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Abstract 

 
The microgravity environment on the Shuttle and the International Space Station (ISS) provides the ideal condition 

to perform experiments on Coarsening in Solid-Liquid Mixtures (CSLM) as deleterious effects such as particle 

sedimentation and buoyancy-induced convection are suppressed. For an ideal system  such as Lead-Tin in which all 

the thermophysical properties are known, the  initial condition  in microgravity of   randomly dispersed particles 

with local clustering of solid Tin in eutectic liquid Lead-Tin matrix, permitted kinetic studies of competitive particle 

growth for a range of volume fractions. Verification that the quenching phase of the experiment had negligible effect 

of the spatial distribution of particles is shown through the computational solution of the dynamical equations of 

motion, thus insuring quench-free effects from the coarsened microstructure measurements. The low volume 

fraction experiments conducted on the Shuttle showed agreement with transient Ostwald ripening theory, and the 

steady-state requirement of LSW theory was not achieved. More recent experiments conducted on ISS with higher 

volume fractions have achieved steady-state condition and show that the kinetics follows the classical diffusion 

limited particle coarsening prediction and the measured 3D particle size distribution becomes broader as predicted 

from theory.  

Introduction 

 
The late stage of first-order phase transformation can result in a polydisperse two-phase mixtures composed of a 

dispersed second phase in a matrix whose evolution is driven by surface energy in a diffusional process known as 

Ostwald ripening or coarsening. For a binary alloy system such as Lead-Tin (Pb-Sn) with finite volume fractions of 

Tin, coarsening is driven by capillary-induced concentration gradients which depend on local curvature of spherical 

particles in the slightly supersaturated matrix. This process can also drive interparticle diffusional interaction 

between the particles in the matrix depending on the volume fraction. The system is relaxed toward equilibrium by 

minimizing its energy given by the dependence of its chemical potential on curvature [1, 2]. Minimization of energy 

in the system occurs through reduction of interfacial area while concomitantly increasing its length scale. The 

dynamics occur through competitive particle growth, by which the population dynamics evolve through the 

dissolution of particles smaller than the average particle size and growth of particle larger than the average size 

through the matrix. 

 

The theory of coarsening has been described by Lifshitz, Slyozov [3] and Wagner [4] (LSW) for an ideal system in 

which the particles are infinitely separated, no diffusional interaction, which serves as the limit of zero volume 

fraction. Practical applications of alloy systems require finite volume fractions, thus the LSW limit serves as basis 

by which coarsening theories for finite volume fractions should converge. Hence performing an experiment by 

which LSW theory can be tested is quintessential. LSW theory predicts that for the limit of zero volume fraction 

particles grow with time as the cube root of the average radius, and the particle size distribution becomes 
independent of time or self-similar at steady-state. However finding a system which satisfies all the constraints of 

LSW theory is prohibitive for ground-based laboratory condition due to effects of particle sedimentation and 

buoyancy-induced convection. 

 
The purpose of the experiments on Shuttle and ISS is to permit testing of LSW coarsening theory, by elimination of 

particle sedimentation and buoyancy-induced convection through the microgravity condition, and to investigate 

effect of finite volume fractions on coarsening. The measurement of coarsening rate on volume fraction will permit 
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comparison between various coarsening theories [5-18]. However the coarsening function that describes the volume 

fraction dependence on the rate constant differs among the different theories. These experiments will help to 

differentiate predictions from coarsening theories based on statistical mechanics [7-13], effective medium or mean 

field, [14, 15] and numerical simulation [16-18]. The Lead-Tin system is ideal for such a study because the 

thermophysical parameters have been measured [19], this permits accurate prediction of the LSW rate constant 

which is dependent on thermophysical properties only. 

 

                                                      Methods 

 

 
Figure1. Flight hardware installed in the Microgravity Science Glovebox on ISS showing: (a) the sample processing 

unit (SPU), the electronics control unit (ECU), and the space acceleration measurement system (SAMS); (b) 

hardware overview of the sample chamber in the SPU. 

 
The flight hardware by which the microgravity experiments were performed is shown in Figure 1 as installed in the 

Microgravity Science Glovebox (MSG) in the U.S. Laboratory module on ISS. The hardware in Fig. 1a from left to 

right consists of the sample processing unit (SPU), an electronics control unit (ECU), and the Space Acceleration 

Measurement System (SAMS) for measuring the local microgravity acceleration. The ECU controls the experiment; 

the SPU (Fig. 1b) contains the sample holder which houses the heating unit (63.48 mm diameter and 17 mm thick) 

and the samples for processing, a water reservoir at ambient temperature T = 25 
O
C, a pressurized air cylinder to 

drive quenching, and a vacuum connector used to pump the system to a vacuum level of 0.2 Torr for temperature 

uniformity in the SPU. The heating system consists of two disc resistance heaters and one ring heater to insure 

uniform heating with four resistance temperature devices (RTD) installed mid-way between the discs 17.4 mm from 

the center at an angle of 90
o 

to measure temperature of the samples. Quenching is achieved by forced flow through 

the spray nozzle (Fig. 1b) driven by air pressure for a duration of 20 sec. The SPU heats material samples up to 

185
o
C in less than 9.5 min, holds the temperature for a predetermined time at 185 ± 0.1 

0
C ranging from 0.25 to 48 

hrs (coarsening phase), and then quenches the samples to nearly room temperature in approximately 1 minute. The 

SPU sample holder contains four Lead-Tin samples of 12 mm diameter and 6 mm thickness for various volume 

fractions of Tin. 

 
In order to produce uniform initial particle size distribution, an acceptable heating sequence to reach the coarsening 

temperature of 185 
o
C has been determined from ground-based experiments as shown in Figure 2a. The melting of 

the sample from 30 
o
C to the thermal arrest slightly above 183 

o
C in less than 210 sec is necessary in order to avoid 

rearrangement of the particle distribution or significant grain growth. The thermal arrest spans a duration of 180 sec 

followed by the post-melt equilibration period in which the temperature rises to 185 
o
C. In order to avoid dissolution 

of smaller particles, it is necessary to minimize temperature overshoot from the temperature change from the thermal 

arrest (183 
o
C) to the coarsening operating temperature (185 

o
C). As temperature isothermality is necessary for the 

experiment, a temperature gradient less than 1
o
K/cm is required in order to avoid significant convection which 

would lead to an inhomogeneous distribution of particles within the sample. These engineering requirements are 
programmed in the ECU through proportional integral derivative (PID) control of the SPU, coupled with robust 

design of the heating system to minimize temperature gradient, yield the required temperature isothermality for 

successful coarsening experiments. The response of RTD2,3,4 to the control RTD1 shows that PID controlled to a 

fairly tight tolerance (± 0.2 
o
C)  to approach isothermal conditions. 



 

 
Figure 2. Heating and Quenching profiles for ground-based and microgravity condition showing: (a) heating 

sequence to reach coarsening temperature, (b) quenching for ground-based condition, and (c) quenching in 

microgravity. 

 
The effect of quenching is to cause formation of a eutectic solid. This solid is nucleated heterogeneously on the 

existing solid Tin particles in the liquid; thus, there is very little undercooling below the eutectic temperature. An 

important parameter that needs to be controlled during the quenching process is the rate of cooling. The cooling rate 

determines the average spacing of the eutectic solid which forms during the solidification process. A coarse spacing 

makes it difficult to locate the interface between the particle and the eutectic. Thus, stereological measurements to 

determine particle size become difficult to perform. From ground-based experiments, it was determined that after the 

quench is engaged the temperature should drop from 184.9 
o
C to 120 

o
C in approximately 6 sec and from 120 

o
C to 

30 
o
C in approximately 50 sec. It was also estimated that a temperature gradient less than 100 

o
C/cm is required to 

ensure that particle motion due to a temperature gradient at the solid-liquid interface will not be of concern. 

 

The cooling curves from the SPU shown in Fig. 2b,c represent an acceptable approximation to the cooling 

requirements, as the microstructure from these cooling curves permitted stereological measurements without major 

difficulty. It was later determined from a demonstration flight experiment that even slow quench can yield 

reasonable microstructure, thus the cooling rate can be relaxed. For quenching, RTD1,2,3,4 show response to the 

cooling boundary condition. Note since the quench is induced by forced jet flow for 20 sec, results from 

microgravity and ground-based are not significantly different over the time scale of 50 sec for which the temperature 

has dropped to 50 
o
C from the start. However, the flight SPU shows a much longer transient to reach  30 

o
C in 

comparison to ground-based condition due to the reduction of buoyancy-induced convection on Shuttle/ISS.  
 
An issue of concern during quench is the effect of large cooling rate on particles in the liquid matrix over the short 

time interval prior to solidification. A transient model based on two-dimensional dynamical equations of motion was 

solved to determine the magnitude of induced velocity as well as particle displacement relative to the average size. 

The particles in the liquid matrix is approximated as tracer particles, thus the model is most applicable to the low 

volume fraction range of the experiment. This model implies that the density field is approximated by an equation of 

state ρ(T)=ρ(Ta)[1-βT]; β is the coefficient of thermal expansion (β = 2.14x10
-5

 / 
o
K), Ta  is the coarsening 

temperature taken as 186 
o
C for initial condition, and T is the driving temperature difference between the sample 

and the cooling boundary. The sudden cooling introduces a discontinuity of the dynamical equilibrium phase and 

gives rise to density gradients that are coupled to the temperature field. As a result of coupling of the density field to 

the body force, a buoyancy flow is generated [20]. The coupled set of   incompressible Boussinesq equations 

(continuity, Navier-Stokes, temperature, and Lagrangian particle motion) are solved using finite-difference 

techniques with a flux corrected transport algorithm for the nonlinear advective terms of the temperature field [20]. 

From scaling analysis, it has been shown [21] for an analogous heating problem, that the parametric space for the 

characteristic velocity magnitude can be given as a function of four parameters, 

 
                                                                       ||V||= ||V|| (Ra, Ar, Pr, f)                                                                      (1) 

 

where Ra = ngoβqT”Ds
4
/kνα, Ar = Ds/L, Pr = ν/α, f = qsr

”
/qT

”
 ; qT

”
= qsl

”
+qsr

”
+qtb

”  

 



In the above parameters, go is the standard gravitational acceleration and n is a ratio which varies depending on the 

gravitational level (n=1 Earth, n= 10
-6

 Shuttle/ISS), qT
”
 is the total heat loss at the sample boundary of a disk with 

subscripts sl, sr, tb, indicating sides left, right and peripheral; Ds and L are sample diameter and thickness, k thermal 

conductivity, ν the kinematic viscosity, and α the thermal diffusivity in which  (k = 4.09x10
1
 W/m 

o
K , ν = 2.48x10

-7 

m
2
/s, α = 1.033x10

-5
 m

2
/s). The thermophysical properties needed to estimate the parameters are known for Lead-

Tin [22]. For a nominal heat flux condition estimated at qsr” = 3.49 x10
3 
W/ m

2
, it is assumed that there is equivalent 

heat loss on all surface boundaries of the cylindrical sample qT
”
= 3qsr

”
. This implies that the heat flux ratio (f) which  

represents the cooling rate is constant, the Prandtl number (Pr) and aspect ratio (Ar) are also constants (f  =  0.33,  

Ar = 2, Pr = 0.024). It can be shown that scaling leads to ||V|| ~ Ra. This scaling law was verified through numerical 

simulation shown in Figure 3. The Figure shows that depending on the Rayleigh number, convective level intensity, 

the flow field can be either conductive or convective. The reference points, evaluated for asymptotic values at t = 10 

sec, shown in Fig. 3 for 10
-6

go correspond to Ra = 4.34x10
-4 

in which ||V|| = 4.85x10
-11

 m/s, Tmin = 440.3 
o
K, Tmax = 

442.2 
o
K whereas at 1-go  Ra = 4.34x10

2
,  ||V|| = 4.85x10

-5  
m/s  and Tmin = 440.3 

o
K, Tmax = 442.2 

o
K. In the 

conductive region, the linearity of the scaling law is verified, ||V|| = Uo Ra, for Ra ≤ 4.34x10
3
 where Uo = 1.12x10

-7 

m/s. Since Uo is determined from regression, it has the same units as ||V||.  Note that the cooling minimum and 

maximum temperatures (Tmin, Tmax) in the sample are equivalent for microgravity and ground-based conditions in 

agreement with the trends in the cooling curves in Fig. 2b,c. At t = 1 sec Tmin = 456.2 
o
K and Tmax = 457.9 

o
K nearly 

reach the eutectic temperature with  ||V|| = 1.88x10
-11

 m/s for microgravity which increases by a factor of 10
6
 for 1g. 

The corresponding particle displacement (||r||), for microgravity and ground-based are respectively ||r|| = 4x10
-4 

µm 

and ||r|| = 400 µm. The microgravity particle displacement is much smaller than the average particle size for a typical 

range of 10 - 70 µm; this implies that quenching does not affect spatial distribution of particles on ISS/Shuttle.  

 

 
Figure 3. Peclet number (Pe) based on <R> = 40µm as a function of Rayleigh number (Ra) for ground-based and 

microgravity condition. 

 
An important parameter based on the characteristic velocity ||V|| which characterizes the ratio of mass transport by 

convection in relation to diffusion is the diffusional Peclet number [23] defined as Pe = ||V|| <R> / D , in which <R> 

is the average particle radius and D  the diffusion coefficient. For small Peclet number,  Pe << 1,  mass transport is 

dominated by diffusion which is the required condition for diffusive-coarsening. Figure 3 shows that for 

microgravity condition Pe <<1 verifying that coarsening occurs by diffusion in microgravity.  For the diffusive 

regime, there is a linear relationship between Pe and Ra given by  

 

                                                                      Pe = Uo <R> Ra / D                                                                            (2) 

 

where Pe = 5.5x10
-6

  for 10
-6

go,  and  Pe = 5.5 for 1go  evaluated for <R> = 70 µm in which D = 6.26x10
-10

 m
2
/s 

[22]. The above analysis shows that the restriction imposed on heating and quenching resulted in diffusion limited 

particle coarsening for microgravity experiments. 

 

                                                   Results and Discussion   

 
The microgravity environment is ideal for the testing of LSW theory, since the experiments have to be performed 

using finite volume fractions as an approximation to the zero volume fraction limit of the theory. For low volume 



fractions, as illustrated in Figure 4, under Earth’s gravity sedimentation cause the solid particles to sediment to one 

side of the specimen (Fig. 4a). In contrast the finding in microgravity (Shuttle/ISS) (Fig. 4b) shows that 

sedimentation and buoyancy-induced convection effects can be eliminated, thus equi-dispersed particle distribution 

can be obtained to allow kinetic studies. Given the ideal initial condition, we contrast the low volume fraction results 

(CSLM-1, Shuttle) 10 % [24, 25] (Fig. 4c) and the findings at higher volume fraction 50% [26] (CSLM-2, ISS) (Fig. 

4d). In brief, the low volume fraction experiment show that the particles as they coarsen increase in size with 

coarsening time while the number of particles decrease; and there is no particle contact as postulated in LSW theory 

(Fig. 4c). However for higher volume fractions (Fig. 4d) particles are interconnected and deviate from predictions of 

mean field coarsening theory [14-17] but shows agreement with grain growth theory [26]. 

 

 
Figure 4. Microstructure of samples contrasting ground-based and microgravity results showing: (a) effect of Earth’s 

gravity, (b) equi-dispersed particle distribution in microgravity, (c) coarsening in microgravity at low 10% volume 

fraction on Shuttle (CSLM-1), and (d) 3-D reconstruction of 50% volume fraction showing interconnection of 

particles on ISS (CSLM-2). 

 
The findings for the low volume fraction 10% illustrate the classical description of LSW theory, i.e., the system 

approaches a steady-state or self-similar regime in which the particle size distribution (PSD), when scaled by the 

average particle size [24, 25], is time invariant (t = 0.6 hr and t = 24 hr) and is independent of both the initial PSD   

(t = 0.6 hr) and  the  parameter of the system (KLSW), for the limit of a vanishing particle volume fraction and in the 

limit t→∞ where t is time. The initial (t = 0) distribution of particles upon melting results in equi-dispersed second 

phase domains which gives rise to spherical particles at t = 0.6 hr. The kinetics of LSW is dependent on the average 

particle radius, <R> and KLSW by the temporal law, 

 

                                                                      <R>
3
(t)  =  <R>

3
(0) + KLSW t                                                               (3) 

 
where the LSW rate constant is given by KLSW. The uniqueness of the microgravity experiment is the employment of 

a system that satisfy all the assumptions employed by theory and in which the thermophysical properties needed to 

determine KLSW (= 1.1 µm
3
/s)  are measured [19] independent of a coarsening experiment. The rate constant is given 

by,  KLSW = 8 ToҐD/9ML(Cs - CL) with ML the slope of the liquidus curve, and CS  and CL the compositions of the 
solid and liquid at a planar solid-liquid interface, To the coarsening temperature, Ґ the capillary length, and  D the 



diffusion coefficient. The low volume fraction experiment show that, despite the steady-state assumption of LSW 

was not realized in this experiment, the temporal growth law kinetics is in agreement with Eq. (1) [24, 25]. The 

evolution of the spatial correlation function [25] as time increases indicated the presence of transient Ostwald 

ripening [16, 17] or coarsening. Closure to the above findings can be obtained by performing microgravity 

experiments in the low volume fraction range in which steady-state is obtained. 

 

The steady-state temporal laws were confirmed for the 30% volume fraction for combined experiments performed 

on the Shuttle (CSLM-1) and ISS (CSLM-2) shown in Figure 5 [27]. The experiments showed that the coarsening 

rate on Shuttle and ISS are identical, even though g-jitter on Shuttle is lower than ISS [22]. There was no 

enhancement of coarsening kinetics due to g-jitter which has been shown using mean field analysis [28]. Analysis of  

g-jitter effect, using the spectrum from SAMS, on Stokes particle sedimentation [22] showed that g-jitter can cause 

sedimentation of the large particles which places a maximum bound of 48 hrs for experiments performed on ISS. 

This finding also indicated that experiments can be done on ISS with volume fraction less than 30% to test LSW 

theory, since g-jitter was of concern for the low volume fraction coarsening experiments on ISS. 

 

 
Figure 5.  Average particle size for 30% volume fraction contrasting Shuttle (CSLM-1) and ISS (CSLM-2) results, 

Kammer et al. AIAA 2009-616 [27]. 

 

For practical applications with higher volume fractions, there have been several theories [5-18] that remove the 

restrictive assumption of small volume fraction of  the coarsening phase. These theories predict that the cube of the 

rate constant (K) and shape of the scaled PSD become a function of the volume fraction. In the limit t→∞, the 

exponent of the temporal law is unaltered. The scaled PSD’s are predicted to be broader and more symmetric than 

those given by LSW (Fig. 6b). The rate constant is predicted to vary with volume fraction (Φ) as 

 

                                                                     K(Φ) = KLSW f(Φ)                                                                                 (4) 

 

where f(Φ) is the volume fraction dependence of the rate constant and is system independent such that when Φ = 0,  

K = KLSW (Fig. 6a). 

 

For systems with finite volume fractions of the coarsening phase, the zero volume fraction assumption of LSW in 

which there is no particle interaction needs to be modified to account for diffusional interaction. The diffusional 

interactions are included in the theory through a microscopic description of the coarsening process which depends 

on interparticle separation distance [23]. This description is based on point source/sink approximation to represent 

emission or adsorption of solute from shrinking or growing particles as input into the Laplacian concentration field. 

The coupling of the solutal field, for a population of spherical particles, with the restriction placed on mass 

conservation (rate of change of volume fraction is zero) and the Gibbs-Thompson boundary condition for mass 

balance at the particle-matrix interface yield a multipole expansion equation that can be used to predict growth rate. 

However, the properties of importance for experiments are statistically averaged quantities. The statistical average 

quantities  obtained from averaging the microscopic equations fall into three different approaches which includes, 

effective medium or mean field [14,15,18], statistical mechanics [7-12], and direct numerical simulation [16-18], are 

shown in Fig. 6a. 

 
The effects of interparticle interactions, in the low volume fraction limit, can be described from first-principles by 

using the first term in a multipole expansion for the diffusion field in the matrix [23]. This approach, for the 

monopole expansion, allows the account of diffusional interactions under the assumption that the volume fraction of 

the coarsening phase is less than approximately 0.1. The numerical simulations are illustrated in Fig. 6a for the 



predictions of  Beenaker [8], Enomoto, Kawasaki, and Tokuyama (EKT) [7] and Yao, Elder, Guo and Grant (Yao) 

[18]). Aikawa and Voorhees (AV) [16]  have extended the monopole approach to volume fraction of 0.3 by adding 

dipolar terms to the description of the diffusion field. Relative to the monopole (M) approximation, the addition of a 

dipolar (M+D) term in Fig. 6a for AV (present M and M+D) is to increase the coarsening rate in comparison EKT. 

 

The effective medium theories of Brailsford and Wynblatt (BW) [14] and Marsh and Glicksman (MR) [15] yield the 

largest coarsening rates as a function of Φ and can be extended to the higher volume fraction region; with the 

exceptions of Marder (MA) [9] which predicts the largest coarsening rates for Φ < 0.05.  The statistical mechanical 

theories of Marqusee and Ross (MR) [10], and Tokuyama, Kawasaki, and Enomoto (TK) [12] predict lower rate 

constants. The AK predictions fall mid-range between the statistical mechanical theories of (MR, TK) and effective 

medium theories (BW, MR) for Φ > 0.05, for Φ = 0.05 AV agrees with BW, and for  Φ < 0.05 AV converges to the 

values of MR and TK. Though the various coarsening theories differ in their prediction of rate constants, there is 

agreement on the effect of volume fraction on particle size distribution shown in Fig. 6b, the theory of Enomoto, 

Tokuyama and Kawasaki [13] shows that the steady-state particle size distribution becomes broader and more 

symmetric than LSW. 

 

In relation to steady-state coarsening experiments in microgravity (ISS), the measured normalized coarsening rate 

constant ratio (K/KLSW) for Φ = 0.3 is approximately a factor of two times the ratio (K/KLSW)AV of  AV prediction; 

the measured value is also higher than predicted by mean field and statistical mechanical theories. However, the 

microstructure for the 30% volume fraction also shows particle contacts and non-spherical morphology which is 

outside the theoretical approximations employed in coarsening theories. The particle spatial correlations, given the 

presence of localized particle distortions due to diffusional interactions with neighboring particles, also did not agree 

with the AV theory at 30%. The particle size distribution at 30% is slightly wider than theory. For the lowest volume 

fractions 15% and 20%, the coarsening rate constant and particle size distribution are closer to theory. This appears 

to show  that as the volume fraction decreases better agreement with coarsening theory can be obtained. It remains 

to address this missing-gap by performing microgravity experiments in the low volume fraction region Φ ≤ 0.1 for 

steady-state condition. 

 
 
Figure 6.  Effect of volume fraction (Φ) on coarsening rate and particle size distribution comparing various theories of Ostwald ripening; (a) 

prediction of rate constant of the cubic growth rate, K, normalized to the LSW value as a function of volume fraction (Φ) according to: Aikawa 

and Voorhees (present M and present M+D); Beenaker; Enomoto, Kawasaki, and Tokuyama (EKT); Yao, Elder, Guo and Grant (Yao), Brailsford 
and Wyndblatt (BW), Marsh and Glicksman (MG), Marqusee and Ross (MR); Tokuyama, Kawasaki and Enomoto (TK), (b) The Enomoto, 

Tokuyama and Kawasaki theory for predicting steady-state particle size distribution at various volume fractions. 

 
Concluding Remarks 

 

The microgravity environment (Shuttle/ISS) facilitates the performance of coarsening experiments through 

elimination of sedimentation and buoyancy-induced convection effects. Analysis of the quenching phase, through 

computational solution of a transient two-dimensional model of the dynamical equations of motion, show that the 

Peclet number is much less than one and the particle displacement is much less than the average particle size. This 

implies that coarsening was diffusion limited and the spatial distribution of particles on ISS/Shuttle were not 



affected by quenching. The low volume fraction Φ = 0.1 coarsening experiment performed on the Shuttle (CSLM-1) 

showed clear evidence of transient coarsening. The experiments performed on ISS (CSLM-2) for Φ ≥ 0.15 achieved 

steady-state condition; there was no evidence of transient coarsening. The coarsening rate for the 30% volume 

fraction is higher than predicted by theory with a particle size distribution which is slightly wider than theory. 

Particle spatial correlations are not that predicted by theory which is in agreement with the observation that even in 

microgravity the particles are interconnected at 30% volume fraction. However, for the lower volume fraction of 

15% the particle size distribution and rate constant are close to theory. The low volume fraction region Φ ≤ 0.1 is 

promising for differentiation between various coarsening theories and presents a challenge for the attainment of 

steady-state condition in microgravity experiments. 
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