https://ntrs.nasa.gov/sea

Mecł

Design and Lessons Learned on Development of a Cryogenic Pupil Mechanism (PSM)

Alissa Mitchell NASA Goddard Space Flight Center

Thomas Capon, Claef Hakun, Paul Haney, Corina Koca

NASA Goddard Space Flight Center

Jeffrey Guzek

Design Interface, Inc.

nd Aerospace hisms Symposium lay 15, 2014

What is the **PSM**?

What Does the PSM Do?

As-Built Design Features

PSM Design: Initial Concept

Absolute Encoder Provided High Knowledge Accuracy Information

Stepper Motor with High Gear Ratio Preloaded on Wheel, Driving through Friction

So, What Went Wrong?

Several concerns led to changes in design from the initial concept

- Motor Life
- Power Dissipation
- Variability of Friction at Cold Temperatures
- Potential Motor Drive Wheel Slip

Design Modification Constraints

- Constrained Development Schedule
- Long Lead Item Fabrication Had Started
 - -Bearing Procurement
 - -GSFC Developed Cryogenic Encoder
- Minimal System Impact
 - -Maintain Wire Count
 - Utilize Existing Motor Driver

PSM Build: Motor Assembly/ Cable Drum

Encoder Assembly and Alignment

The Problem

Detent Modification

•Torque Profile, Original Detent

•Torque Profile, Modified Detent

Detent modification greatly reduced peak

disturbance torque and reduced discontinuities.

Mode-Switching Controller

Control System Layout PSM Current drive Mechanical linkage Motor Encoder Driver Motor commands) interface (Serial port) RS232 LES Hub Labview GMC Motor commands **Encoder** angles Labview (LAN connection) (LAN connection)

AMS- 2014

Functional and Performance Testing

PSM Integration into OSIM

•Motors and encoder/sensor selection are key decision points in an electromechanical system

•Cold treated hybrid bearings consisting of Si3N4 balls, Cronidur 30 races, and a PGM-HT retainer have been shown to be suitable for cryogenic operations

•When modeling a plant, ensure the plant is of a high enough fidelity to represent the dynamic response of the system accurately.

•Closed-loop control always needs a sensor with sufficient bandwidth and speed range.

•In a two-pole system, use high order compensator

•Automatic event logging is critical in systems with many operators

Design and Lessons Learned on the Development of a Cryogenic Pupil Select Mechanism (PSM)

Alissa Mitchell NASA Goddard Space Flight Center

Thomas Capon, Claef Hakun, Paul Haney, Corina Koca

NASA Goddard Space Flight Center

Jeffrey Guzek

Design Interface, Inc.

42nd Aerospace Mechanisms Symposium May 15, 2014