# Constraints on smoke injection height, source strength, and transports from MISR and MODIS

#### **Ralph Kahn** NASA Goddard Space Flight Center

#### Mariya Petrenko, Maria Val Martin, Mian Chin





Nelson et al., Remt. Sens. 2013

# The NASA Earth Observing System's Terra Satellite



Source: Terra Project Office / NASA Goddard Space Flight Center

# Multi-angle Imaging SpectroRaliometer



MISR

# http://www-misr.jpl.nasa.gov http://eosweb.larc.nasa.gov

- <u>Nine</u> CCD push-broom <u>cameras</u>
- <u>Nine view angles</u> at Earth surface: 70.5° forward to 70.5° aft
- <u>Four spectral bands</u> at each angle: 446, 558, 672, 866 nm
- Studies Aerosols, Clouds, & Surface

# *Ten* Years of Seasonally Averaged Mid-visible Aerosol Optical Depth from **MISR**



... includes bright desert dust source regions

MISR Team, JPL and GSFC

## MISR *Aerosol Type* Distribution MISR Version 22, July 2007



Kahn, Gaitley, Garay, et al., JGR 2010

#### **Wildfire Smoke** Injection Heights & Source Strengths [These are the two key parameters representing aerosol sources in climate models]





MODIS Smoke Plume Image & Aerosol Amount Snapshots



*GoCART Model-Simulated* Aerosol Amount Snapshots for *Different Assumed Source Strengths* 









Different Techniques for Assuming Model Source Strength Overestimate or Underestimate Observation Systematically in Different Regions

Petrenko et al., JGR 2012



Diner et al.



parallax

# MISR Smoke Plume Height Mapping

July 2, 2004, Canada near Alaska border









Nelson, et al., Proc. SPIE 2008

### Oregon Fire Sept 04 2003 Orbit 19753 Blks 53-55 MISR Aerosols V17, Heights V13 (no winds)



Kahn, et al., JGR 2007

#### Detail of Wildfire Source Region Oregon Fire Sept 04 2003



MISR Nadir 275 m Image





**MODIS Image + Fire Power** 



→ Broad swath + high spatial resolution needed to characterize sources

# N. America Plume Injection Height Climatology





Percent of plumes >0.5 km *above BL*, stratified by year and vegetation type

Val Martin et al. ACP 2010

## Evaluation of a 1D plume-rise model: Towards a parameterization of smoke *injection heights*



1-D Plume-rise model heights vs. MISR-observed max. plume heights
-- Plume-rise calculations have *lower dynamic range than observed*, but very variable

## **Evaluation of a 1D plume-rise model:**

Towards a parameterization of smoke *injection heights* 



# Satellite AOD snapshots to constrain Biomass Burning Emissions *Source Strength*



## MODIS-GoCART Total Column AOD Comparisons Sample Case: Siberia July 20 2006











3-hourly output

**Resolution:** 1°(lat) x 1.25°(lon) x 30 vert. layers

Meteorological fields GEOS DAS Version 4

**Emissions** include: dust, sea salt, anthropogenic, sulfate & precursors, BB

**13 BB emission options** in separate model runs

Study period: June 2006-June 2007



## **Ratio of GOCART to MODIS average AOD** For each case, for 12 emission estimates

mod1-CCi-GOCART



MCD45-CCi-GOCART



GFED3m-GOCART



mod1-CCm-GOCART

MCD45-CCm-GOCART

GFED3d-GOCART



mod1-GLC-GLC



MCD45-GLC-GOCART







GFED3d

GFED2m-GOCART



Systematic regional patterns; some emissions work better in certain regions

|      | Ratio | of | GOCART | average | AOD t | o MC | DIS  | average | AOD |    |      |       |
|------|-------|----|--------|---------|-------|------|------|---------|-----|----|------|-------|
|      |       |    |        |         |       |      |      |         |     |    |      |       |
| 0.00 | 0.33  |    | 0.50   | 0.625   | 0.83  | 1    | . 20 | 1.60    | 2.  | 00 | 3.00 | 10.65 |

## **Quantitative** Relationship Between Smoke Emission and AOD



# SEAC4RS Field Campaign DC-8 and ER-2 Flights Monday, 19 August 2013



#### MISR (Multi-angle Imaging SpectroRadiometer) Overpass Monday, 19 August 2013 17:40 UTC







Passive-remote-sensing Aerosol Type is a Total-Column-Effective, Categorical variable!!

# Site 2 Smoke Transports

19 August 2013



## **GEOS-5 MODEL Aerosol Optical Depth** 19 August 2013 18 UTC



GEOS-5 MODEL Aerosol Type 19 August 2013 18 UTC





# AeroCom BB Experiment AOD – *Motivation*



• We have a substantial set of *satellite wildfire plume AOD snapshots and injection heights* to help calibrate model/inventory performance

• We are: (1) adding *more fire sourcestrength cases,* (2) using MISR to *improve the AOD constraints* and (3) adding <u>2008</u> global injection heights

 We selected *GFED3-daily* due to good overall source strength performance, but *any inventory can be tested*

 Joint effort, to test multiple, global models to draw robust BB injection height & emission strength conclusions

We provide: Satellite-based injection height and smoke plume AOD climatologies

# **Experiment Design**

| -         | Exp.  | <b>BB</b> Daily      | Injection height    |
|-----------|-------|----------------------|---------------------|
| _         |       | emission             |                     |
|           | BB0   | No BB emission       |                     |
| Control — | → BB1 | GFED v3              | Boundary layer      |
|           | BB2   | <b>GFED v3 x 0.5</b> | Boundary layer      |
|           | BB3   | GFED v3 x 2          | Boundary layer      |
|           | BB4   | GFED v3 x 5          | Boundary layer      |
| Stage 2 — | > BB5 | GFED v3              | From MISR plume ht. |
|           | BB6   | GFED v3 x 5          | From MISR plume ht. |

#### Requested output:

### 2-D, 3-hourly, instantaneous

- Total column 550 nm AOD
- Biomass burning AOD, if available (or AOD's of individual aerosol species)
- Wind speeds in the middle of emission injection height

[e.g., if all smoke is distributed within PBL, output mid-PBL winds]

• PBL height

## 3-D [3-hourly]

- Aerosol species concentrations
- Aerosol 550 nm *extinction*

## With *Source Strength* Perturbation Factors: 0.7, 1, 3 & 5

GOCART GFED3x0.7





Petrenko et al., 2014, in preparation



Kahn, Survy. Geophys. 2012