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Abstract 

 
Rainfall production is a fundamental process within the Earth’s hydrological cycle 
because it represents both a principal forcing term in surface water budgets, and its 
energetics corollary, latent heating (LH), is one of the principal sources of atmospheric 
diabatic heating.  Latent heat release itself is a consequence of phase changes between 
the vapor, liquid, and frozen states of water.  The vertical distribution of LH has a strong 
influence on the atmosphere, controlling large-scale tropical circulations, exciting and 
modulating tropical waves, maintaining the intensities of tropical cyclones, and even 
providing the energetics of midlatitude cyclones and other mobile midlatitude weather 
systems.  Moreover, the processes associated with LH result in significant non-linear 
changes in atmospheric radiation through the creation, dissipation and modulation of 
clouds and precipitation. 
 
Yanai et al. (1973) utilized the meteorological data collected from a sounding network to 
present a pioneering work on thermodynamic budgets, which are referred to as the 
apparent heat source (Q1) and apparent moisture sink (Q2).  Yanai’s paper motivated the 
development of satellite-based LH algorithms and provided a theoretical background for 
imposing large-scale advective forcing into cloud-resolving models (CRMs).  These 
CRM-simulated LH and Q1 data have been used to generate the look-up tables used in 
LH algorithms. 
 
This paper examines the retrieval, validation, and application of LH estimates based on 
rain rate quantities acquired from the Tropical Rainfall Measuring Mission satellite 
(TRMM).  TRMM was launched in November 1997 as a joint enterprise between the 
American and Japanese space agencies -- with overriding goals of providing accurate 
four-dimensional estimates of rainfall and LH over the global Tropics and subtropics 
equatorward of 35o.  Other literature has acknowledged the achievement of the first goal 
of obtaining an accurate rainfall climatology.  This paper describes the second major goal 
of obtaining credible LH estimates as well as their applications within TRMM’s zone of 
coverage, the standard TRMM LH products, and areas for further improvement. 
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1. Introduction 
 

The release of latent heat during precipitation formation is of immense consequence to the 

nature of large- and small-scale atmospheric circulations, particularly in the Tropics where 

various large-scale tropical modes dominated by latent heating (LH) persist and vary on a 

global scale.  Latent heat release and its variation are without doubt some of the most 

important physical processes within the atmosphere and thus play a central role in the 

Earth’s water cycle.  The launch of the Tropical Rainfall Measuring Mission satellite 

(TRMM), a joint U.S.-Japan project, in November of 1997 made it possible for quantitative 

measurements of tropical rainfall to be obtained on a continuous basis over the global 

Tropics.  TRMM has provided much-needed accurate measurements of rainfall as well as 

estimates of the four-dimensional structure of LH over the global Tropics.  Over the last few 

years, standard LH products from TRMM measurements have become established as a 

valuable resource for scientific research and applications (see a review by Tao et al. 2006 

and the papers published in the J. of Climate special collection on TRMM diabatic heating).  

Such products enable new insights and investigations into the complexities of convective 

system life cycles, diabatic heating controls and feedbacks related to meso- and synoptic-

scale circulations and their prediction, the relationship of tropical patterns of LH to the 

global circulation and climate, and strategies for improving cloud parameterizations in 

environmental prediction models.  TRMM’s success provided the impetus for another major 

international satellite mission known as the Global Precipitation Measurement  (GPM) to be 

launched by NASA and JAXA in 2014 (http://gpm.nasa.gov).  As the centerpiece of 

NASA’s Weather and Global Water/Energy Cycle research programs, GPM consists of a 

constellation of satellites provided by a consortium of international partners to provide the 

next-generation of spaceborne precipitation measurements with better sampling (3-hourly 

over a specific location), higher accuracy (with a Ku-Ka band radar), finer spatial resolution 

(up to 0.1o by 0.1o) and greater coverage (from the Tropics to high latitudes) relative to 

TRMM. 

 
LH is dominated by phase changes between water vapor and small liquid or frozen cloud-

sized particles.  It consists of the condensation of cloud droplets, evaporation of cloud 

droplets and raindrops, freezing of cloud droplets and raindrops, melting of ice, snow and 
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graupel/hail, and the deposition and sublimation of ice particles.  It is important to keep in 

mind that eddy heat flux convergence from cloud motions can also redistribute the heating or 

cooling associated with LH vertically and horizontally.  LH cannot be measured directly with 

current techniques, including current remote sensing or in situ instruments, which explains 

why nearly all retrieval schemes depend heavily on some type of cloud-resolving model or 

CRM (Tao et al. 2006).  However, the apparent heat source or Q1, of which LH is an 

important component, can be derived indirectly by measuring vertical profiles of temperature 

and the associated 2D wind fields from extensive rawinsonde networks through a residual 

method (known as a diagnostic heating budget, Yanai et al. 1973). 

 
1.1 Radiosonde-based heating structures (Yanai et al. 1973) 
 
Based on the residual approach, the composite diabatic heating profile of Q1 can be derived 

indirectly over a spatial domain by measuring profiles of temperature, pressure, and the 2D 

wind field from a suitably spaced circumscribing network of radiosondes.  This is called an 

“apparent heat source”, first described in the seminal papers by Professor Yanai (Yanai 

1961 and Yanai et al. 1973), and expressed by: 

 

 , (1) 

 
where is the non-dimensional pressure, and the RHS is the total derivative of θ  (times 

the non-dimensional pressure) measurable from radiosonde data.  Here the large-scale 

vertical motion (w) is diagnosed from the 2D wind via the kinematic method with 

appropriate boundary conditions on w at the surface and the tropopause.  There is an 

accompanying equation for the apparent moisture sink or drying (Q2), which is similar to 

Eq. (1) except that  is replaced by water vapor specific humidity ( ) and Q1 is replaced by 

negative Q2.  In order to derive Eq (1), Yanai et al. (1973) stated that “we consider an 

ensemble of cumulus clouds, which is embedded in a tropical large-scale motion system, 

then we imagine a horizontal area that is large enough to contain the ensemble of clouds, 

but small enough to be regarded as a fraction of the large-scale system.” 
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Both the vertical velocity in the third term on the RHS and the horizontal and vertical 

advection terms on the RHS of the Eq. (1) have been used to force CRMs (or cumulus 

ensemble models) to study the response of convective systems to large and mesoscale 

processes (Soong and Tao 1980).  This CRM approach to studying cloud and precipitation 

processes is called "cloud ensemble modeling" (Soong and Tao 1980; Tao and Soong 1986; 

Tao et al. 1987; Krueger 1988; Moncrieff et al. 1997; also see review papers by Tao 2003 

and Tao and Moncrieff 2009).  It allows many clouds of various sizes and stages to exist at 

any given time.  The advantage is that modeled rainfall, Q1 and Q2 usually agree well with 

observations (Tao 2003; Randall et al. 2003; and others).  The model results also include 

cloud statistics representing different types of cloud systems over their life cycle.  Large-

scale forcing derived from many field programs (e.g., GATE, TOGA COARE, SCSMEX, 

TWPICE and others) have been used to drive CRMs.  These CRM-simulated datasets are 

especially valuable for LH algorithm developers (see previous work by Tao et al. 1990, 

1993, 2000, 2006, 2010; Shige et al. 2004, 2007, 2008, 2009; and Grecu and Olson 2006).  

 

1.2 CRM-based heating structures 

 

CRMs are one of the most important tools used to establish quantitative relationships 

between diabatic heating and rainfall.  This is because LH is dominated by phase changes 

between water vapor and small, cloud-sized particles; these particles as well as their changes 

are difficult to detect directly using remote sensing techniques (though some passive 

microwave frequencies respond to path-integrated cloud water and CloudSat can detect such 

particles in the tops of clouds).  CRMs, however, employing sophisticated microphysical 

schemes (that are by no means yet perfect) can explicitly simulate the conversion of cloud 

condensate into raindrops and various forms of precipitating ice.  It is these different forms 

of precipitation that are most readily detected from space, and which ultimately reach the 

surface in the form of rain in the Tropics.  CRMs have been used for TRMM for both rainfall 

and heating retrieval algorithm development.  

 

Under the Boussinesq approximation, the heat (temperature) budget can be explicitly 
calculated by a CRM (e.g., Tao and Simpson 1989): 
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, (2) 

 
 
where the primes indicate deviations from the large-scale environment due to smaller scale 

cloud processes.  The variable θ  is potential temperature, ρ  is density, is 

non-dimensional pressure (where p and  are dimensional and reference pressures, 

respectively, with  taken as 1000 hPa), and cp and R are the specific heat of dry air at 

constant pressure and the gas constant of dry air, respectively.  The variables Lv, Lf, and Ls 

are the latent heats of condensation, freezing, and sublimation, respectively, while the 

variables c, e, f, m, d, and s are the condensation of cloud droplets, evaporation of cloud 

droplets and rain drops, freezing of water droplets and rain drops, melting of ice crystals, 

snow flakes, graupel and hail, deposition of ice crystals, and sublimation of all ice 

hydrometeors, respectively.  The term  is defined as 

the LH due to microphysical phase changes while the first two terms on the RHS of Eq. (2) 

are the vertical and horizontal eddy heat flux divergence, respectively.  The horizontal 

divergence term is neglected when Eq. (2) is spatially averaged over an area suitable for 

diagnostic analysis. 

 

Figure 1 shows CRM-simulated time-domain mean profiles of heating/cooling due to the 

individual microphysical processes (i.e., condensation, evaporation, deposition, sublimation, 

melting, and freezing) in the convective and stratiform regions of a tropical MCS using the 

Goddard Cumulus Ensemble model (GCE, Tao and Simpson 1993).  Condensation and 

evaporation have the largest magnitudes in the convective region with evaporation and 

sublimation about one-third the values of the condensation and deposition rates, respectively.  

Melting and freezing are small compared to condensation, evaporation, deposition, and 

sublimation; however, melting is responsible for converting precipitating ice to rain, which 

can then fall to the surface.  Figure 2 shows vertical profiles of LH, vertical eddy heat flux 

divergence, radiation, and Q1 averaged over a 9-day period during SCSMEX over the 

northern enhanced sounding array (NESA).  LH is the largest term in the Q1 budget via the 

heat released by condensation and deposition (as shown in Fig. 1).  Its peak is around 6.5 km.  
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The radiative term (QR) accounts for about 1-3o of cooling per day.   The eddy transport is the 

smallest term, but it does redistribute heat through cloud updrafts and downdrafts.  The 

CRM-simulated Q1 profile is in very good agreement with the observed (i.e., Fig. 3 in Tao 

2007).   

 

2. LH retrieval algorithms 

 

The primary TRMM instruments used to measure rainfall are the TRMM Microwave Imager 

(TMI), precipitation radar (PR), and the Visible and Infrared Scanner (VIRS, Kummerow et 

al. 1998; for additional details see http://trmm.gsfc.nasa.gov).  Five different TRMM LH 

algorithms designed for applications with satellite-estimated surface rain rate and 

precipitation profile inputs have been developed, compared, validated, and applied in the 

past decade (see a review by Tao et al. 2006).  They are the: (1) Goddard Convective-

Stratiform Heating (CSH) algorithm, (2) Hydrometeor Heating (HH) algorithm, (3) Goddard 

TRAIN (Trained Radiometer) algorithm, (4) Spectral Latent Heating (SLH) algorithm, and 

(5) Precipitation Radar Heating (PRH) algorithm.  Table 1 gives a summary of the five 

algorithms, including the type(s) of TRMM input data used to generate their associated 

heating product(s), the type of heating product(s) produced, and the salient reference(s) 

describing their design.  Additional improvements made to the SLH, TRAIN and CSH 

algorithms as well as brief descriptions of the HH and PRH algorithms are presented next. 

 

2.1 The SLH algorithm 
 

Spectral representation of precipitation profiles obtained from the PR algorithm by use of a 

small set of distinct profile properties, as reported by Takayabu (2002), provide the basis for 

the SLH algorithm, which was introduced and modified by Shige et al. (2004, 2007, 2008, 

2009).  This algorithm is currently intended for use with PR-retrieved rain rate profiles only 

and estimates LH, Q1-QR and Q2.  Akin to the CSH algorithm, a set of three look-up tables 

(LUTs) is produced using the GCE associated with three types of rainfall:  (1) convective, 

(2) shallow-stratiform, and (3) anvil.  Specifically, however, the LUTs are indexed according 

to vertical rain profile information:  precipitation top height (PTH) for convective and 
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shallow stratiform rain and melting-level rain intensity for anvil (deep stratiform with a PTH 

higher than the melting level) rain.  The nomenclature  “spectral” stems from the spectrally-

indexed table, designed to reduce the dependency on GCE/CRM simulations from specific 

field campaigns. 

 

In the latest version of the SLH algorithm, deep stratiform rain is further divided into two 

new categories:  deep stratiform with decreasing precipitation from the melting level toward 

the surface and deep stratiform with increasing precipitation from the melting level toward 

the surface (Shige et al. 2012, in preparation).  It computes deep stratiform cooling 

magnitudes as a function of Pm (melting level) – Ps (surface rain rate), assuming the 

evaporative cooling rate below the melting level in deep stratiform regions is proportional to 

the reduction in the precipitation profile toward the surface from the melting level (based on 

1D water substance conservation).  However, increasing precipitation profiles are found in 

some portions of stratiform regions, especially in regions adjacent to convective regions 

where 1D water substance conservation may be invalid.  An LUT1

 

 for deep stratiform with 

increasing precipitation toward the surface from the melting level is produced with the 

amplitude determined by Ps. 

2.2 The TRAIN algorithm  

 

The TRAIN heating algorithm is designed specifically for application with TMI passive 

microwave (PMW) radiance observations.  First, precipitation and heating profiles are 

derived from PR reflectivity profiles, using a method similar to that of Shige et al. (2004), 

over a one-month span of PR observations.  In this method, month-long CRM (i.e., GCE) 

simulations of precipitation/heating during SCSMEX (18 May - 17 June 1998), TOGA 

COARE (19 December 1992 - 18 January 1993) and KWAJEX (6 August - 5 September 

1999) are used to relate vertical reflectivity structure and surface rain rate to vertical heating 

structure.  Since TMI-observed microwave brightness temperatures (Tbs) are collocated with 

PR observations over the PR swath, TMI Tbs are assigned to each precipitation/heating 
                                                 
1   It is based on four 9-day (10-18 December 1992, 27 December 1992 - 4 January 1993, 9-17 
February 1993, and 18-26 February 1993) and one 8-day (19-26 December 1992) TOGA COARE 
CRM simulation. 
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profile in the large PR-derived database.  The database then serves as a kind of LUT to be 

used in a Bayesian method to estimate precipitation and LH from the TMI.  Given a set of 

TMI-observed Tbs, an estimated precipitation/heating profile is constructed by compositing 

database precipitation/heating profiles associated with Tbs that are consistent with the TMI-

observed Tbs and their uncertainties. 
 

Originally developed for application with SSM/I data, the Bayesian method was adapted for 

application with TMI radiances and integrated within the GPROF TMI precipitation retrieval 

algorithm (see Olson et al. 1999, 2006).  Versions of the GPROF heating algorithm were 

used by Rodgers et al. (1998, 2000) to diagnose the relationship between LH distributions 

and storm intensification within Hurricane Opal and Supertyphoon Paka.  More recently, 

Grecu and Olson (2006) and Grecu et al. (2009) demonstrated that Q1 profiles from TRAIN 

were consistent with independent estimates derived from SCSMEX and MISMO (the Mirai 

Indian Ocean cruise for the Study of the MJO convection Onset) rawinsonde analyses.  Q1 

was estimated by combining TRAIN estimates of Q1-QR with QR estimates from the 

Hydrologic cycle and Earth Radiation Budget (HERB) algorithm of L'Ecuyer and Stephens 

(2003, 2007). 

 

2.3 The CSH algorithm 

 

Diagnostic budget studies (e.g., Houze 1982 and Johnson 1984) and cloud modeling studies 

(see review by Tao 2003) have shown that characteristic LH profiles in the stratiform regions 

of tropical MCSs are considerably different than the characteristic LH profiles in the 

convective regions.  In general, for both observed and simulated convective systems, 

evaporative cooling in the lower troposphere below a bow-shaped positive heating profile in 

the middle and upper cloud layers (peaking in the middle to upper troposphere) is the 

dominant feature within stratiform precipitation regions (i.e., the archetypical reverse S-

shaped stratiform LH profile), while a combination of vertically continuous condensation 

and deposition heating (peaking in the middle troposphere) is the dominant signature for 

convective rain areas (i.e., the archetypical, deep, all-positive, bow-shaped convective LH 
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profile).  Based on these findings, the CSH algorithm was developed and described by Tao et 

al. 1993. 

 

Recently, the CSH algorithm was re-designed and improved (Tao et al. 2010).  The key 

difference between the new and old versions (Tao et al. 1993, 2000, 2001) involves the new 

LUTs2 and how they are accessed.  First, there are many more heating profiles 

(approximately 700 total compared to 20 in the previous version3) in the new LUT due to 

their being separated into detailed intensity and stratiform bins.  And second, the profiles are 

distributed and thus accessed according to conditional rain rates.  Together these lead to 

several potential advantages regarding heating structure.  Obviously, having many more 

profiles in the LUT allows for the possibility of having many more heating structures.  For 

example, rather than just having shallow (i.e., < 5 km) or deep heating profiles, the new LUT 

allows the depth of heating to vary considerably4

                                                 
2  To date, field program data that have been examined in conjunction with the CSH algorithm 
include:  (1) GATE (the Global Atmospheric Research Program’s Atlantic Tropical Experiment), (2) 
EMEX (the Equatorial Monsoon Experiment), (3) PRE-STORM (the Preliminary Regional 
Experiment for STORM-Central), (4) TOGA COARE (the Tropical Ocean Global Atmosphere – 
Coupled Ocean Atmosphere Response Experiment), (5) SCSMEX (the South China Sea Monsoon 
Experiment), (6) TRMM-LBA (TRMM Large-Scale Biosphere-Atmosphere Experiment), (7) 
KWAJEX (the Kwajalein Experiment), and (8) DOE-ARM (the Department of Energy Atmospheric 
Radiation Measurement Program).  

.  Using conditional rain rates is what 

allows those structures to be better differentiated.  For example, given a stratiform fraction 

and an average rain rate over a region (i.e., a 0.5o x 0.5o area), knowing that average rain rate 

is due to a small area of intense rain (e.g., a single intense convective cell) rather than a 

larger area of weak rain (e.g., a broader field of weaker convective cells) allows the 

algorithm to select a more representative heating structure.  In the older version, these two 

rain areas would have been treated the same.  The newer LUTs include CRM-generated LH, 

eddy heating and radiative heating/cooling at common levels on a common grid.  They can 

3  These profiles were obtained by distributing heating/cooling profiles from model sub-domains 
(64 km or the approximate grid size of the TRMM rain retrievals) into the same conditional rain 
intensity and stratiform percentage bins used to differentiate the surface rainfall distributions.  
Separate LUTs were constructed for each of the three main components:  latent, eddy (horizontal and 
vertical combined) and radiative. 
4  Mean echo top heights from the PR and from the model correlate nicely over almost the 
entire range of LUT bins (not shown).  
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thus easily provide the eddy and radiative terms to other LH algorithm groups5

 

 (at the same 

rainfall intensity and stratiform percentage). 

2.4 The HH and PRH algorithms 

 

Neither the HH nor the PRH algorithm use pre-calculated LH profiles in LUTs.  Instead, 

both schemes estimate the net flux of water mass into (out of) layers and assume that under 

steady-state conditions net fluxes are compensated for by a local decrease (increase) of 

hydrometeors by microphysical processes.  Thus, a decrease in mass is associated with 

evaporation, melting, or sublimation cooling, whereas an increase is associated with 

condensation, freezing, or deposition heating.  

 

The HH algorithm, including its verification and global application, is described in Yang and 

Smith (1999a-b, 2000).  These studies describe how cloud-scale vertical velocity can be 

estimated using multiple-linear regression based on hydrometeor profile densities as 

independent input variables.  For applications with TRMM level 2 retrievals, the current 

scheme uses truncated Legendre polynomial representations of precipitation mass fluxes 

from the surface to precipitation top height (PTH) before taking vertical derivatives, thus 

preventing retrieval noise from producing unrealistic heating rates.  For applications with PR 

data, no account is made for LH by deposition-sublimation and freezing-melting above and 

below the melting level since the sensitivity of the PR is only 17 dBZ, which is insufficient 

for detection of most frozen precipitation, particularly for small and/or less dense graupel 

particles.  For applications with TMI data, terminal velocities of precipitating rain and 

graupel are calculated assuming that both size spectra are distributed according to a 

Marshall-Palmer distribution. 

 

The PRH algorithm uses PR-based retrievals (precipitation profiles and convective/stratiform 

rain classification) to estimate the vertical LH structure (Satoh and Noda 2001).  It requires 

an initial-guess vertical velocity profile that is used to evaluate a hydrometeor conservation 
                                                 
5  Since the various algorithms produce different heating, it was recommended by the TRMM 
Latent Heating Working Group at the 5th TRMM LH workshop (Annapolis, Maryland, 27-28 August 
2007) that CSH should provide the eddy and radiative terms to the other algorithms. 
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equation under steady state conditions.  In stratiform regions, the LH profile is derived 

directly from the hydrometeor conservation equation (similar to the HH algorithm).  In 

convective regions, if a net increase of hydrometeors due to microphysics is inferred from the 

conservation equation, then the associated LH profile is calculated based upon the vertical 

motion profile, assuming saturated adiabatic ascent.   An iterative method is then used to 

adjust the original vertical motion profile to ensure that the vertically integrated net heating 

and surface rain rate are consistent. 

 

3. Field campaigns and validation 

 

As discussed in section 1, advective forcing in temperature and water vapor have been used 

as forcing for CRMs to simulate cloud and precipitation properties including LH, Q1 and QR 

for TRMM LH algorithm developers.  These simulated LH profiles including their 

convective and stratiform components and their relationship to surface rainfall have been 

used to generate LUTs for LH algorithms.  In addition, these simulated data and their 

associated observed Q1 have been used for validation.  This section briefly describes the 

GCE model simulations, field data used and validation of LH algorithms.  

 

3.1 Field campaign sites 

 

SCSMEX was conducted in May-June 1998.  Two major convective events, prior to and 

during monsoon onset (18-26 May 1998) and post monsoon onset (2-11 June 1998), were 

observed.  The SCSMEX forcing data were obtained from a variational analysis approach 

(Zhang and Lin 1997; Zhang et al. 2001) and used to drive the GCE for 44 days starting at 

0600 UTC 6 May 1998.  TOGA COARE was conducted from November 1992 through 

February 1993 over the central Pacific.  The most intense convection during TOGA COARE 

occurred in mid and late December 1992, prior to the peak in a westerly wind burst around 1 

January 1993.  Several major convective events occurred around 11-16 and 20-25 December 

1992, mainly due to the low-level large-scale convergence of easterlies and westerlies (Lin 

and Johnson 1996).  For TOGA COARE, the large-scale forcing used in the GCE was 

derived from the intensive flux array (IFA) sounding network (Ciesielski and Johnson 2003).  
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GATE was conducted in 1974 over the East Atlantic.  Cloud systems (non-squall clusters, a 

squall line, and scattered convection) for the period 1-8 September 1974 during phase III of 

GATE have also been simulated using the GCE (Li et al. 1999; Tao 2003).  Large-scale 

GATE forcing from Sui and Yanai (1986) were used to drive the GCE.  The environmental 

conditions for SCSMEX, TOGA COARE and GATE can be found in Tao et al. (2004).  The 

TOGA COARE surface flux algorithm (Fairall et al. 1996) was used to calculate sea surface 

fluxes for these oceanic cases. 

 

KWAJEX was sponsored by NASA in cooperation with the U.S. Army Kwajalein 

Atoll/Kwajalein Missile Range and the National Oceanographic and Atmospheric 

Administration (NOAA) and was conducted from 23 July to 15 September 1999.  It was 

designed to obtain an empirical physical characterization of precipitating convective clouds 

over the tropical ocean and to improve physical assumptions made within the TRMM 

satellite algorithms.  TRMM LBA took place in Amazonia in Brazil and focused on the 

dynamical, microphysical, electrical and diabatic heating characteristics of tropical 

convection in the region.  Diagnostic analyses from sounding data for KWAJEX and TRMM 

LBA are reported in Schumacher et al. (2007).  TWP-ICE was a comprehensive observing 

campaign around Darwin, Australia to study weather and climate change through improved 

understanding and modeling of cloud and aerosol processes in tropical cloud systems (May et 

al. 2008).  The GCE has been used to study convective systems from LBA (Lang et al. 2007, 

2011), TWP-ICE (Zeng et al. 2010, 2012) and KWAJEX (Zeng et al. 2008, 2009a,b, 2011).  

Table 2 shows the location, duration and references for the various field campaigns. 

 
The ARM program established the SGP site to observe clouds and precipitation for climate 

research.  The site is centered at 36.6°N, 96.5°W.  Two summer field campaigns were 

conducted at the site in 1997 and 2002 and are referred to here as ARM-SGP-97 and -02.  

The ARM forcing data were also obtained from the variational analysis approach of Zhang 

and Lin (1997) and Zhang et al. (2001).  Surface fluxes taken from site-wide averages of 

observed fluxes from the ARM Energy Balance Bowen Ratio (EBBR) stations are imposed 

into the model (Zeng et al. 2007, 2011).  The ARM-SGP-97 numerical simulation starts at 

2330 UTC 18 June 1997 and lasts for 29 days.  The ARM-SGP-02 simulation starts at 2030 
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UTC 25 May 2002 and lasts for 20 days.  For the ARM cases, the surface wind does not 

interact with the boundary layer. 

 

Table 3 shows grid-averaged total rainfall and stratiform rain percentage for each of the 

GCE-simulated cases.  The oceanic cases have more rainfall than the continental.  This is 

due primarily to the fact that the oceanic environments have higher precipitable water 

contents (i.e., more moisture) than the continental (see Table 1 in Tao et al. 2004).  That is 

why the SCSMEX simulation has the largest rainfall amount.  Although the TOGA COARE 

environment is generally moister than that for GATE, it has less rainfall because the model 

simulation starts in November, which did not have many active convective events.  In 

general, the tropical oceanic cases should have a higher stratiform amount (i.e., 40-50%) 

than the midlatitude continental cases.  However, the ARM cases also have a large stratiform 

rain fraction (from 36 to 41%) because they include frontal cases.  Houze (1977), Zipser et 

al. (1981) and Gamache and Houze (1983) estimated that widespread stratiform rain 

accounted for about 32%-49% of the total rainfall during GATE.  The fraction of stratiform 

rainfall from midlatitude squall lines has been estimated at 29%-43% (Rutledge and Houze 

1987; Johnson and Hamilton 1988).  The GCE-simulated results are in good agreement with 

these observations.  Figure 3 shows the geographic locations of field campaigns used to 

provide data to drive and evaluate CRM simulations. 

 

3.2 Validation of LH algorithms 

 

Validation of LH profiles retrieved from satellite data is not straightforward because there is 

no instrument (i.e., no “latent heatometer”) or direct means to measure this quantity, and as a 

result, there is no primary calibration standard by which the validation process can be 

adjudicated.  Two methods, consistency checks using CRMs and comparisons with 

diagnostic budget estimates, have been used for validation. 
 

(a) Comparison of CRM heating with reconstructed and diagnostic heating 
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Consistency checks involving CRM-generated heating profiles and both algorithm-

reconstructed and diagnostically-estimated heating profiles are a useful step in evaluating the 

performance of a given LH algorithm.  In this process, as time-varying CRM-simulated 

precipitation processes (multiple-day time series) are used to obtain the required input 

parameters for a given LH algorithm, the algorithm can then be used to reconstruct the actual 

heating profiles within the CRM simulation using various model quantities (e.g., surface 

rainfall) as pseudo observations from the model.  Finally, both sets of conformal estimates 

(model and algorithm) can be compared to coincident estimates of diagnostically-based 

heating derived from radiosonde observations.  Such observations from various field 

experiments, as well as simulations of individual precipitation systems, have been used for 

such consistency checks (Tao et al. 1990, 1993, 2000; Olson et al. 1999, 2006; Shige et al. 

2004, 2007, 2008). 

 

It is evident in Fig. 4 that the temporal variations of both the CSH- and SLH-reconstructed 

LH profiles are generally similar to the variations in the GCE simulation profiles.  For 

example, both capture the evolution of a quasi-2-day oscillation, which occurred during the 

period 1800 UTC 23 - 1800 UTC 25 December 1992, an oscillation earlier noted by 

Takayabu et al. (1996).  However, as pointed out by Shige et al. (2004), there are noteworthy 

improvements in the SLH-reconstructed profiles for the shallow-convective stage from 1800 

UTC 23 to 0600 UTC 24 December 1992 and in the anvil decay stage from 0600 UTC to 

1800 UTC 25 December 1992.  Shallow convective heating is more explicitly retrieved by 

the SLH algorithm because it uses observed information on precipitation depth (i.e., the PTH 

or precipitation top height parameter), and heating profiles in the decaying stage without 

surface rain (e.g., 1200 UTC 25 December) can be retrieved by the SLH algorithm by using 

the precipitation rate at the melting level.  Both the CSH- and SLH-reconstructed results are 

smoother than the GCE simulations because the associated LUTs contain averaged profiles 

for each height/rain bin. 

 

(b) Comparison of satellite-retrieved heating with diagnostically-calculated heating 
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One of the TRMM field campaigns, SCSMEX, which included two sounding networks, the 

NESA (northern enhanced sounding array) and SESA (southern enhanced sounding array), 

was conducted in May and June 1998.  One of the main underlying scientific objectives of 

the experiment was to help validate TRMM precipitation and LH algorithms (i.e., vertical 

profiles of multi-hydrometeor densities, rain rates, and LH).  Diagnostic Q1 calculations 

based on the sounding networks were provided by Professor Richard Johnson at Colorado 

State University (Johnson and Ciesielski 2002; Ciesielski and Johnson 2006).  

 

Two examples of validation results are presented in Fig. 5 for the SCSMEX NESA and 

SESA regions.  These diagrams illustrate space/time-averaged vertical profiles of different 

heating terms obtained from the five different algorithms (i.e., Q1 from CSH, LH from HH, 

Q1 and Q1-QR from TRAIN, Q1-QR and LH from SLH, and LH from PRH).  In addition, the 

sounding-diagnosed (DIAG) mean Q1 profile produced by CSU is shown for comparison.  

For NESA, the results indicate that:  (1) only SLH exhibits close agreement with the 

diagnostic (i.e., DIAG) altitude of peak heating, (2) CSH, SLH, and TRAIN show close 

agreement with each other between low and middle levels, (3) CSH, HH, TRAIN, and PRH 

exhibit close agreement in the altitude of peak heating amongst themselves, and (4) all 

satellite algorithms except HH exhibit relatively close agreement in amplitude of peak 

heating amongst themselves, whereas HH exhibits considerably larger amplitude.  In the case 

of SESA, the results indicate that:  (1) HH and TRAIN exhibit very close agreement with 

each other in terms of level of peak heating, (2) CSH exhibits close and SLH very close 

agreement with the DIAG amplitude of peak heating, although the DIAG peak heating layer 

is somewhat broader aloft than either those of CSH or SLH (or any algorithm), (3) HH is the 

only algorithm to exhibit positive upper-level heating similar to DIAG, but it also exhibits 

the largest amplitude of peak heating relative to the other algorithms, (4) QR-augmented 

TRAIN’s Q1 term exhibits the smallest amplitude of peak heating relative to the other 

algorithms, (5) PRH’s lower-level heating agrees well with DIAG and (6) all of the other 

algorithms except TRAIN Q1 have small low-level heating.  It should be noted that in 

addition to the algorithms themselves, differences between the retrieved and observed 

profiles could also arise from insufficient satellite sampling of the budget domain both in 

space and time.  The inconsistency of the physical quantities of the results (i.e., having 
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different heating products from different heating algorithms) must also be resolved in future 

intercomparisons. 

 

Table 4 lists the altitude of maximum mean heating for the algorithm retrievals and the 

diagnostic calculations including other cases from a validation study.  For all algorithms 

except HH, the stratiform percentage is needed as a crucial term in determining the 

respective altitude of peak heating.  Generally, a greater stratiform percentage is associated 

with a higher altitude of maximum heating.  For the HH algorithm, which derives its LH 

profile from the vertical derivative of total rain mass flux adjusted by any cloud layer lift or 

descent, its level of peak heating is largely determined by the height at which the rain mass 

flux begins to decrease upward.  For several cases, the altitudes of maximum mean heating 

for the algorithms are within 1 km of the diagnostic peak heating levels.  However, greater 

departures are also found, particularly for the less robust KWAJEX case6

 

 in which the 

diagnostic calculation indicates a 4.5 km level of maximum heating.  Future work will be 

required to determine if this seemingly low altitude for maximum heating is actually realistic 

or a bias in the KWAJEX diagnostic analysis.  In addition to mean profiles, CFADs 

(contoured frequency with altitude diagrams, Yuter and Houze 1995) are another useful way 

to validate LH profiles by comparing heating PDFs.   

4. Applications of LH products  
 
 
A special collection on TRMM diabatic heating was published in the J. of Climate; it is 

comprised of papers that derive, test, and compare different diabatic heating products 

derived from TRMM data.  These papers highlight the challenges in separating contributions 

from deep convective, stratiform, and shallow convective clouds in using TRMM-derived 

products to study the distribution of diabatic heating and its impact on atmospheric 

circulations in the Tropics.  In addition, some of these papers have compared the diabatic 

heating between sounding-estimates, large-scale model analyses and TRMM products.  

Table 5 lists the authors and titles of the papers published in this special collection.  In this 

section, some of the applications of TRMM heating data are highlighted from these papers. 

                                                 
6 KWAJEX had a relatively low ratio of satellite sampling relative to the sounding array. 
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4.1 Shallow and deep latent heating modes and the large-scale circulation 

 
Utilizing Q1-QR data estimated from the SLH algorithm, Takayabu et al. (2010) showed that 

non-drizzle precipitation over tropical and subtropical oceans consists of two dominant 

modes of rainfall systems:  deep systems and congestus.  They found that while rain from 

congestus simply increases with sea surface temperature (SST), the deep convective 

precipitation is inhibited by large-scale atmospheric subsidence even though SSTs are warm 

enough to support congestus.  Figure 6 compares Q1-QR at 7.5 km and 2 km:  the former 

represents the effect of deep organized precipitation, while the latter represents the effect of 

congestus rain.  Over the central-to-eastern Pacific, in the southern hemisphere, along the 

equator, and also near the Hawaiian islands, for example, the congestus rain distribution 

neatly follows the SST distribution, even where deep convective rain is almost completely 

suppressed.  Curiously, the congestus rain distribution, but not the deep convective, looks 

like a so-called double ITCZ, which had bothered climate model scientists for a long time.   

   

Figure 7 shows 7-year mean Q1-QR profiles over 30oN-30oS for September-November 

stratified against 500hPa vertical velocity.  The results confirm the existence of two dominant 

modes in tropical non-drizzle precipitation and an effective suppression of the deep mode 

associated with large-scale subsidence, which is accompanied by middle to lower 

tropospheric drying.  These results are in concert with the strong relationship between mid-to 

low-level tropospheric relative humidity and precipitation over the tropical oceans as 

indicated by Sherwood et al. (1999) and Bretherton et al. (2004).  CRMs have been used to 

show that the entrainment of dry air in the lower to middle troposphere reduces the buoyancy 

of a cumulus cloud (e.g. Takemi et al. 2004; Takayabu et al. 2006).  When the environmental 

air is very dry, the reduction of buoyancy is enough to prevent cumulus from penetrating 

above the freezing level.  Were the cumulus convection able to penetrate the freezing level, it 

would gain additional buoyancy via the release of latent heat by freezing (Zipser 2003).  This 

is why the development to deep convection is discretized at midlevels.  

 

More recently, Hirota et al. (2010) compared the distributions of tropical precipitation from 

19 models as part of CMIP3 (the Coupled Model Intercomparison Project phase 3) and found 
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that the double intertropical convergence zone (ITCZ) problem is linked to the cumulus 

convection scheme:  the more sensitive the deep convective scheme is to mid-tropospheric 

humidity, the less problem there is with double ITCZs.  This result is consistent with Del 

Genio et al. (2012) who attributed successful MJO model simulations to adequate 

representation of deep convection in relation to the mid-tropospheric humidity.  Hirota et al. 

(2010) showed that the double ITCZ problem is absent in MIROC5, the current version of 

the climate model developed by the Atmosphere and Ocean Research Institute, National 

Institute for Environmental Studies, and the Japan Agency for Marine-Earth Science and 

Technology (AORI/NIES/JAMSTEC).  This is attributable to a new entrainment scheme 

introduced by Chikira and Sugiyama (2010) to the cumulus parameterization.  The essential 

impact of cumulus entrainment on deep precipitation is further examined by Hirota et al. (in 

preparation) in a sensitivity study utilizing the atmospheric part of MIROC5 that involves the 

cumulus entrainment rate parameter.  It was confirmed that the entrainment rate controls the 

double ITCZ even for the same SST distribution.  These results explain why congestus 

heating exhibits a double ITCZ-like distribution, while the deep heating does not.     

 

4.2 Rain and cloud characteristics and LH profiles during different phases of the MJO 
 

As a dominant sub-seasonal mode of tropical atmospheric variability, the Madden-Julian 

Oscillation (MJO, Madden and Julian 1971, 1994) exerts a pronounced influence on global 

climate and weather systems (see reviews by Lau and Waliser 2011; Zhang 2005) and is the 

primary source of predictability on sub-seasonal time scales (i.e., Waliser 2005; Gottschalck 

et al. 2010).  In order to interpret the essential observed features of the MJO, prevailing MJO 

theories emphasize instability arising from various feedbacks between diabatic heating and 

large-scale dynamics, for example, from coupling between convective heating in the free 

atmosphere and Kelvin waves (e.g., “wave-CISK” or conditional instability of the second 

kind, Lau and Peng 1987; Chang and Lim 1988) or due to LH in the planetary boundary layer 

(PBL) by frictional moisture convergence (Wang and Rui 1990; Hendon and Salby 1994; 

Maloney and Hartmann 1998).  In addition, the importance of higher-order vertical heating 

modes for MJO instability is emphasized (e.g., “stratiform instability”, Mapes 2000).  Besides 
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convective heating, the role of radiative heating for the MJO is also proposed (e.g., Lin and 

Mapes 2004; Stephens et al. 2004; Masunaga et al. 2005).  

 

Lau and Wu (2010) utilized TRMM observations to examine the characteristics of clouds, 

rainfall and LH associated with the eight MJO phases defined by the real-time multivariate 

Wheeler-Hendon index (Wheeler and Hendon 2004; hereafter WH index).  They constructed 

a 2D cloud–rain probability distribution function (PDF) using Tb and echo top height (ETH) 

from all data points within the region (10°S–10°N, 120°–150°E) for the mean of all active 

phases as well as for each phase (Fig. 8).  A bimodal distribution with an abundance of 

warm-low and cold-middle cloud and rain types is evident for all active (amplitude of WH 

index >1) phases of the MJO (Fig. 8a).  The highest population is from the warm-low type, 

with Tbs warmer than 273 K and ETHs below the freezing level, which is climatologically 

located at approximately 5 km in the Tropics.  The cold-middle type, identified as congestus, 

has a high population centered rather narrowly near the melting level with a wide range of 

cloud tops colder than 273 K.  Four main regimes—WL (warm-rain low-level cloud), MM 

(mixed-phase rain, middle-level cloud), CM (cold cloud-top and medium storm height), and 

CH (cold rain, high-cloud)—are defined based on the Tb and ETH and are consistent with 

the four tropical precipitation systems—shallow, cumulus congestus, deep stratiform, and 

deep convective—classified in the observational study of Masunaga et al. (2005).  In 

addition to these four regimes, the mean PDF of the MJO active cycle also shows a non-

negligible warm rain, middle-level cloud (WM) regime, which counts for about 9% of the 

total population.  

To focus on the changes in rain characteristics over the MJO life cycle, anomalous PDFs 

defined as the deviation of the PDF at a particular phase from that of the mean are shown in 

(Figs. 8b-i).  During the early build-up stage (i.e., phases 1 and 2), there is an abundant 

occurrence of the WL type (color shaded), coupled with a large deficit in the MM and CM 

types (black and white contours).  Between phase 2 and phases 3 and 4, the PDF switches 

from a bottom-heavy to a top-heavy distribution, with a large increase in MM and CM types 

representing an increase in mixed-phase precipitation with medium ETH.  This corresponds 

to the second stage of build up when deep convection is developing.  At phase 5, which 
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coincides with the maximum large-scale organization, the CM and CH types increase 

considerably, with most of the enhanced activity (color shaded) taking place at temperatures 

below 273 K, indicating the presence of mixed-phase and ice-phase precipitation.  A 

broadening of the ETHs implies that shallow, middle, and deep convection are present at the 

same time.  However, some shallow or middle clouds may not be counted in the presence of 

high stratiform clouds as a result of cloud layering effects.  In phase 6, deep convection 

diminishes somewhat, with the convective system dominated by CM and MM types and with 

the presence of both precipitating and non-precipitating high-level anvil clouds associated 

with mature and decaying convection.  Phase 7 signals the decaying stage, where a 

substantial amount of rain still comes from deep convective systems with ETHs above 6–7 

km while at the same time, low-level rain reappears.  By phase 8, the PDF has a structure 

similar to phase 1, indicating the completion of an MJO cycle with the WL-type rain 

reestablishing itself.  Table 6 shows the main characteristics of each MJO phase in terms of 

Tb, ETH, and cloud system type. 

Figure 9 shows mean TRMM daily LH profiles7

                                                 
7    Prototype CSH-derived LH was used for this study because the new CSH algorithm was not 
available at that time. 

 as well as the anomalous heating during the 

eight phases of the MJO cycle.  Contributions from heating with ETHs less than and greater 

than 5 km are shown separately to demonstrate the relative contributions from shallow 

(liquid-phase and mixed-phase rain) and deep (ice-phase and mixed-phase rain) convection. 

The magnitude of the mean heating by shallow convection is about 30%–35% of that due to 

deep convection.  Anomalous heating profiles (Figs. 9b-i) at each MJO phase are defined by 

the deviation from the mean profile.  In phase 1, anomalous lower tropospheric heating is due 

to shallow convection (ETH < 5 km) as well as by low-level moist processes associated with 

deep convection (ETH > 5 km).  In phase 2, both shallow and deep convection contribute 

about equally to the low-level heating.  A switch from a bottom-heavy (warm and shallow 

convective rain) to a top-heavy (mixed convective and stratiform rain) heating profile occurs 

from phases 2 through 4, consistent with the PDF distributions shown previously.  Note that 

the anomalous low-level heating from shallow convection in phase 3 is most likely from the 

abundant mixed-phase rain at this stage.  During phases 4 and 5, the heating profiles show a 
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dipole structure with maximum heating at about 7–8 km and cooling below 2–3 km, typical 

of that associated with stratiform rain systems (Houze 1989; Tao et al. 2006; Jakob and 

Schumacher 2008).  The decaying phase shows almost a mirror image in the heating profile 

relative to the build-up phase.  In phase 6, mid- and upper-tropospheric heating diminishes 

and low-level heating reverses sign, reflecting the reduction in warm-rain processes in the 

decaying phase.  The reduction in liquid-phase rain processes continues in phases 6 and 7, 

with the deep heating profiles changing sign in the latter.  Phase 8 completes the MJO cycle, 

with a large reduction in deep heating and the beginning of low-level heating processes.  

Even though the contribution to total heating by shallow convection is relatively small 

compared to deep convection8

4.3 Comparing TRMM algorithm, sounding and reanalysis estimates of latent heating 
profiles over the Tropics 

, the shallow convection and associated warm rain may be 

important in the regulation of moisture, clouds, and SST, especially during the build-up 

phase of the MJO. 

 

Our knowledge on vertical structures of tropical diabatic heating is limited.  Vertical 

structures of diabatic heating from numerical models, including data assimilation products, 

are strongly influenced by cumulus parameterization, a significance source of model error 

and uncertainty.  Observational (indirect) estimates of diabatic heating profiles in the from of 

Q1 using radiosonde data (Yanai et al. 1973) or radar data (Mapes and Houze 1995; Mather 

et al. 2007; Schumacher et al. 2008) from field campaigns are rare and do not provide a 

global perspective on the long-term means and variability of vertical diabatic heating 

structures.  On the other hand, heating profiles from TRMM retrievals or data assimilation 

products provide global and long-term coverage.  Their reliability must be quantitatively 

assessed for their proper application.  Comprehensive comparisons of heating profiles 

representing large-scale vertical structures of diabatic heating in the Tropics from 

radiosondes, TRMM, and global reanalyses are summarized in this section.  Their similarities 

and disagreement define an uncertainty envelope of our current knowledge of diabatic 

heating.  Discussions cover mean profiles at field campaign sounding sites, global averages, 

                                                 
8    The new CSH-derived heating (V2) has more low-level heating compared to previous CSH-
derived heating (see Fig. 10 in Tao et al. 2010). 
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temporal variability, and their dynamical implications.  

 

4.3.1  Data  

 

Time series of Q1 estimated from radiosonde observations are available from eight field 

campaigns (Table 2).  All data represent averages over areas of roughly 103 – 105 km2 in 

different tropical climate regimes (Fig. 3), including open ocean with only small or no islands 

(GATE, TOGA-COARE, KWAJEX and MISMO), coastal and monsoon regions (SCSMEX, 

TWP-ICE), and continental rainforest (LBA).  Common to all locations are MCSs, such as 

squall lines, and the diurnal cycle.  The time interval of all Q1 data is 6 h while the vertical 

levels range from 1000 to 100 hPa with a 25-hPa increment.  All data are single time series.  

The TOGA COARE data were from the IFA.  The GATE data are gridded (10 x 10), and a 30 

x 30 domain average covering the B-scale ship array was used in these studies.  

 
Estimates of diabatic heating associated with precipitation and total diabatic heating were 

made from several global re-analyses, including three recently released high-quality 

reanalysis datasets (i.e., ERA-I, MERRA, and CFSR) as well as earlier reanalysis datasets 

(i.e., NCEPII, JRA25, and ERA-40)9.  All reanalysis products overlap with TRMM from 1 

January 1998 to 31 December 2007.  For all re-analyses, diabatic heating was estimated as 

Q1 from the 3D wind and temperature fields.  CFSR and MERRA provide direct output of 

total diabatic heating (QT
10

 

).  

The TRMM heating products are available only in regions with precipitation (and hence are 

predominantly LH).  When compared to the TRMM heating retrievals, diabatic heating from 

the re-analyses is set to zero if there is no precipitation.  The focus in this section is the 

vertical structure of diabatic/LH in the Tropics, not its actual magnitude and spatial 

                                                 
9     ERA-I is the European Centre for Medium-Range Weather Forecasts (ECMWF) interim 
reanalysis (Dee et. al. 2011), MERRA is the NASA Modern Era Retrospective Analysis for Research 
and Applications (Rienecker et al. 2011), CFSR is the National Centers for Environmental Prediction 
(NCEP) Climate Forecast System Reanalyses (Saha et al. 2010), NCEPII is the NCEP–Department of 
Energy (DOE) reanalysis (Kanamitsu et al. 2002), JRA25 is the Japanese 25-year reanalysis (Onogi 
et al. 2007), and ERA-40 is the 40-year ECMWF reanalysis (Uppala et al. 2005).  
10  QT is the total diabatic heating directly output from reanalyses as a component of the 
temperature tendency.  Q1 is calculated as the residual of the heat budget.  
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distributions.  The profiles presented here are sometimes normalized.  For comparison, the 

TRMM products are re-gridded onto the (2.5o x 2.5o) horizontal re-analysis grids and 

interpolated onto 17 re-analysis pressure levels.  In comparing heating profiles from the 

soundings with those from the TRMM and re-analysis products, one should bear in mind that 

the estimates from the TRMM and re-analysis products are either purely LH (PRH) or 

diabatic heating only when there is precipitation (SLH, CSH, TRAIN, NCEPII, JRA25, 

ERA-40, and MERRA), while those from the soundings are purely total heating.  But, 

diabatic heating profiles from the soundings include clear-sky points, which presumably do 

not contribute much to the total heating and hence have little impact on the normalized 

profiles of the total heating.  For brevity, however, all the variables (QT, Q1
11

 

, and LH) are 

referred to as diabatic heating.  

4.3.2 General characteristics 
 
Several tropical precipitation regions (Fig. 10) were defined to facilitate discussions on 

regional heating characteristics.  Global time means of tropical diabatic heating profiles can 

be perceived as averages over these regions (with LH dominating, suitable for TRMM 

retrievals) or the entire Tropics (with both latent and radiative heating from the re-analyses). 

Mean profiles averaged over the precipitation regions reveal that the largest disagreement 

among the TRMM retrievals and re-analyses is low-level heating.  Some products (e.g., SLH, 

TRAIN, NCEPII, MERRA, and JRA25) exhibit distinct or even dominant heating peaks 

below the 700 hPa level, which are very weak or absent in others (Fig. 11).  Another related 

disagreement is the number of heating peaks in the vertical.  Some products show two or 

more peaks (e.g., SLH, TRAIN, MERRA, and JRA25), others only one.  These two major 

disagreements among the TRMM retrievals and re-analyses can be repeatedly seen in various 

comparisons with different configurations.  Global zonal mean heating profiles from the re-

analyses agree with each other well in their descriptions of the contrast between the Tropics 

and extratropics and between the oceans and land (Fig. 12).  However, large disagreement in 

their heating peaks, either the level or the number, is obvious.  

 

                                                 
11  Qr is relatively small in regions of large precipitation. 
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Another way to characterize the heating profiles is to compare them as functions of the 

precipitation rate.  In the Atlantic region, for example, TRMM and re-analysis estimates, 

except PRH, show their heating peaks becoming elevated as the precipitation rate increases 

(Fig. 13).  This relationship between the LH profiles and the precipitation intensity is in 

agreement with the results of Short and Nakamura (2000), which showed a correlation of 

0.71 between PR ETH and conditional rain rate over the Atlantic and eastern Pacific Oceans. 

The increase in heating peak with rain rate is gradual in some products (e.g., SLH, TRAIN, 

and MERRA) but fast or even abrupt in others (e.g., CSH, ERA40, JRA25).  Double peaks 

exist at certain rain rates in PRH, ERA40, and JRA25.  The only estimates that produce 

stratiform cooling in the lower troposphere at high precipitation rates are PRH and TRAIN.  

A similar diagnostic is performed over Africa (Hagos et al. 2010; not shown).  There is no 

low-level heating peak in any of the three TRMM estimates (TRAIN has no estimate of 

heating over land).  In the low precipitation rate tail, the TRMM estimates have elevated 

heating and low-level cooling.  In the re-analysis estimates, there is an abrupt transition in the 

diabatic heating profiles with sensible heat fluxes and radiative cooling dominating below 

about 1 mm day-1 and elevated LH at higher precipitation rates, because shallow LH is 

essentially absent there.  Therefore in general, these estimates differ from each other mainly 

in where their heating peaks are and whether they have just a single peak or double peaks.  

The differences in the oceanic low-level heating among the TRMM products are, however, in 

the amount and structure of the shallow LH, which is most abundant in SLH, small in CSH 

and TRAIN, and essentially absent in PRH.  On the other hand, while all the re-analyses have 

low-level heating peak near the surface, the magnitude and height vary. 

 
4.3.3 Temporal variability 
 

The temporal characteristics of daily heating profiles can be described in terms of their 

primary modes of variability.  Such primary modes can be extracted using various forms of 

empirical orthogonal function (EOF) analysis (Zhang and Hagos 2009; Hagos et al. 2010; 

Hagos 2010).  Two leading rotated EOF modes, one deep, one shallow, emerge from heating 

profiles based on sounding observations, TRMM retrievals, and re-analyses (Fig. 14).  The 

differences among the mean profiles (Figs. 14a and 14e) are larger than those among the 

deep modes (Figs. 14b and 14f) as well as the shallow modes (Figs. 14c and 14g).  But, there 
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are discrepancies among them.  The deep modes of CSH and PRH are outliers in their lack of 

heating at low levels.  The PRH, CSH, and NCEP I (at 300hPa) deep heating peaks are 

higher than that of the sounding average (near 400hPa).  For the shallow modes, PRH has a 

peak near 600hPa and JRA25 at 850hPa whereas those of the other estimates as well as the 

soundings are at 700hPa.  

 

For the purpose of interpreting the variability characteristics of LH, a diabatic heating profile 

is designated as due either to radiation, if the vertically-integrated diabatic heating is 

negative, or latent heat release.  In a tropical convective region such as the western Pacific 

warm pool, the vertical structure of heating is primarily determined by LH.  An EOF analysis 

shows that almost all of the variability in total diabatic heating is due to LH.  For both, the 

first two EOF modes explain about 95% of the variance (Hagos 2010).  This is not surprising 

because, while the vertical structure of LH varies significantly, the profile of clear-sky 

cooling shows little variability.  

 

An oblique rotated EOF (OREOF) analysis yielded the first mode resembling a stratiform 

heating profile with low-level cooling and the second OREOF resembles convective heating 

(Fig. 1 in Schumacher et al. 2007).  Almost the entire diabatic heating data are composed of 

the two profiles.  This is not by accident.  If indeed mesoscale LH is primarily composed of 

stratiform and convective heating, they naturally should constitute the large-scale diabatic 

heating as well.  Hagos (2010) demonstrated that the bimodal variability and the structure of 

the leading EOF modes alone can represent the mean diabatic heating in different climate 

regimes of the Tropics (Fig. 15).  For all the sounding-based heating time series, the two 

modes account for almost all their means.  It follows that the total heating is primarily 

composed of these two building blocks.  

 

Comparisons of diabatic/latent heating derived from in-situ soundings, satellite observations 

and global re-analyses have revealed that, in general, they agree with each other on their bi-

modal variability.  The common bi-modal behavior comes from the composition of large-

scale heating by convective and stratiform clouds.  This is implicitly built into TRMM LH 

algorithms that depend on PR reflectivity; hence, the bi-modal variability in those products is 
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not surprising.  The commonalities among the various products, however, appear to end at 

the bi-modal variability.  The structures of the two leading modes, the mean profiles and the 

seasonal cycle vary significantly among the products.  The large uncertainties defined by 

their disagreement inevitably affect their applications.  The limited availability of sounding-

based heating profiles and the large spatial variability in the vertical structure of diabatic and 

latent heating preclude any assumption on the realism of diabatic and latent heating profiles 

from TRMM and re-analyses in a region without any observations.  Evaluation of diabatic 

and latent heating profiles from TRMM and re-analyses must be done in the context of their 

related large-scale circulation.  

 

4.3.4  Vertical diabatic heating structure of the MJO 

 
The essential roles of various diabatic heating components for the MJO have been suggested 

based on general circulation model (GCM) studies, including shallow convective heating 

(e.g., Zhang and Mu 2005; Benedict and Randall 2009; Li et al. 2009; Zhang and Song 2009), 

stratiform heating (e.g., Fu and Wang 2009; Seo and Wang 2010), and radiative heating (e.g., 

Lee et al. 2001; Raymond 2001; Sobel and Gildor 2003).  A transition in the vertical heating 

structure during MJO evolution, namely, from shallow, to deep, and then to stratiform, has 

been reported based on TOGA COARE observations (Lin et al. 2004; Kiladis et al. 2005). 

However, this vertical tilting structure in the MJO heating field was not clearly evident in 

sounding observations during MISMO (Katsumata et al. 2009), as well as in a composite 

study over both the Indian and western Pacific Oceans (Morita et al. 2006) and in a case study 

over the Indian Ocean during 1998/1999 winter (Jiang et al. 2009) based on earlier versions 

of TRMM heating estimates.  Since diabatic heating lies at the heart of the main MJO theories 

as discussed in section 4.2, a comprehensive characterization of the vertical heating structure 

of the MJO would be of considerable value in elucidating its essential physics. 

 
By employing diabatic heating datasets from three TRMM-based estimates (TRAIN, SLH, 

CSH) and three recent re-analyses (ERA-I, MERRA, CFS-R), Jiang et al. (2011) conducted a 

composite analysis of vertical anomalous heating structures associated with the MJO based on 

strong MJO events during boreal winter (November-April) from 1998-2007/08.  The strong 

MJO events were selected and their phases (ranging from 1 to 8) were determined by 
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employing the WH index.  Figure 16 illustrates vertical-temporal anomalous MJO heating 

profiles (shaded) based on six datasets over the western Pacific (WP, 150-160oE) and eastern 

equatorial Indian Ocean (EEIO, 80-90oE).  All of the heating fields in Fig. 16 are averaged 

over latitude belts between 10oS-10oN.  The time (MJO phases) in the x-axis of each panel 

runs from right to left so that these plots also mimic longitude-height cross-sections for an 

eastward moving system.  The black curve in each panel denotes the evolution of TRMM 

3B42 rainfall anomalies (scales on right).  The results suggest that, over the WP, the heating 

profiles based on three re-analyses exhibit a similar vertical tilting structure (Figs. 16a-16c), 

although the ERA-Interim exhibits a stronger heating signal in the upper troposphere.  The 

low-level heating below 800hPa appears around phase 3 and peaks at phase 4 prior to the 

maximum MJO convection in phase 5.  Meanwhile, a maximum heating near 450hPa after 

phase 5 is discerned in all three reanalysis datasets.  In addition to the upper-level heating 

maximum, a second peak around 600hPa is also apparent in MERRA (Fig. 16b).  In contrast, 

the vertical tilt in the heating profiles varies among the three TRMM products.  While the tilt 

is evident in CSH, the heating does not extend as high into the upper troposphere as in the 

other datasets (Fig. 16f).  Although the emergence of shallow heating prior to maximum 

convection is also discerned in the SLH heating (Q1-QR) profiles, it has much weaker 

amplitude below 600hPa (Fig. 16e).  Meanwhile, a rather weak tilt is seen in the TRAIN 

profiles (Fig. 16d); instead of a slight lag in maximum convection evident in other datasets, 

the upper-level heating maximum is largely in phase with convection in TRAIN.  

 
Over the EEIO, the transition from a shallow to deep heating structure during MJO evolution 

is again evident based on the three reanalysis datasets (Fig. 16g-16i).  However, some 

differences in the upper-level heating profiles are noticed between the EEIO and WP.  While 

the heating maxima around 400hPa lags the rainfall peaks over the WP, they appear with the 

peaks in MJO convection over the EEIO (c.f., Figs. 16a-c and 16g-i).  The vertical transition 

from shallow to deep heating structures as seen in the reanalyses is not readily apparent in 

three of the TRMM-based datasets over this region (Figs. 16j-l).  

 

Differences in vertical heating structures of the MJO between TRMM estimates and re-

analyses are also noted in a similar composite study by Ling and Zhang (2011).  By 
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illustrating vertical-temporal MJO heating structures at three longitudes (90oE, 120oE, and 

150oE), but averaged over 15oS-15oN instead of 10oS-10oN as in Fig. 16, significant 

differences in composite vertical MJO heating structures were noted among several re-

analysis datasets in addition to differences between re-analyses and TRMM estimates as 

mentioned above. 

 

4.4 Improving monsoon forecasts and model physics using the multi-model super-
ensemble approach  
  

The vertical distribution of heating predicted by a suite of global models (Krishnamurti et al. 

2007) was improved using a multi-model super-ensemble technique (Krishnamurti et al. 

2000 a, b).  The same approach but with a suite of mesoscale models in place of global 

models is being used to construct forecasts of Q1.  The Advanced Research WRF (Weather 

Research and Forecasting model, ARW) V3.1.1 was used for this study.  Figure 17 shows the 

WRF single domain configuration with 25-km horizontal resolution and 134x141x28 grid 

points.  The PBL and surface layer parameterization employed the YSU scheme (Hong et al. 

2006; Hong 2007) and Mellor-Yamada-Janjic12

 

 (Mellor and Yamada 1992) Level-2 

turbulence closure model, respectively.  The land surface model is based on NOAH (Chen 

and J. Dudhia 2001) and consists of a 4-layer soil temperature and moisture model with 

canopy moisture and snow cover prediction.  It provides sensible and latent heat fluxes to the 

boundary layer scheme.  The Dudhia (Dudhia 1989) and RRTM (Mlawer et al. 1997) 

broadband two-stream (upward and downward fluxes) approaches were used for the 

shortwave and longwave radiative flux calculations, respectively.  The model was initialized 

from NCEP FNL operational Global Analysis data (1o x 1o spatial grid) and from which 

time-varying lateral boundary conditions were provided at 12-h intervals.  Table 7 lists a set 

of model configurations put together from the available choices of different cumulus 

parameterizations and microphysics packages within the WRF/ARW.  After some 

experimentation, this choice of model physics was found to be sufficiently robust to provide 

a reasonable ensemble spread.   

                                                 
12  The scheme was coded/modified by Dr. Janjic for the NCEP Eta model. 
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The multi-model super-ensemble has a training and a forecast phase.  During the training 

phase, vertical profiles of Q1 are calculated from all model forecasts.  The training phase 

covers the 90-day period from 1 July to 31 August 2004 and 1 July to 28 August 2005.  All 

forecasts start and end at 00 UTC.  During the training phase, a super-ensemble was 

constructed for the geopotential height z and temperature T.  Q1 is the substantial derivative 

of the dry static energy (gz + cpT) where g is gravity and cp the specific heat of dry air at 

constant pressure.  The computation of Q1 entails the calculation of the local change and the 

advective changes (horizontal and vertical advection) of the dry static energy.  The observed 

counterparts of Q1 for all these forecast time intervals are from the CSH algorithm. 

  

First, the model- and super-ensemble-based forecasts of precipitation over India were 

validated.  Those are illustrated in Figs. 18, 19 and 20.  Four examples of the typical daily 

skill of the precipitation forecasts are shown spanning days 1 through 6.  In Fig. 18a-d, the 

vertical bars show skill via the root mean square (rms) errors for the six model configurations 

and the super-ensemble for each of the forecast days.  Figure 19a-d shows the daily skill 

based on the area-averaged correlations of the observed and simulated rainfall.  The observed 

rain comes from the rain gauge-based estimates of Rajeevan et al. (2007); this is a very dense 

rain gauge archive that contains nearly 2300 rain gauges over India.  Of interest in Figs. 18 

and 19 is the slow increase in rms errors in the forecasts from day 1 to day 6 and the slow 

decline of the areal correlations during this forecast period.  The multi-model super-ensemble 

performs the best in comparison to all of the member models in the forecast suite and 

exhibits very little decline in the correlations from day 1 to day 6; the rms errors of the multi-

model super-ensemble also do not show much of an increase with forecast time.  Given these 

improved forecasts of precipitation, it is expected that the super-ensemble would carry 

improved skill in terms of forecast vertical heating profiles.  The model- and multi-model 

super-ensemble-based vertical distributions are compared with those from the CSH 

estimates.  

 

Figure 20a-d illustrates the vertical profiles of area-averaged Q1 (K/day) over the Indian sub- 

domain (70oE - 90.17oE, 6.85oN - 25.13oN).  These represent four-selected map times during 

a four-day forecast phase of the multi-model super-ensemble.  The mesoscale models have 
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higher values for Q1 than the CSH values.  There are many vertical details in the model-

based profiles.  The satellite-based CSH profiles are smooth and look parabolic along the 

vertical, as was also noted in Krishnamurti et al. (2008).  The multi-model super-ensemble 

recognizes these differences between the CSH and the member model vertical profiles and 

removes the large differences that are collective systematic errors.  As a result the forecasts 

through day 4 from the multi-model super-ensemble come out very close to the CSH profiles.  

The straight ensemble mean would reside between the forecast profiles of the member 

models and would contain large errors.  In conclusion it is safe to state that given observed 

measures of heating such as the CSH profiles, it is possible to produce accurate forecasts of 

Q1 from the construction of a multi-model super-ensemble. 

 

5. Future Work 
 

This paper presented some of the recent improvements in TRMM LH algorithms and their 

relationship with the pioneering works of Yanai et al. (1973).  Preliminary results from an 

inter-comparison of the LH algorithms were also presented.  Differences in the derived 

heating profiles from the different algorithms, including their associated level of maximum 

heating, could be due to the physical assumptions as well as the different LUTs (i.e., CRM-

simulated heating profiles used to generate the LUTs).  This inter-comparison will be 

continued in collaboration with those working on observed heating estimates, which could 

help to identify the salient physical processes leading to the similarities and differences 

produced by the retrieval algorithms.  In addition, data from GPM field campaigns and 

ground validation sites (e.g., MC3E) that provide extensive and high quality in situ 

microphysical observations will be valuable in improving and validating CRM microphysics.  

This is important because representative microphysics is essential in reproducing, within a 

modeling framework, the key 4D features of LH. 

 

This paper also presented highlights published in the J. of Climate special collection on 

TRMM diabatic heating.  In particular, the comparison of heating profiles derived from 

TRMM LH algorithms, sounding networks and reanalyses over the Tropics were discussed.  

One key finding was that the major differences between the heating structures from the 
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various estimates are related to low-level heating and the level of maximum heating.  Low-

level heating is also important for the MJO cycle.  Given the uncertainties in TRMM-based 

diabatic heating estimates, the central role of diabatic heating for the MJO, and the demands 

for reducing model deficiencies in simulating the MJO, there is a great interest and urgent 

need to examine the MJO vertical heating structure and related processes in current GCMs 

and to explore how their structure and fidelity relate to the models’ MJO representation and 

forecast skill.  To help address these objectives, a model and observation inter-comparison 

project on vertical heating structures and diabatic processes associated with the MJO is being 

organized through a joint effort by the WCRP (World Climate Research Program) – WWRP 

(World Weather Research Program) YOTC (Year of Tropical  Convection) MJO Task Force 

and GEWEX Atmospheric System Study Project (Petch et al. 2011;  

www.ucar.edu/yotc/mjodiab.html). 

 

5.1 Standard LH products 

 

The PMM joint science team has decided to have two standard LH algorithms:  the Goddard 

CSH algorithm and the SLH algorithm.  Table 8 lists the required data and type of heating 

products for these two algorithms.  Note that one of the major inputs for these standard 

products is the improved rainfall estimate.  Figure 21 shows an example of the LH products 

generated from the new version of the CSH algorithm. 

 

Standard LH products from TRMM will represent a valuable new source of data for the 

research community, products that, a decade ago, were considered beyond reach.  These data 

products will enable compelling new investigations into the complexities of storm life cycles, 

diabatic heating controls and feedbacks related to meso/synoptic circulations and the 

influence of diabatic heating on the Earth’s general circulation and climate.  In particular, the 

LH estimates will be of great help as a benchmark for a model inter-comparison study on 

vertical MJO heating structures as shown in section 4.3 and for the model intercomparison 

experiment mentioned above.  The standard LH products could help to determine how well 

the model-simulated heating structures agree with observations and determine how different 
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they are relative to the spread of observational (reanalysis and TRMM) values, which would 

also address the question of how useful the observations are at this point. 

 
5.2 Future directions  
 
Since temperature (heating) and water vapor (moistening/drying) are closely related (Yanai 

et al. 1973), it is proposed to produce both heating and moistening profiles using GPM 

rainfall products.  Both LH and moistening profiles are also needed for improving large-scale 

model simulations and forecasts (Rajendran et al. 2002).  GPM will produce higher temporal 

(three-hourly) and spatial resolution (up to 0.05 degree) rainfall products.  Several issues 

need therefore to be addressed.  CRM results have shown that the horizontal eddy term is 

quite small if averaged over a large area.  In addition, the CRM results have indicated that the 

horizontal and vertical eddy transport terms usually counteract each other (mass continuity) 

over small spatial scales (cloud scales).  The contribution by horizontal and vertical eddy 

heat and moisture transport to the heat and moisture budgets must be examined at various 

horizontal resolutions (e.g., TRMM and GPM satellite footprint sizes).  It may be necessary 

to produce heating and moistening profiles including all of the eddy transport and 

microphysics terms. 

 
Only a limited number of CRM-simulated cases were used to build the SLH and CSH 

algorithm (see section 2) LUTs.  Observations from additional field experiments (e.g., TWP-

ICE, MC3E, DYNAMO) and future GV site(s) will be needed to provide new types of initial 

conditions to CRMs to expand the number of cases and environments represented in the 

LUTs.  In addition, large-scale reanalysis products such as MERRA can be used both to 

improve cloud-resolving simulations by placing them in a larger-scale dynamical context and 

to expand the range of environmental conditions explored by CRM simulations beyond field 

experiments.  Figure 22 depicts preliminary results comparing simulations forced by the 

SCSMEX sounding network versus simulations forced by MERRA on GCE grid boundaries 

in the same location.  The simulations forced by MERRA produce rainfall and precipitable 

water at least as close to the observed as the sounding-forced simulations with some 

improvement in precipitable water relative to the sounding forcing.  This suggests that the 

GCE-MERRA approach has the potential to provide reasonably good quality simulations to 
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the heating algorithms for a variety of locations and conditions, including those regions with 

large surface rainfall, such as the Indian Ocean, SPCZ, S. America, Africa, and snow events, 

which are not well represented in the current LUTs.  In addition to expanding the number and 

type of environments, further improvements to the CSH LUTs will be made by using the 

improved and validated physics in the GCE and running cases at higher resolution.  The 

GCE+MERRA simulated cloud datasets in the Cloud Data Library 

(http://cloud.gsfc.nasa.gov) can be used to improve the performance of satellite-based rainfall 

and LH retrievals through more representative LUTs and to improve moist process 

parameterizations for GCMs. 
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 Required 
TRMM data 

Algorithm 
products 

Key references in 
algorithm description 

Algorithm 
developers 

CSH (Convective-
Stratiform Heating) 

PR, TMI,  
PR-TMI 

Q1, LH,  
Q2 

Tao et al. (1990, 1993, 
2000, 2001, 2010) 

W.-K. Tao & 
S. E. Lang 

SLH (Spectral Latent 
Heating)  

PR LH, Q1-QR 
Q2 

Shige et al. (2004, 2007, 
2008, 2009) 

S. Shige & Y. N. 
Takayabu 

TRAIN (Trained 
Radiometer Algorithm) 

TMI 
(PR training) 

 
Q1-QR, LH 

Grecu and Olson (2006), 
Olson et al. (2006) Grecu 

et al. (2009) 

M. Grecu & 
W. Olson 

HH 
(Hydrometeor Heating) 

PR-TMI LH Yang et al. (1999, 2006) E. A. Smith & 
Y. Song 

PRH (Precipitation Radar 
Heating) 

PR LH Satoh and Noda (2001) S. Satoh & 
A. Noda 

 
Table 1 Summary of the five LH algorithms (see Tao et al. 2006 for further details and 

salient references).  Data inputs, retrieved products, and salient references are 
included.  The conventional relationship between Q1 (apparent heat source), LH, 
and QR (radiative heating) is expressed by Q1-QR = LH + EHT, where the final term 
represents eddy heat transport by clouds (vertically integrated EHT is zero, i.e., it 
provides no explicit influence on surface rainfall).  TMI is the TRMM Microwave 
Imager and PR the TRMM precipitation radar. 
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Field experiment Location Period Reference 
GATE Tropical Atlantic 26 June – 19 

September 1974  
Houze and Betts 

(1981) 
TOGA-COARE Equatorial West Pacific 1 November 1992 – 28 

February 1993 
Webster and Lucas 

(1992) 
SCSMEX (N & S) South China Sea 2-25 May and 5-22 

June 1998 
Lau et al. (2000) 

LBA Amazonia 1 November 1998 – 28 
February 1999 

Silva Dias et al. (2005) 

KWAJEX Marshall Islands 24 July – 15 
September 1999 

Yuter et al. (2005) 

TWP-ICE Darwin 21 January – 12 
February 2006 

May et al. (2008) 

MISMO Equatorial Indian Ocean 24 October – 25 
November 2006 

Yoneyama et al. 
(2008) 

 
Table 2 Location, duration and references of field campaigns.  One of the major objectives 

of SCSMEX, KWAJEX and LBA was to provide forcing for CRMs and validation 
for TRMM LH profiles. 
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Field campaign Simulated rainfall 
amount (mm/day) 

Stratiform rain 
percentage (%) 

Estimated rainfall 
amount (mm/day) 

SCSMEX (NESA) 12.31 42.6 11.35 
ARM (1997) 4.31 41.3 4.32 
ARM (2002) 4.85 36.0 4.77 

TOGA COARE (1992-1993) 7.72 47.6 9.32 
GATE (1974) 10.56 41.4 11.38 

 
Table 3 CRM-simulated rainfall amount and stratiform % for SCSMEX (1998), ARM 

(1997, 2002), TOGA COARE (1992) and GATE (1974).  Adapted from Tao et al. 
(2010). 
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Case CSH 
(Q1) 

HH 
(LH) 

TRAIN 
(Q1, Q1-QR) 

SLH 
(Q1-QR, LH) 

PRH 
(LH) 

Diagnostic 
(Q1) 

SCSMEX - NESA 6.6 6.6 6.5, 6.6 7.5, 7.5 6.5 7.6, 7.7 
SCSMEX - SESA 7.5 6.6 6.7, 6.6 7.6, 7.6 6.0 6.5, 6.7 
KWAJEX 6.7 5.5 na , 3.6 / 6.5 (2 max) 7.5, 7.5 6.6 4.5 
ARM – Spring 2000 7.0 3.0 na 5.5, 5.6 4.5 6.0 
ARM - Summer 2002 6.5 5.5 na 5.6, 5.6 5.6 8.1  

 
 
Table 4   Altitude of maximum mean heating in km.  Diagnostic Q1 is calculated from both 

within the associated sounding arrays and the gridded rectangular study areas for 
the two SCSMEX cases but only for the associated sounding arrays for KWAJEX 
and ARM. 
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S. Shige, Y. N. Takayabu, S. Kida, W.-K. 

Tao, X. Zeng, C. Yokoyama, and T. 
L’Ecuyer 
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of Lookup Tables from Two- and Three-Dimensional Cloud-Resolving Model Simulations 

M. Grecu, W. Olson, C.-L. Shie, T. 
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Atmospheric Heating Profiles 

W.-K. Tao, S. Lang, X. Zeng, S. Shige, and 
Y. N. Takayabu 

Relating Convective and Stratiform Rain to Latent Heating 

T. Krishnamurti, A. Chakraborty, and A. 
K. Mishra 

Improving Multimodel Forecasts of the Vertical Distribution of Heating using the TRMM 
Profiles 

X. Jiang, D. Waliser, W. Olson, W.-K. 
Tao, T. L’Ecuyer, J.-L. Li, B. Tian, Y. L. 

Yung, A. Tompkins, S. Lang, , and M. 
Grecu 

Vertical Heating Structures Associated with the MJO as Characterized by TRMM 
Estimates, ECMWF Reanalyses, and Forecasts:  A Case Study during 1998/99 Winter 

S. Hagos, C. Zhang, W.-K. Tao, S. Lang, 
B. Olson, Y. Takayabu, S. Shige, M. 

Katsumata and T. L’Ecuyer 

Estimates of Tropical Diabatic Heating Profiles:  Commonalities and Uncertainties 

K.-M. Lau and H.-T. Wu Characteristics of Precipitation, Cloud, and Latent Heating Associated with the Madden- 
Julian Oscillation 

M. Zuluaga, C. Hoyos, and P. Webster Spatial and Temporal Distribution of Latent Heating in the South Asian Monsoon Region 
Y. N. Takayabu, S. Shige, W.-K. Tao and 

N. Hirota 
Shallow and Deep Latent Heating Modes over Tropical Oceans Observed with TRMM PR 

Spectral Latent Heating Data 
Y.-M. Kodama, M. Katsumata, S. Mori, S. 

Sato, Y. Hirose, and H. Ueda 
Climatology of Warm Rain and Associated Latent Heating Derived from 

TRMM-PR observations 
S. Xie, T. Hume, C. Jakob, S. A. Klein, R. 

B. McCoy and M. Zhang 
Observed Large-Scale Structures and Diabatic Heating and Drying Profiles during TWP-

ICE 
R. H. Johnson, P. E. Ciesielski, T. S. 

L’Ecuyer, and A. J. Newman 
Diurnal Cycle of Convection During the 2004 North American Monsoon Experiment 

 
 
Table 5 Authors and titles of papers published in the special collection on TRMM diabatic 

heating in the J. of Climate.  Dr. Tony Del Genio was a guest editor for this special 
collection. 

 



 

53 

 
 
 
 
 
 
 
 

Phase Lifecycle Tb (Ko) ETH (km) Types of cloud system 
1-2 Genesis 290-300 2.5-4.5 Abundant occurrence of 

WL 
3-4 Developing 260-280 4.5 Large increase of MM 

and CM 
5 Mature or peak 

convection  
< 275 > 5 Large increase of CM 

and CH 
6 Start of decaying  Wide range of Tbs > 5  
7 Decaying < 275 > 6-7 Increase of WL 
8 Similar to phase 1 290-300 2.5-4.5 WL 

 
Table 6  The characteristics of MJO phases in terms of brightness temperature (Tb), echo top 

height (ETH), and type of cloud systems.  WL stands for warm-rain low-level 
cloud, MM for mixed-phase rain, middle-level cloud, CM for cold cloud-top and 
medium storm height, and CH for cold rain, high-cloud. 
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Experiment Cumulus parameterization scheme Microphysics scheme 

Model1 Kain-Fritsch (Kain 2004)) Kessler (Kessler 1969) 
Model2 Betts-Miller-Janjic (Janjic 1994, 

2000) 
Kessler 

Model3 Grell-Devenyi ensemble (Grell and 
Devenyi 2002) 

Kessler 

Model4 Kain-Fritsch WSM5 (Hong et al. 2004) 
Model5 Betts-Miller-Janjic WSM5 
Model6 Grell-Devenyi ensemble WSM5 

 
Table 7 Numerical experiments conducted by different combinations of cumulus 

parameterization and microphysics schemes. 
 
 



 

55 

 
 
 
 
 
 

 Spatial scale Temporal scale Algorithm Products 
Gridded 0.5 x 0.5 degrees 

19 vertical layers 
Monthly SLH-PR 

CSH-Combined 
LH, Q1-QR, Q2 
LH, Q1, QR, Q2 

Orbital* Pixel 
19 vertical layers 

Instantaneous SLH-PR 
CSH-Combined 

LH, Q1-QR, Q2 
LH, Q1, QR, Q2 

Gridded 
Orbital 

0.5 x 0.5 degrees 
19 vertical layers 

Instantaneous w/ time 
stamps on each grid 

SLH-PR 
CSH-Combined 

LH, Q1-QR, Q2 
LH, Q1, QR, Q2 

 
Table 8  Summary of PMM cloud heating products from the CSH and SLH algorithms. 

*Orbital heating is not a standard PMM product.   
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Fig. 1  Goddard Cumulus Ensemble model (GCE)-simulated time mean profiles of LH 
components averaged over the (a) convective region and (b) stratiform region.  
The components consist of condensation (solid red), evaporation (solid blue), 
deposition (dashed red), sublimation (dashed blue), freezing (solid orange), 
melting (solid turquoise), and total (solid black). 
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Fig. 2 GCE-simulated time-domain mean profiles of net condensation or LH (c-e+d-s+f-

m, red), eddy heat flux divergence (blue), QR (yellow) and Q1 (purple).  The 
observed Q1 (green) estimated from a sounding network is also shown for 
comparison.  Adapted from Tao (2007). 
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Fig. 3  Geographic locations of twelve field campaigns used to provide data to drive and 

evaluate CRM simulations.  These include:  the ARM-SGP (Southern Great Plains) 
campaigns conducted in the summer of 1997, the spring of 2000 and the summer of 
2002, GATE (1974), KWAJEX (1999), TOGA COARE (conducted in 1992 and 
1993), TWP-ICE (2006, the Tropical Warm Pool – International Cloud 
Experiment), and SCSMEX/NESA and SESA (1998, northern and southern 
enhanced sounding arrays, respectively), AMMA (2006, the African Monsoon 
Multidisciplinary Analysis), MC3E (2011, the Midlatitude Continental Convective 
Clouds Experiment) and AMIE/DYNAMO (2011, the ARM MJO Investigation 
Experiment/Dynamics of the MJO).  MISMO has the same location as DYNAMO. 
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Fig. 4 Evolution of LH profiles (5-min intervals) over the TOGA COARE IFA for an 8-

day period (19-27 December 1992) from:  (a) GCE simulation, (b) SLH algorithm 
reconstruction (middle panel), and (c) CSH algorithm reconstruction (lower panel).  
The contour interval is 5ºC day-1. GCE-simulated convective/shallow-
stratiform/anvil stratus fractions, surface rain rates (RRs), PTHs, and melting level 
RRs are used as inputs to the SLH algorithm with profiles averaged over a 512 km 
grid mesh.  Adapted from Shige et al. (2004). 
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Fig. 5  Space/time-averaged heating profiles for the Case 1a (SCSMEX-NESA, left panel) 

and Case 1b (SCSMEX-SESA, right panel) regions.  Profiles for different heating 
terms are obtained from five different satellite algorithms:  solid green lines from 
CSH, solid violet lines from HH, solid red and dashed red lines from TRAIN and 
TRAIN + L’Ecuyer’s QR, respectively, solid blue and dashed blue lines from SLH, 
and solid orange lines from PRH.  Q1 profiles from CSU’s diagnostic calculations 
are the solid black lines (DIAG) from within the NESA/SESA sounding networks.  
Satellite-derived QR profiles from CSU (solid turquoise lines, Qrad), are a gridded 
product. 
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Fig. 6   Q1-QR at 7.5 km (a) and 2.0 km (b) averaged for June-August from 1998 to 2007 

overlaid on SST (contours).  Color scale labels show Q1-QR values in degrees day-1; 
SST contour intervals are every 1 oC with the 28 oC and 25 oC contours shown in 
thick lines in the upper and lower panels, respectively.  Adapted from Takayabu et 
al. (2010). 
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Fig. 7 Seven-year conditional mean Q1-QR profiles stratified with vertical velocity (dp/dt) 

at 500 hPa averaged for September-November from 30N-30S at all longitudes over 
the ocean in association with all rain.  The values for the color scale are scaled by a 
factor of 10.  Adapted from Takayabu et al. (2010). 
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Fig. 8  Joint PDF (JPDF) of Tb and ETH over the equatorial western Pacific:  (a) mean state 

of the eight MJO phases and (b)–(i) the difference between the JPDF for each of the 8 
phases (P1–P8) and the mean state.  Positive values are color shaded and negative 
values are contoured.  The units for the mean state are in 0.01% of the total 
occurrence counts.  For P1–P8, the units are number of counts.  Adapted from Lau 
and Wu (2010). 
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Fig. 9 MJO LH profiles based on the CSH algorithm and daily averaged ETH:  (a) mean 

state of the eight MJO phases and (b)–(i) the difference between the heating profile 
of each phase, P1–P8, and the mean state.  The three curves in each panel are red 
for ETHs < 5 km, blue for ETHs > 5 km, and green for total.  Adapted from Lau 
and Wu (2010). 
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Fig. 10  Ten-year mean precipitation from TRMM (3G68, mm/day).  Boxes indicate the 
analysis domains.  Locations of the field campaign sounding sites are marked by 
an ’X’.  Adapted from Hagos et al. (2010). 
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Fig. 11  (a)–(h) Normalized mean heating profiles averaged over the tropical precipitation 
regions (shown by the boxes in Fig. 10) and (i) the mean profile of the diabatic 
heating from all the soundings. The normalization was done by dividing each 
heating profile by its norm, which is the square root of the sum of the squared 
heating at all levels.  Dashed lines are the standard deviation.  Adapted from Hagos 
et al. (2010).   
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Fig. 12 Time and zonal means of diabatic heating (K day-1) from (top to bottom row) 

ERAI Q1, CFSR Q1, MERRA Q1, CFSR QT and MERRA QT (left column) and 
over the oceans (middle) and land (right) only.  Adapted from Ling and Zhang 
(2012).  
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Fig. 13 Normalized LH profiles as functions of precipitation intensity (in units of standard 
deviation) and the PDF of precipitation over the Atlantic.  The dashed lines indicate 
a precipitation rate of 1 mm/day.  For the soundings, vertically-integrated diabatic 
heating is used as a proxy for precipitation.   Adapted from Hagos et al. (2010).   
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Fig. 14  (a) Mean, (b) deep, (c) shallow, and (d) the average of the deep and shallow mode 

profiles and their standard deviations from the soundings.  (e)-(h) same as (a)-(d) 
but for the reanalyses and TRMM products.  Adapted from Hagos et al. (2010). 
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Fig. 15  Reconstruction of mean sounding profiles using the first two oblique rotated EOFs.  
Adapted from Hagos et al. (2010). 

 
 

 

 
 
 
 
 



 

71 

 
 

 
 
Fig. 16  Vertical-temporal (MJO phase) evolution of anomalous heating Q1 or Q1-QR for 

TRMM SLH (shaded, in K day-1) over the WP (150-160oE, panels a-f) and the 
EEIO (80-90oE, panels g-l) based on three reanalysis datasets and three TRMM 
estimates.  The black curve in each panel represents the evolution of TRMM 3B42 
rainfall anomalies (see scales on right y-axis in units of mm day-1).  All variables 
are averaged over 10oS-10oN.  Adapted from Jiang et al. (2011). 
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Fig. 17  WRF model configuration used in the mesoscale super ensemble study (6.85-38.01 
oN, 67.13-99.27 oE).  The horizontal domain resolution is 25 km, and the time step 
is 100 seconds. 
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Fig. 18  Comparison of RMS errors for forecasts from the super ensemble and six member 

models over 6 days with initial conditions at (a) Day0=91, (b) Day0=93, (c) 
Day0=95, and (d) Day0=97.  “Day” refers to forecast days after 90 days of training 
and Day0 the start day of the forecast.  The 91st day is 29 August 2005. 
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Fig. 19  Comparison of spatial correlation coefficients between observed and simulated rain 

for forecasts from the super ensemble and six member models over 6 days with 
initial conditions at (a) Day0=91, (b) Day0=93, (c) Day0=95, and (d) Day0=97.  
“Day” refers to forecast days after 90 days of training and Day0 the start day of the 
forecast.  The 91st day is 29 August 2005. 
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Fig. 20   Forecasts of the vertical distribution of heating Q1 (K/day) from 6 mesoscale 

models, the multi-model super ensemble and the satellite-based CSH algorithm 
over the Indian subdomain (70oE-90.17oE, 6.85oN-25.13oN).  The respective 
panels show forecasts in sequence for days 1 through 4. 
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Fig. 21   LH products (top row) from the version 2 CSH algorithm based on rainfall data 
from the TRMM Combined Algorithm:  (left) instantaneous pixel scale LH off the 
southeast coast of Africa 1 January 2001 at a height near 2.5 km from the orbital 
product, (center) same but for the 3G31 gridded (0.5 x 0.5 deg) orbital product, 
and (right) same but for monthly mean LH from the 3H31 gridded monthly 
product.  The new CSH algorithm uses conditional rain rates and LUTs based on 
GCE results divided into fine intensity and stratiform bins (Tao et al. 2010).  The 
corresponding surface rainfall is shown below each of the LH products. 
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Fig. 22 Time series of simulated and observed precipitable water (upper panels) and 

precipitation rate (lower panels) using forcing derived from MERRA.  The black 
lines are model-simulated, and the blue lines are observed.  The left panels depict 
MERRA-forced simulations, and the right panels depict simulations using forcing 
derived from soundings during SCSMEX (NESA). 
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