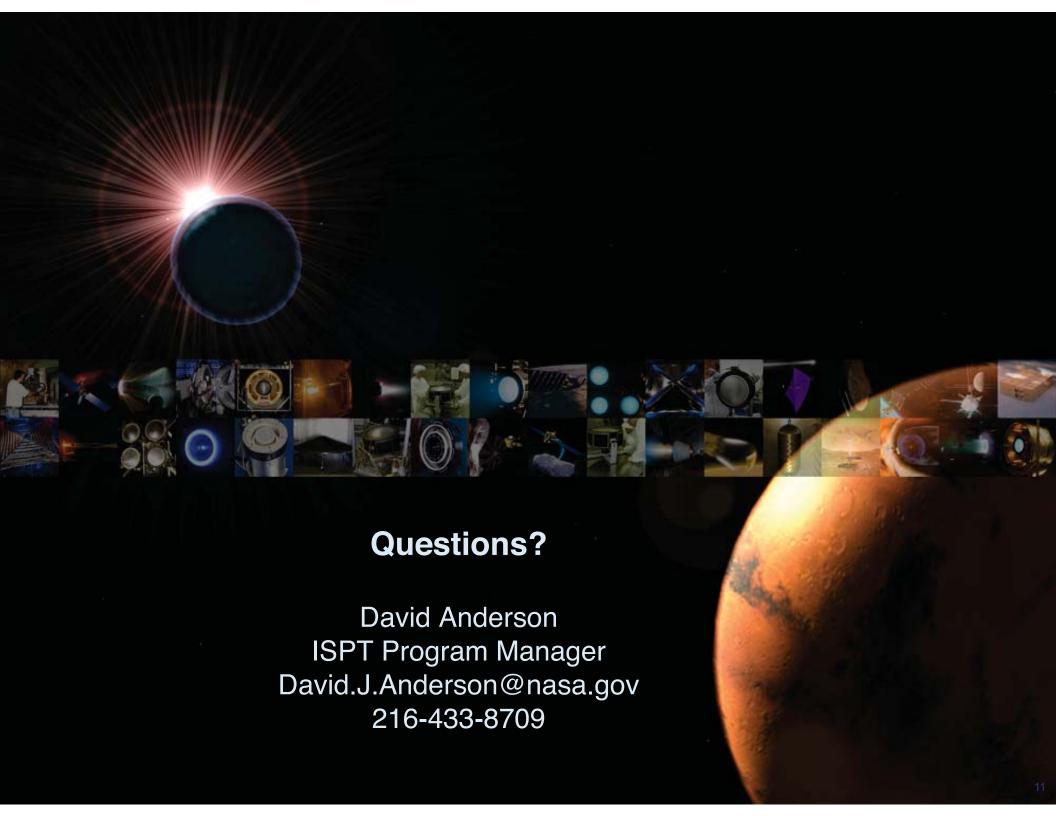
Existing MSL Titanium Tank

594mm Diameter, ~720mm Tall

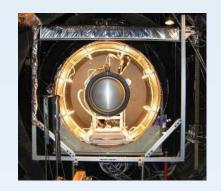
Drop in replacement ultralight tank

594mm Diameter, 684mm Tall

Skycrane Descent Stage Propellant Tanks

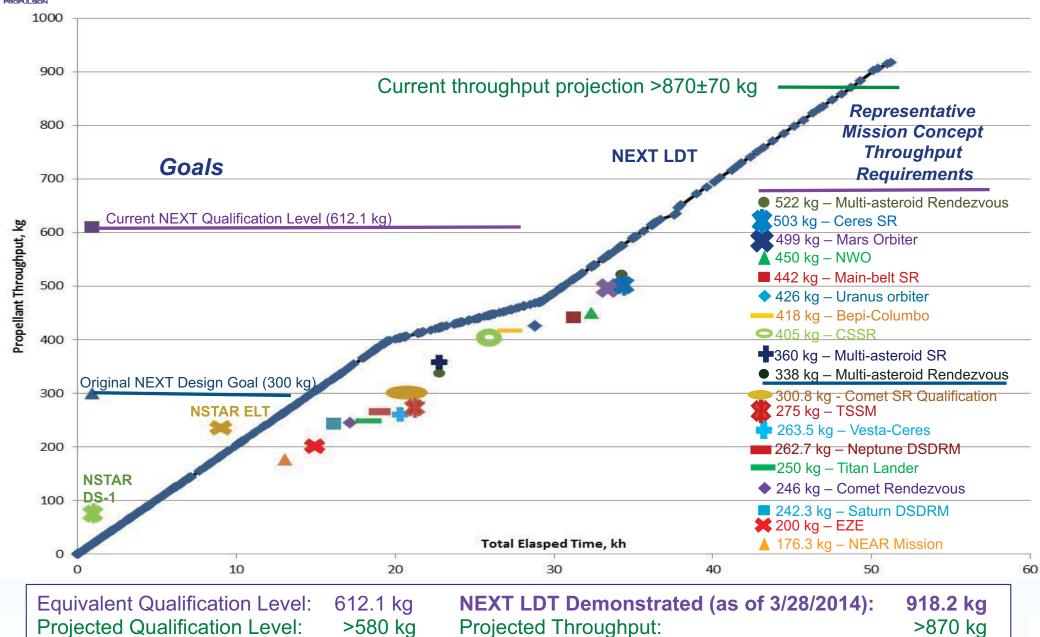


Summary


- Concluded NEXT and Ultra-lightweight Tank development
- Concluded NEXT TRL Assessments and Tech Infusion Study, and identified gaps for customer adoption and improve future technology development
- 2014 concludes all ISPT activities. Wrapping up and documenting remaining ISPT work.
 - HIVHAC Thruster development
 - NEXT LDT post-test characterization, inspection, documenting
 - Will continue to support flight infusion
 - NEXT Thruster and PPU may be offered as Government Furnished
 Equipment (GFE) on upcoming Discovery Announcement of Opportunity
 - 4.5kW Hall PPU development will continue through other funding
- ISPT investments have expanded Planetary Science mission capabilities

NEXT Mission Benefits & Applicability

CHARACTERISTIC	NSTAR (SOA)	NEXT	Improve- ment	NEXT BENEFIT	
Max. Thruster Power (kW)	2.3	6.9	3x	Enables high power missions with	
Max. Thrust (mN)	91	236	2.6x	fewer thruster strings	
Throttling Range (Max. / Min. Thrust)	4.9	13.8	3x	Allows use over broader range of distances from Sun	
Max. Specific Impulse (sec)	3120	4190	32%	Reduces propellant mass, enabling more payload and/or lighter spacecraft	
Total Impulse (10 ⁶ N-sec)	4.6	>35.5	>7x	Enables low power, high ΔV	
Propellant Throughput (kg)	150	918	>4x	Discovery-class missions with a single thruster	


^{*} NOTE: NSTAR used on DS-1 and Dawn missions

NEXT Mission Benefits & Applicability

Original NEXT Qualification Requirement:

Science Mission Directorate/Planetary Science Division

300 kg

Original NEXT Design Goal:

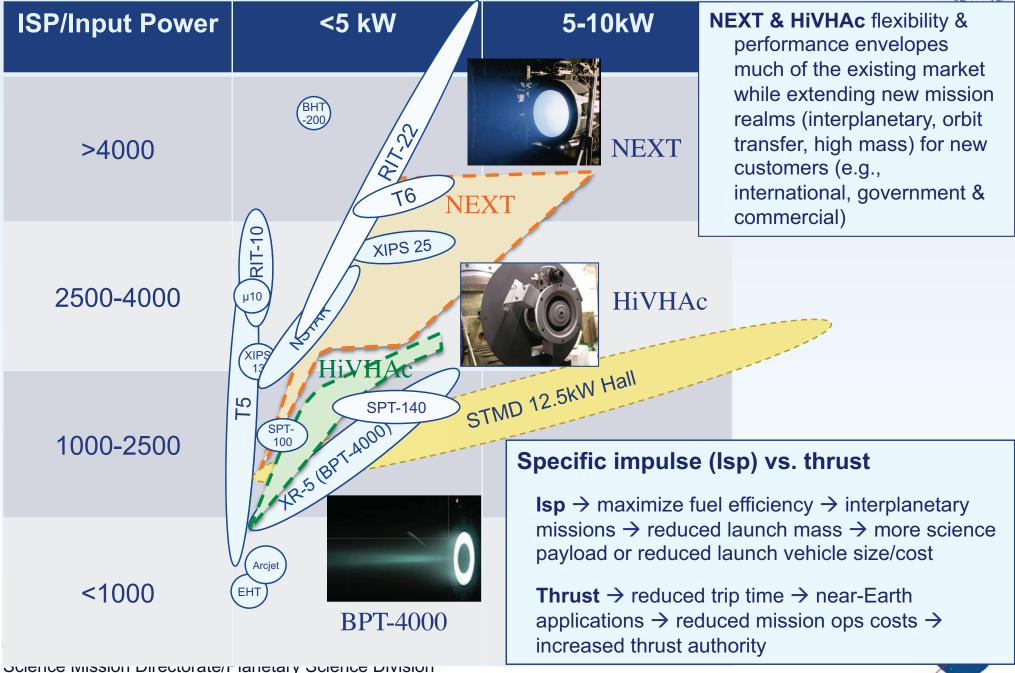
450 kg

Hall Propulsion Priorities for Planetary Science Missions

- Develop common flight Hall Power Processing Unit (PPU) with capabilities for PSD mission needs for any Hall thruster
 - 5 kW class, modular design
 - Qualify unit and procure 3 flight PPUs as GFE
- Evaluate commercial Hall thrusters (i.e. BPT-4000, SPT-140,...)
 - Delta-qual (as necessary) for PSD environments/life
 - Facility effects assessment and develop ground-test-to-flight-modeling protocols
- Complete the <u>High Voltage Hall Accelerator</u> (HiVHAc) system
 - Assess/incorporate Magnetic Shielding (MS), and qualify thruster
- Leverage STMD's 12-kW Hall system development to address planetary science mission needs
- Maintain Mission analysis capabilities and tool development
 - Community engagement with mission capabilities

PPU

BPT-4000 thruster


HiVHAc thruster

Solar Electric Propulsion Market Options

