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Secure Naming and Addressing Operations for
Store, Carry and Forward Networks

Wesley Eddy∗, William D. Ivancic†, Dennis C. Iannicca†, Joseph Ishac†, and Alan G. Hylton†
∗MTI Systems †NASA Glenn Research Center

Abstract—This paper describes concepts for secure naming
and addressing directed at Store, Carry and Forward (SCF)
distributed applications, where disconnection and intermittent
connectivity between forwarding systems is the norm. The
paper provides a brief overview of store, carry and forward
distributed applications followed by an in depth discussion of
how to securely: create a namespace; allocate names within the
namespace; query for names known within a local processing
system or connected subnetwork; validate ownership of a given
name; authenticate data from a given name; and, encrypt data
to a given name. Critical issues such as revocation of names,
mobility and the ability to use various namespaces to secure
operations or for Quality-of-Service are also presented. Although
the concepts presented for naming and addressing have been
developed for SCF, they are directly applicable to fully connected
systems.

Index Terms—Internetworking, Mobile ad hoc networks, In-
formation Security

I. INTRODUCTION

INTERNET technology has become pervasive and is now

present in many types of devices that are deployed in

the field for use in scenarios where they do not have good

(or any) actual Internet connectivity. The devices support data

transfer during episodes of connectivity, and the applications

and protocol are configured to avoid reliance on many typical

infrastructure services (e.g. Domain Name System (DNS)).

These devices may be only intermittently connected to other

devices, and are used to support data flows where the source

and ultimate destination might never be fully connected to

one another at any time. Applications operate highly asyn-

chronously, with incalculable constraints on their communica-

tion. Often, there are intermediate relaying nodes (or “agents”)

that must “carry” the data while waiting for connectivity to

develop. The systems and applications that are of concern are

primarily operating with a much higher level of asynchrony

between the data producers, individual relays, and eventual

data consumers. We call these “Store, Carry, and Forward”

(SCF) systems to distinguish them from typical Store and

Forward (SF) systems, which generally operate over a better-

connected infrastructure [1][2].

SCF distribute applications can be thought of as an extreme

case in Mobile Ad Hoc Network (MANET) because discon-

nection and intermittent connectivity is the assumed condition

whereas in mobile ad hoc networking hop-by-hop connectivity

is generally assumed. Fig. 1 illustrates a generic SCF network

architecture, with the SCF agents (labeled “SCF”) frequently

Corresponding author: W. Ivancic (email: william.d.ivancic@nasa.gov)

Fig. 1. MANET and Store, Carry and Forward Networks

partitioned into time-varying disconnected subsets. Depending

on specifics of an individual scenario, it may be likely that

some SCF agents are permanently attached to a connected

network providing stable gateways to the other SCF agents.

However, in general, the system should be considered to

consist of a number of primarily intermittently connected SCF

agents at any point in time.

There are numerous lessons to be learned from previous

deployments of MANETs and store and forward networks

such as Delay/Disruption/Disconnection Tolerant Networking

(DTN) [3][4][5][6]. Since SF and DTN networks have no real

bounds relative to the maximum time an identified data or

control unit can exist within a routed network, SF and DTN

are really distributed applications [7]. Regardless, some of the

more critical items are:

• SCF systems are generally connected via radio networks.

Some radio systems may take far less power to listen

than to transmit, though this varies by individual link

technology. Unnecessary transmission wastes power on a

wireless system and can quickly drain a battery. The prob-

lem is compounded for devices whose entire lifetime is

determined by their battery (e.g. non-rechargeable sensor
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nodes). Thus, reducing the number of transmissions is

very important.

• It is highly desirable for the sender to know early in a

transmission whether or not the receiver will accept the

data, and likewise for the receiver to be able to make this

decision early within a transfer. This permits a savings

in power and optimization of network capacity usage.

For instance, in DTN experiments with large bundles, an

entire large bundle may be sent, only to be discarded due

to receiver policy for security, resource scarcity, or other

issues.

• Disconnected and intermittently connected networks are

difficult, if not impossible, to globally synchronize state

across - particularly achieving even rough global time

synchronization is a challenge. Timer based mechanisms

can be used without requiring global time synchroniza-

tion. Tight time synchronization is seldom necessary

and should be avoided in any distributed system as it

introduced a single point of failure.

• It is highly desirable for a receiving agent to determine

early within a transfer whether or not to accept the data.

Large data sets utilize significant processing and storage

resources for data that may end up being discarded due

to security, resource constraints, or other policy issues.

• It is highly desirable to have some way to establish single-

copy routes rather than flooding entire networks with

multiple copies of the same data.

• Communications and mobility is not completely random

even for ad hoc networks.

• As one moves father from the core (backbone) of the

network, nodes generally have less connectivity and ca-

pability.

A. Terminology

To aid in discussion within this document it is useful to

develop and define some terminology specific to our concepts

of SCF networks.

Container The application/user data to be trans-

ported over the network as well as a

checksum of that information (the pay-

load).

Shipping Label Metadata describing the characteristics of

a container and its forwarding require-

ments (the header).

II. NAMESPACES (NAMING AND ADDRESSING)

The conclusion goes here We draw much of our concepts

for naming and addressing from three source: “Patterns in Net-

work Architectures” [8], “A note on Inter-Network Naming,

Addressing, and Routing” [9], and “On the Naming and Bind-

ing of Network Destinations” [10]. In particular, Saltzer [10]

provides a summary of services, nodes, and attachment points

that, if strictly followed, enables: services (a.k.a. applications)

to be distributed and/or move, multi-homing of nodes, and

mobility.

1) A given service may run at one or more nodes, and may
need to move from one node to another without losing its
identity as a service.

2) A given node may be connected to one or more network
attachment points, and may need to move from one
attachment point to another without losing its identity
as a node.

3) A given pair of attachment points may be connected by
one or more paths, and those paths may need to change
with time without affecting the identity of the attachment
points. [sic]

Saltzer also points out that three sets of bindings must

be maintained and must be discovered in order to send

information between services:

• The binding between the service and the node it at which

it resides;

• The binding between the node and the network attach-

ment point (or points, if multi-homed); and,

• The path from source attachment point to destination

attachment point (routing)1.

For our discussions, we are not concerned with the bindings

of attachment points (i.e. routing). Rather, we consider two

basic forms for names: locators and identifiers.

Locators (a.k.a. addresses) are hierarchical, at least that is

highly desirable in order to aid in routing as agents need

some clue about where to send containers in order to get

“closer” even if they do not know the best direct path. For

example, to send information from 1600 Pennsylvania Avenue

NW Washington, DC to 10 Downing Street, London, England,

United Kingdom one knows that sending the information to

somewhere in the United Kingdom is getting that information

closer to the final destination. Likewise, in a tree-based hier-

archical numbering system, if information is to be transferred

from 1.2.3.4 to 1.2.100.87, sending the information towards

a grandparent node, 1.2, should be getting the information

“closer” to the destination or at least to a node that likely has

a better idea of where 1.2.100.87 is.

Identifiers are not necessarily hierarchical, and may or may

not be human readable. Identifiers should be unique and

are used to identify applications or services. Identifiers are

bound to locators and discovered via some type of directory

service. This binding may change over time. In SCF distributed

applications where disconnection is assumed to be normal,

distribution and synchronization of these directories required

for discovery must be well thought out. Directory services are

discussed further in section 11.

III. PHILOSOPHY OF MULTIPLE NAMESPACES

In the Internet, there is one namespace, Internet Protocol

(IP) addresses for routing. The World Wide Web contains

Uniform Resource Locator (URL) for high for higher-level

identifiers. The Domain Name System (DNS) directory pro-

vides a directory service for mapping computers, services, or

any resource (e.g. email, Unique Resource Locator for Web

1Whereas, here, Salzer defines routing as between attachment points, we
consider routing between source node and destination node as a node may
have multiple points of attachment i.e., multi-homing.
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services, etcetera) connected to the Internet. (Arguably, Inter-

net Protocol version 6 (IPv6) can support multiple namespaces

e.g. Global Unique Address (GUA) for normal routing and

ORCHID [11] for higher-layer identifiers, but this facility

has not been strongly used, nor will it be easy to, given the

way that existing software and hardware works, basically only

supporting their known subsets of existing type prefixes, and

not new prefixes). For SCF, we are proposing a system of

unlimited namespaces, which can be used to construct either

pools of application identifiers without mandated structure, or

pools of addresses with hierarchical structure. Thus, here, the

only difference between addresses and other identifiers is their

hierarchical nature.

The limitation of one namespaces, and the global visibility

of that namespace to applications, is a root cause of many

complexities and fragilities within today’s Internet architec-

ture, including within: the interdomain routing system, the

DNS, IP neighbor discovery, and other aspects. This has

led to a multitude of security issues related to not being

able to verify ownership of particular identifiers or addresses,

and not being able to authenticate the bindings between

particular identifiers and addresses. These issues have, to some

extent, been attempted to patch over with BGPSEC/SIDR [12],

DNSSEC [13], SeND [14], and other extensions, but these

have shifted the security issues to issues of increased opera-

tional and infrastructure complexity. Both of the namespaces

still have centralized (though hierarchical) allocation and man-

agement at the top (e.g. IANN, ICANN, RIRs). There are

no real mechanisms available for creating new namespaces,

as even with IPv6, the 128-bit fields have been fixed and

follow formats with prefixes that Internet Assigned Numbers

Authority (IANA) defines.

One of the most significant new facets of this SCF proposal

for namespace security is that rather than living within existing

namespaces, or subsets of them, we are allowing the creation

of an infinite number of new namespaces, and to do so with

minimum effort and quickly. Communication is only possible

between nodes that have consented to join a given namespace,

so though a node may create its own namespace, this will be

worthless unless other nodes have policies that allow them to

become enrolled within the new namespace. Although similar

in concept to Virtual Private Networks (VPNs), the SCF

namespaces are more powerful for several reasons, including

(1) wider scope compared to VPN prefixes, (2) less brittle

configuration and potential for negative interaction with other

portions of a host Operating System (OS) networking stack,

and (3) better integrated with identifier-address resolution

mechanisms, preventing issues of confused scope that occur

in VPNs.

SCF’s multitude of namespaces also differs very signifi-

cantly from the Internet, as nodes that do not participate in

IP addressing are completely unreachable, and nodes have a

relatively poor and unclear granularity in terms of whether

they’re privately reachable [15] versus using globally routable

addresses. Furthermore, the lack of security in the IP names-

pace, allows visible and invisible proxies, Network Address

Translators (NATs), and other middleboxes to subvert the roles

and identities of end-nodes in communication flows, without

explicit consent, and this brutality is really the only way

to grow the Internet and add new features because of the

limitation of the single IP namespace.

In summary, the traditional approach to networking in

today’s Internet is to build one big layer-3 network and then

deploy firewalls and VPNs throughout until one deems the

network secure. Unfortunately, the configuration becomes so

baroque that it will almost certainly break eventually. Our

approach is to use credentials to build pair wise relations

with neighbors or end-to-end peers, and to verify hosts and

data prior to committing resources. No firewalls, VPNs, etc.

are required in order to implement the policies and security

postures desired. Rather, the architecture is actually just secure

by design.

IV. CREATING A SECURE NAMESPACE

To mitigate potential threats to network, data, and applica-

tion security SCF needs ways for:

• Applications (end-applications and agents) to validate

received data

• End-applications to protect transmitted data

• Agents to validate end-applications that attempt to utilize

them

• Agents to validate one another when in contact

Application of namespaces will enable these capabilities.

In a secure namespace, a root server exists somewhere

in order to keep a database of registered names within the

managed namespace, and to issue certificates when names

are allocated from the namespace. Once allocated, a name

should never be de-allocated or reused, since the lifetime of

containers/labels with the name may be unbounded (however,

names may be revoked). The root certificate for namespace

X, called the Name Space Identifier (NSI) certificate, needs

to be installed on systems hosting applications that will

use or (securely) process containers/labels with names from

namespace X. The NSI contains a public key for the root, and

optionally a description of the valid name formats within the

namespace (e.g. via a regular expression), along with optional

metadata. The root certificates are the only trusted components

of the system.

Given that SCF supports a multitude of namespaces, in

order to be implementable and deployable, the format needs

to be bounded. We propose to uniquely indicate namespaces

through the use of Universally Unique Identifierss (UUIDs)

created by the “namespace owner”. These UUIDs can follow

the format defined in RFC 4122 [16], which supports 128-bit

UUID constructed from a timestamp, sequence number, and

spatially unique node identification.

Since we recognize that time synchronization in SCF net-

works is difficult, and that even remembering the current

time across boot-ups may be difficult for some nodes, we are

initially using RFC 4122’s version 1 form of UUIDs, where

the timestamp is made robust to such issues via scoping it

within the other fields. In this form, the sequence number can

either be recorded between boots, or generated randomly (or

pseudo-randomly), and where the node identification comes

from either Institute of Electrical and Electronics Engineers

��������	
��
	����� �



Fig. 2. Creating a Namespace

(IEEE) Media Access Control (MAC) addresses or a self-

generated value. One downside to this form of UUIDs is that

they are not human-readable or otherwise indicative of the

namespace’s purpose. Whether this is a downside in practice

or not needs to be determined through further experimentation

and deployment experience with SCF-based networks. We

suspect it may not be an issue, as a database service mapping

UUIDs to human-meaningful strings could be created, as well

as preconfiguring applications with the UUIDs of namespace

they need to operate within so that the UUIDs themselves are

not user-visible.

Once the UUID has been selected, the namespace owner

will associate it with a public/private keypair by creating a

certificate called the Name Space Identifier (NSI) [Fig. 2].

This certificate holds fields for the UUID and public key, and

is signed using the private key. Of course, the details of the

certificate format and the cryptographic algorithms chosen are

of interest, and those are addressed in section 6, Certificate

Details.

The namespace owner is now responsible for managing

a database recording any names that it has granted. The

basic schema for this database needs to include a sequence

number, the allocated name itself (an arbitrary string of bits),

a public key from the node that the name was allocated to,

and potentially timestamps associated with the name creation

and/or expiration.

At this point, the namespace has been created, and the

namespace owner can serve requests for allocating names, as

described in the next section.

It is imperative to understand that in order to be a user of this

namespace, the user must obtain a copy of the NSI certificate.

This could be done in a number of ways. The key question

is how is this bootstrapped, how does the initial creation and

distribution of the NSI work in a practical deployment? One

method that is highly likely - particularly for SCF networks

consisting of sensors - is that an entity is populated with at

least one NSI during pre-deployment or even as part of the

manufacturing process. For other types of applications (that

build overlays for instance), the NSI could be installed when

the application is installed. Also, application software could

support importing NSIs retrieved from a web server or in

Fig. 3. Creating Proof-of-Names

some other way, similar to the way the Peer-to-Peer Session

Initiation Protocol (P2PSIP) Distributed Hash Tables (DHTs)

are configured [17]. Without an NSI, a system cannot validate

any names within that particular namespace associated with

that particular NSI.

V. ALLOCATION OF NAMES

We need a mechanism to secure and validate names and

applications. We propose to support this by using simple

certificates called Proof-of-Name (PoN) certificates, related

to NSI certificates. How an application receives its names

is highly dependent on the operational environment. In some

cases, this may be totally pre-configured and statically setup,

requiring no direct real-time contact with the root of the

namespace. In other cases, applications may be able to dynam-

ically receive PoN certificates during a time of connectivity

to the root. The following describes the procedures to obtain

and allocate validated names from the perspective of the name

requester.

The name requester wishes to obtain a name from the

namespace owner to be used as a secure identifier. In order to

do so, the requester needs to obtain a PoN certificate from the

namespace owner. The requester either asks for a particular

name (identifier) explicitly or allows for an owner-selected

name. The requester supplies its public key (described in 5.1).

The namespace owner either checks its database to see if the

specific name is available or generates an unambiguous name

per the request. The namespace owner enters the name into

the database and marks it as in-use, storing the public key

and returning a PoN certificate for the name, signed by the

namespace owner [Fig. 3]

Names may be hierarchically assigned by the owner, sup-

porting addressing as just another type of namespace that

happens to have structure. A request can also be issued to

request a batch of names (a delegated-subnetwork-namespace);

this allows for secure prefix-delegation in an addressing system

from the namespace owner. In this case, there is a slight

modification to the basic operations using a Hierarchical

Proof-of-Name (HPoN) certificate:

• The HPoN certificate’s name field needs to indicate a

range of names that have been allocated, rather than a

single name.
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• The namespace owner’s database needs to handle ranges

of names.

• All HPoN certificate holders become namespace owners

and need to hold their own database of any PoNs or

HPoNs they grant within the delegated subset of the

namespace.

• When HPoN certificates are given out from the subsets

of the namespace (below the top-level), they include a

copy of the upper-level delegated-subnetwork-namespace

owner’s PoN as well. This is needed in order to validate

the HPoNs using (and trusting) only the NSI certificate.

A. User Key Pairs for Requesting Names

The public key used for requesting a name could be from an

existing keypair, or one that is generated just for the purpose

of use with that name. It all depends on the situation and

operational environment. For instance, if privacy/anonymity

is a concern, a brand new keypair could be generated to use

with an ephemeral name, and everything would be disposable.

If access control to the namespace is an issue, keys that

are already in-use and vetted somehow (e.g. through being

present in a Personal Identify Verification (PVI) card Public

Key Infrastructure (PKI) system) could be used.

In general the source of key material should not matter

to the naming system. However, there will definitely be

some expectations on the sources of key material for specific

applications creating and using the namespaces.

VI. CERTIFICATE DETAILS

The certificates in our secure naming system are not X.509

certificates [18]. Rather, they need to be much simpler in

order to only support the profile of fields that is required for

secure naming and reduce processing requirements and code

footprint, as well as certificate size.

NSI certificates include the following information

• Namespace UUID

• Public key of namespace-holder

• Signature from namespace owner

• Optional Fields:

– Cryptographic Algorithm(s) used

– Additional Serial (Sequence) Number

– Regular Expression for names within the namespace

– Creation Timestamp (rather coarse to be useable in a

SCF network)

– Expiration Timestamp (rather coarse to be useable in

a SCF network)

PoN certificates only need to include the following infor-

mation:

• Namespace UUID (matching the NSI)

• Name granted

• Public key of name-holder

• Signature from namespace owner

• Optional Fields

– Serial (Sequence) Number

– Creation Timestamp (optional and likely not readily

useable in a SCF network)

– Expiration Timestamp (optional and likely not readily

useable in a SCF network)

Numerous cryptographic algorithms are available for gen-

erating the needed keypairs, digital signatures, etc., as well as

specifications for certificate encoding and other aspects. The

NSI certificate can indicate which cryptographic algorithms

are to be used for operations within the namespace. This

provides the namespace owner with the freedom to pick any

sets of cryptographic algorithms, and optionally include them

within the NSI. This information is only optional because

in some highly embedded systems it may be fixed to the

limited capabilities of the particular devices and statically pre-

configured or otherwise known rather than a matter of choice.

Due to nature of SCF and design principles of SCF, the need

to Keep It Simple, in initial experiments we are using only one

public key crypto suite (Elliptic Curve Cryptography (ECC)

per National Security Agency (NSA) Suite B with 256-bit

prime modulus Elliptic Curve Diffie-Hellman (ECDH) and El-

liptic Curve Digital Signature Algorithm (ECDSA); one block

cipher (Advanced Encryption Standard (AES)-128 Counter

encryption mode (CTR)); and, one hash algorithm (Secure

Hash Algorithm (SHA)-256), but other deployments can pick

different algorithms while supporting the same concepts.

Names and namespaces could have an expiration date,

but supporting this goes back to the time synchronization

requirement that SCF needs to avoid. However, for SCF

distributed applications, time-synchronization could be much

’rougher’ than today’s connected systems.

The serial number and timestamp fields in the NSI are

optional they may be redundant with the fields within the

UUID, if the lengths there are sufficient.

The secure namespace concepts presented here are agnostic

to the concrete encoding of certificates as they are stored and

exchanged. However, in any practical use of these concepts,

concrete formats need to be defined. For our experiments,

involving small systems such as in space exploration and

sensor nodes, with no tolerance for extraneous code, we

believe that X.509 certificates carry far too much baggage

that isn’t strictly necessary. We are instead experimenting

with JavaScript Object Notation (JSON) objects that hold the

necessary fields, and are rather easy to parse and generate with

very small amounts of code.

A. Certificates and Name Revocation

Once issued, an attacker that obtains the corresponding

private key could maliciously use an SCF PoN certificate. This

is obviously a problem for distributed applications operating

over intermittently connected and disconnected networks, as is

the time to notify is unbounded and in the extreme is infinite.

However, that do not mean one cannot attempt to mitigate the

problem.

Two ways that this can be mitigated are through flooding of

Certificate Revocation Lists (CRLs) when the compromise of

the public key is suspected, and through using lifetimes on the

certificates designed to expire before the private key is likely

to be compromised. The downsides to flooding CRLs is that it

takes memory, network capacity, and time which will all be at
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a premium in the use cases SCF is desired for. The downside

to expiration times is that using them requires at least rough

synchronization of distributed system clocks.
As stated previously, it is difficult to synchronize state

across SCF - particularly time. Because of this, traditional

PKI techniques for revoking certificates (and names) cannot be

used. However, to provide some benefits, time-synchronization

may only need to be to a coarse granularity of, for instance,

a day. Even that may be non-trivial, in some systems (e.g.

across reboots). Regardless, we suggest that other methods

are possible.
Without needing other nodes to understand an absolute

expiration time, the namespace owner can simply revoke

certificates when it unilaterally decides the expiration time has

been reached. Because the NSI and PoN certificates have serial

numbers, and because certificates within the same namespace

should typically be expiring in sequence, this can be exploited

in a sort of CRL compression method. For example, a rather

small revocation message could be flooded containing only the

serial number of the lowest unexpired PoN within a namespace

or NSI generated by the owner. This would be signed with

the owner’s private key. On reception, nodes would be able to

store only this sequence number and know that any certificates

below it are no longer valid. This implements a sort of rolling

window of valid certificates advanced by the owner.
In exceptional cases where the namespace owner needs

to revoke certificates prior to natural expiration (e.g. in the

case of compromise), a set of additional revoked sequence

numbers can be appended to the flooded message. As such

incidents will hopefully be significantly more rare than natural

expiration, and as once natural expiration is reached, these

special case revocations become subsumed by the advancing

minimum valid sequence number, we believe this stands a

good chance of working quite well in practice.
Note that having the namespace owner announce revoca-

tions in this way does not prevent further mechanisms from

being incorporated into implementations in order to support

more timely responses to incidents known within disconnected

pockets of the network. For instance, it may be useful in some

environments to be able to blacklist given names if there’s

confidence that they’ve been compromised through some other

means (like localized Host or Network Intrusion Detection

Systems), even prior to a CRL being obtained that covers them.
It is important to note the following two items regarding

SCF certificates:

• Since time-synchronization cannot be assumed, the cer-

tificates do not strongly support non-repudiation; and,

• A namespace owner destroys the namespace if it revokes

its own NSI certificate, only if notice of that revocation

reaches all nodes, and is remembered by them (e.g. not

forgotten about after a reboot).

In this secure naming system, it is currently much easier to

create namespaces and names than it is to effectively destroy

them. This may be a fruitful area of future work.

VII. DISCOVERING AND QUERYING NAMES

Creating a namespace and allocating names within it are

necessary but not sufficient to enable communications. There

needs to be a way for the names of reachable nodes and

applications to be discovered and mapped into lower-layer

protocol details in order to establish communications. This

is provided through a generic directory service. This does

not assume or imply that the addresses are exposed to the

applications. Rather, this is the binding between the service

e.g., application, and the node it at which it resides. That

directory service can be implemented in a number of different

ways, all optional for a given use of secure namespaces, and

all requiring some further concrete details. These discovery

mechanisms are specific to the given lower-layer protocols that

secure namespaces are being built on top of in an application.

The namespace owner already maintains a database of the

granted certificates, so it seems natural at first to also use

that database for directory services by enhancing it with

lower-layer locators for the granted names. This clearly has

scalability issues, since we have not yet defined a way to

distribute the namespace owner role within a namespace. It

also would only be useful in scenarios where nodes have

frequent connectivity that allows communications with the

namespace owner in order to query and update records as

their lower-layer locators change. Clearly it is not a complete

workable solution for SCF distributed applications.

Another approach is to define neighbor discovery mecha-

nisms similar to those used in IPv6., which will make use of

lower-layer multicast/broadcast capabilities in order to learn

about the nodes and applications that are available within the

local scope of the lower-layer protocols. This is relatively

easy to do by adapting the formats, timers, and algorithms

that IPv6 neighbor discovery uses, and simply replacing the

address fields with secure name fields. In contrast to IPv6

Secure Neighbor Discovery (SeND), however, our secure

namespace concept allows much easier proof of ownership

to be demonstrated (see section 9). Establishment of neigh-

bor relationships allows communications to be secured with

the obtained credentials, optionally providing authentication

and/or privacy services for future exchanges.

A neighbor discovery based approach for learning name

bindings is likely to work better in most SCF scenarios than

a centralized database. However, the neighbor discovery only

works within the scope of a single lower-layer hop. It does not

support multi-hop forwarding or discovering the bindings for

names that are owned by nodes that are multiple hops away

within the underlying network. For this, multiple approaches

can be made to work, including adaptation of existing routing

algorithms and protocols such as Trickle [19] or IPv6 Routing

Protocol (RPL) [20], adaptation of resource-locating protocols

like Application-Layer Traffic Optimization (ALTO) [21], or

developing a gossiping query protocol. In fact, different SCF

scenarios that we have defined are certain to drive alternative

approaches for this part of instantiating the secure naming

concepts within a concrete system. This is an area where

the most future work is needed in the near term; however,

we believe it can be done largely using existing protocols as

models or frameworks. In section 11, Directory Services, we

provide some notional deployment scenarios for Directories.
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VIII. VALIDATING NAME OWNERSHIP

Given that the NSI for a namespace is generated by the

owner and distributed to any applications that will be working

within that namespace, all applications are guaranteed to have

the public key of the namespace owner, and be able to check

signatures generated using the owner’s private key. Since the

owner’s private key is used to sign the PoN certificates, any

PoN certificates received from other applications can be easily

validated, without resorting to cumbersome certificate chain

operations normally involved in PKI-based systems.

This only proves that the PoN certificate is legitimate and

that the name has been issued; it does not prove that the

application providing the PoN indeed holds the private key

associated with the public key, nor does it prove that the name

has not been revoked for some reason.

Proving ownership of the name within the PoN can be done

in two ways:

1) Via a challenge-response exchange, in which the verify-

ing party encrypts a puzzle with the public key from the

PoN, and awaits a response that could only be gener-

ated through decrypting the puzzle, thus demonstrating

possession of the private key.

2) Via a signature using the corresponding private key and

covering the PoN plus some nonce like a timestamp,

sequence number, or other freshness indicator that is

bootstrapped out-of-band in a way that prevents replay

attacks.

The first method is relatively straightforward but requires

both parties to be “online” or with direct low-latency commu-

nication, otherwise much time and the corresponding oppor-

tunities for communication may be wasted.

The second method is more complex, and requires some

help or support from the lower-layer protocols in order to

provide the means to indicate freshness of a signature; possibly

requiring time synchronization. The significant advantage of

this method is that it can potentially be done one-way (without

bidirectional exchange) and thus may be more amicable to

scenarios where there is only unidirectional connectivity, high-

delays, or lack of concurrent end-to-end paths.

IX. AUTHENTICATING AND ENCRYPTING

Authenticating and encrypting data to a given name is a

relatively straightforward process. To authenticate data (the

container), the sender signs the data using the private key

corresponding to the public key in the sender’s PoN. The

receiver then uses the PoN public key to check the signature

and (if necessary) validates the PoN using the appropriate

NSI certificate [Fig.4]. Similarly, to encrypt data, the sender

uses the public key in the destination’s PoN to encrypt data.

The receiver then uses the private key portion of the keypair

identified in its PoN in order to decrypt the data it receives.

For SCF networks, it is highly desirable for a receiving

agent to determine early within a transfer whether or not to

accept the data in order to maximize resource utilization (e.g.

bandwidth, storage, computation, battery). Thus, the ability to

authenticate the data source is imperative. If the SCF protocol

is designed in a matter to allow the shipping label to be

Fig. 4. Authenticating Names

processed separately from the container body, the label can

be authenticated efficiently within the network precisely in

the same manner as the complete container’s data.

X. APPLICATIONS AND NAMESPACES

All applications need to have an Application Process Name

(APN) that identifies them. Some APNs can be Distributed

Application Namess (DANs) in order to support multicast style

delivery, but in the basic case, an APN uniquely identifies a

single process, and DANs are an advanced topic, beyond the

scope of this paper.

SCF agents are applications that parse labels and relay

containers for other applications. SCF agents have APNs

drawn from a namespace that identifies them as relaying

applications. It is assumed that the applications (including SCF

agents) share the same set of NSIs in order to be able to

communicate within a namespace.

How the application receives an APN, was covered in sec-

tion 5, Allocation of Names. For now, assume the application

knows about its APN, and has a certificate to prove that

the APN was assigned from a root for the namespace. The

application should internally posses the private key, which

corresponds to the public key within its PoN certificate. This

allows the application to prove ownership of the APN to

any SCF agents or other SCF applications within the same

namespace.

A. Suggested Application Program Interface (API) based on
APNs

Applications use SCF via an API that can be system/vendor

dependent. SCF agents can be within the same platform as

applications or remote; the API is all that matters. An example

API is shown below:

• Poll for any SCF agents or SCF applications directly

known to the local system. The SCF agents in the network

may be using a beacon process to broadcast their pres-

ence, may be statically configured on systems, or may be

discovered through some other type of dynamic process.

It does not matter to the application. When polling, the

application’s APN should be provided, since some SCF

agents may only have access controls that permit specific

APNs to utilize them, and are not generally available to

relay for all applications. This polling should return a
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list of APNs that identify the SCF agents. There might

be two flavors of polling; one that returns immediately

with currently known information, and one that blocks

while some on-demand results are collected by the local

system; not all systems need to support both.

• Register the application’s APN with a particular SCF

agent. This should block and return success/failure. Reg-

istration may allow the application to reserve space on

the agent for incoming/outgoing containers.

• Send a container via a SCF agent the application is

registered with. The send call should include some way

of ’signing’ the request, so that the SCF agent can authen-

ticate it before committing resources for the container.

• Receive a notification from a SCF agent the application is

registered with that a container has arrived for the APN,

giving relevant label material to the application.

• Request a given container’s contents from the SCF agent.

• Withdraw/destroy a registration with a SCF agent. This

needs to be authenticated.

It is important to note that the secure namespace operations

allow all of these functions to be performed in a robust manner

that protects both the network infrastructure and resources

(buffers, bandwidth, etc), as well as the nodes and applications

themselves. This is a significant difference from other store-

and-forward systems that have been built (e.g. based on DTN)

with similar APIs between relays and applications, but without

the strength of any security to the namespaces involved.

B. Addressing and Routing Application

The following demonstrates how naming is used by applica-

tions to communicate with one another and with SCF agents,

without having addressing information visible.

Advertising reachability of APNs between SCF agents can

be done securely, if, when registering, the application provides

a copy of its APN ownership certificate embedded in another

certificate that indicates delegation to the SCF agent’s APN

and is signed using the application’s private key. Other SCF

agents can then use the public key from the embedded certifi-

cate to check that signature, and can use the root certificate

for the application’s namespace in order to check the inner

certificate proving that the application itself really owns the

APN initially.

Full routes between SCF agents can be securely advertised

by further nesting the certificates this way. This mechanism

can be used to prove contacts have existed at one point in

time or another, and that transitive sets of contacts have taken

place over time, but does not show current or future proof of

reachability. That is part of the routing/addressing system.

XI. DIRECTORY SERVICES

In order to illustrate how name-to-address (N2A) binding

directory services could operate in SCF networks we provide

two examples. The first example is an army deployment. This

is used to show an SCF with high degree of disconnection. The

second example is the use of namespaces for aeronautics. The

purpose of the aeronautics example is to show how distributed

N2A directories are: updated, enable mobility, and enable

use of common infrastructure while simultaneously securing

critical infrastructure.

A. Army Field Operations

Figure 5 illustrates a conceptual field deployment for the

army. Army communications is highly structured - particu-

larly the closer one gets to the core network. In addition,

connectivity and bandwidth increase as one moves from the

soldier to the core. The field army hierarchy shown is of the

form, Division (DI), Brigade (BR), Battalion (BA), Company

(CO), Platoon (PL), and Squad (SQ). Each upper echelon is

composed of multiple lower echelons. For example, there are

8 to 16 soldiers in a squad, 2 to 4 squads in a platoon and 3 to

5 platoons in a company. In our example, Companies have full

connectivity to Battalions; Battalions have full connectivity to

Brigades; and Brigades have full connectivity to Divisions.

In figure 5, each rectangle from Division to Squad represents

a SCF routing agent. For convenience, the identities of these

SCF routing agents are provided by hierarchical names. The

upper rectangle is D1 for Division 1. The lower middle rect-

angle as squad echelon level is SQ4.PL1.CO5.BA3.BR2.DI1,

i.e. <Sqaud4> <Platoon1> <Company5> <Battalion3>
<Brigade2> <Division1>. Such a naming system could be

use as addressing, but care should be taken to not use appli-

cation identifiers as the point of attachment locator (address)

otherwise multi-homing and mobility problems will result (see

the following aeronautics example for clarification). In the

army example, we use a hierarchical numbering system for

addressing with the alphanumeric names for identities.

The Division is responsible for allocating addresses (loca-

tion names) in the namespace 1.0. When the Brigade routing,

BR2, attaches to Division router, DI1, BR2 sends and empty

request for names signifying that it is requesting an address,

or, in this case, a set of addresses. The Division allocates the

locator name 1.2 and the Delegated-Subnetwork-Namespace

(DSN) 1.2.* to the Brigade router, BR2. BR2 is now respon-

sible for that DSN and passes a fraction of that down to

the Brigade 3 router, BR3. BR3 in now responsible for DSN

1.2.3.*. As echelon routers connect to the system, they request

and are allocated sub-address space. Note, prior to time,

T1, the Platoon and Squad routers have not been allocated

delegated-subnetwork-namespace (addresses). At time, T1, the

Platoon routers receive their address allocations and at time,

T2, the Squad routers have delegated-subnetwork-namespace

Two soldiers are represented by their identities, ID123 and

ID199. They have no addresses until time, T3, at which

time they can communicate up and down within the 1.0

namespace. At time, T4 they become disconnected. At time,

T5, they connect to each other and can communicate over a

link local address on the wireless connection. They can only

communicate via applications that have been allocated and

validated. Validation occurs using the common NSIs for those

particular applications (see the following aeronautics example

for clarification). At time, T6, soldier ID123 can communicate

with and across echelons within the 1.0 namespace using an

entirely new location identifier. Note, rebinding of location

to identity occurs from bottom up. Thus, those nearest to the
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Fig. 5. Notional Field Army Naming and Addressing

mobile node will perceive the updates more quickly than those

topologically further away. This is exactly what we want in a

SCF network. Also, during times of disconnection, when, for

instance, ID123 cannot find or connect to ID199, sending the

containers up the tree is perfectly reasonable as one would

expect the location of ID199 to eventually propagate to the

upper echelons.

B. Aeronautical Mobile Networks

Figure 6 illustrates and aeronautical mobile network and

table 1 shows the B2A directory updates. This example is

used to show: how the B2A tables get updated; how mobility

is accommodated; and, how namespaces can be used to enable

shared infrastructure while securing critical infrastructure.

For this aeronautics network, we have a number of domains;

each can have their own set of namespaces for applications.

We also have a global routing namespace for addressing

(location). In aeronautic networks, Air Traffic Control (ATC) is

a critical communication system for safety of flight and safety

of life. Airline Operation Control (AOC) is used for passenger

information, fuel, weather, electronic flight bags and other

applications often specific to the airlines. In future networks

it is envisioned that ATC and AOC may be permitted to share

the same radio links. However, ATC is always given priority

over AOC. The other system on an aircraft is the Passenger

Internet and Entertainment Services (PIES). This is generally

and open network. We also have the open Internet services

on the ground as well as the various passengers’ corporate

networks (private networks).

In figure 6 we show eight different N2A directories. Di-

rectory 2 is a local, on aircraft directory. The aircraft ID is

NX211. We assign the aircraft router the same ID. In this ex-

ample, assume there are 5 computing systems onboard, ATC,

AOC, and three passengers’ computers (e.g. smart phones,

pads, laptops, etc.). ATC has one application with a UUID

of NX211(atc). AOC has three applications: NX211(efb),

NX211(fuel), and NX211(weather). The local onboard router

is providing pong and chess as entertainment applications to

the passengers. Chuck and Kim have registered to play pong.

Chuck and Larry have registered to play chess as well as access

to the Internet. Kim will be using her corporate email system.

While on the ground at the gate, all systems are connected

via the AeroMAX link. AeroMAX is a shared, high-speed

wireless link used on the airport tarmac for communication to
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Fig. 6. Aeronautical Network

multiple entities. Once in the air, enroute, the aircraft ATC and

AOC can use Link-2 back to the FAA Control Center. Link-2

is a highly reliable, low-rate link. This link is not available

to passengers. NX211 happens to have satellite service. This

link is available to passengers and (let us assume) it is also

available to ATC and AOC services. At some point in the

flight, there is a handover from link-2 (Cleveland Control

Center) to link-4 (Chicago Control Center).

Table I shows the N2A binding updates that occur during

various stages of flight. At time, T1, the onboard systems

update their binding with the local directory, D2. Also, all

systems are permitted to use the AeroMAX. Thus, all systems

send binding information to Directory 4. Directory 4 then

updates the AOC and ATC directories. At time, T2, Links 2

and 3 are active. ATC and AOC are permitted to use both links

with PIES is only permitted to use Link-3. The corresponding

directly connected directories, D5 and D8 receive binding

updates. Note that ATC and AOC are now multi-homed (i.e.

have two or more N2A binding entries). In addition, at time,

T2, ATC, AOC and PIES have all moved topologically. Finally,

at T3, Link 2 is inactive and link 3 is active. Thus ATC

and AOC binding updates show mobility from the Cleveland

Control Center to the Chicago Control Center.

XII. QUALITY-OF-SERVICE

In the Aeronautics Networking example, we show that

specific networks can be separated via namespaces. In this

manner we can restrict use of various links such as links 2

and 3 to various namespaces (here ATC and AOC. This is one

aspect of (Quality of Service (QoS)).

An important aspect of QoS regarding SCF networks is

the ability to manage resources (e.g. storage, computation,

bandwidth and power - battery life). This is critical for SCF

systems as resources are precious. Furthermore, and inability

to properly manage resources opens the system to denial-

TABLE I
NAME-TO-ADDRESS BINDINGS

T1 - Link 1 (WIMax)
T2 - Link 2 (Cleveland Control Center), Link 3 (KuBand Satellite)
T3 - Link 4 (Atlanta Control Center, Link 3 (Ku-Band Satellite)

Directory Application Address Application Address Application Address
1 NX211(efb) _.A.B.2 NX211(efb) _.C.D.2 NX211(efb) _.J.K.2

AOC NX211(efb) _.X.Y.2 NX211(efb) _.X.Y.2
NX211(fuel) _.A.B.2 NX211(fuel) _.C.D.2 NX211(fuel) _.J.K.2

NX211(fuel) _.X.Y.2 NX211(fuel) _.X.Y.2
NX211(weather) _.A.B.2 NX211(weather) _.C.D.2 NX211(weather) _.J.K.2

NX211(weather) _.X.Y.2 NX211(weather) _.X.Y.2
2 chuck(pong) _.A.B.3 chuck(pong) _.X.Y.3 chuck(pong) _.X.Y.3

Local chuck(chess) _.A.B.3 chuck(chess) _.X.Y.3 chuck(chess) _.X.Y.3
larry(chess) _.A.B.4 larry(chess) _.X.Y.4 larry(chess) _.X.Y.4
kim(pong) _.A.B.5 kim(pong) _.X.Y.5 kim(pong) _.X.Y.5

3 NX211(atc) _.A.B.1 NX211(atc) _.C.D.1 NX211(atc) _.J.K.1
ATC NX211(atc) _.X.Y.1 NX211(atc) _.X.Y.1
4 NX211(atc) _.A.B.1

AeroMAX NX211(efb) _.A.B.2
NX211(fuel) _.A.B.2
NX211(weather) _.A.B.2
chuck(internet) _.A.B.3
larry(internet) _.A.B.4
kim(internet) _.A.B.5

5 NX211(atc) _.C.D.1
Cleveland NX211(efb) _.C.D.2
Control NX211(fuel) _.C.D.2
Center NX211(weather) _.C.D.2

6 NX211(atc) _.J.K.1
Atlanta NX211(efb) _.J.K.2
Control NX211(fuel) _.J.K.2
Center NX211(weather) _.J.K.2

7 kim(nasa.mail) _.A.B.5 kim(nasa.mail) _.X.Y.5 kim(nasa.mail) _.X.Y.5
NASA

8 chuck(internet) _.X.Y.3 chuck(internet) _.X.Y.3
Internet larry(internet) _.X.Y.4 larry(internet) _.X.Y.5
Public kim(internet) _.X.Y.5 kim(internet) _.X.Y.5

T1 T2 T3

of-service (DOS) attacks. Namespace can be used in SCF

firewalls to control resource allocations such as:

• What namespaces are permitted to use any of the system

resources at all;

• What links may be used by particular namespaces;

• How much storage will be allocated to a particular

namespace; and

• The size of the container that may be accepted for

reception.

Note, since we can prove that containers were sent by the

name-holder, QoS using namespaces has authentication unlike

what the IP world offers. It is also much stronger than what

Bundle Authentication Block (BAB) offers for DTN [22] since

it gives proof all the way back to the source, not just to the

previous hop. Thus, it is robust to having compromised agents

in the middle of the network generating bogus containers.

XIII. CONCLUSIONS

The secure naming system presented provides a light-weight

method for allocating and validating application names and

locators (addresses) that could be deployed in a Store, Carry

and Forward, normally disconnected networks. The technique

can also be applied to fully connected networks. By ensuring

that the application names separate from the location names,

the system readily handles multi-homing and mobility.

Our system could be an enabling technology for the aero-

nautics networks vastly simplifying operations and manage-

ment. For instance, every infrastructure provider can maintain

its own namespaces for management of its equipment. Since

these are not exposed to the users, most security threats to the

infrastructure instantly disappear.

Infrastructure providers that wish to confederate for the

purposes of creating a routable address space between them
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can do so, and those routable addresses still do not expose their

management and control planes to one another. Mobile users

sharing NSI certificates for that address space, can roam to

any provider that’s also part of it, without any pre-existing trust

relationships, and obtain addresses. If they need to be globally

reachable themselves, they can use their own namespaces

above, created for specific domains ( ATC, AOC, PIES) and

allowing applications from all domains to utilize the same

infrastructure yet be completely isolated from one another

except for sharing bandwidth. Such techniques also apply to

securing “Critical Infrastructure Networking”. There will be

no fear of accidentally leaking routes, because the namespaces

have been factored out, access to names is secured, and proof

of ownership is verified.
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APPENDIX

LIST OF ACRONYMS

AES Advanced Encryption Standard

AOC Airline Operation Control

API Application Program Interface

APN Application Process Name

ATC Air Traffic Control

CRL Certificate Revocation List

CTR Counter encryption mode

DAN Distributed Application Names

DHT Distributed Hash Table

DNS Domain Name System

DSN Delegated-Subnetwork-Namespace

DTN Delay/Disruption/Disconnection Tolerant

Networking

ECC Elliptic Curve Cryptography

ECDH Elliptic Curve Diffie-Hellman

ECDSA Elliptic Curve Digital Signature Algorithm

GUA Global Unique Address

HPoN Hierarchical Proof-of-Name

IANA Internet Assigned Numbers Authority

IEEE Institute of Electrical and Electronics Engineers

IP Internet Protocol

IPv6 Internet Protocol version 6

JSON JavaScript Object Notation

MAC Media Access Control

MANET Mobile Ad Hoc Network

N2A name-to-address

NAT Network Address Translator

NSA National Security Agency

NSI Name Space Identifier

OS Operating System

PIES Passenger Internet and Entertainment Services

PKI Public Key Infrastructure

PoN Proof-of-Name

PVI Personal Identify Verification

QoS Quality of Service

SCF Store, Carry and Forward

SHA Secure Hash Algorithm

SF Store and Forward

URL Uniform Resource Locator

UUID Universally Unique Identifiers

VPN Virtual Private Network
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