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ABSTRACT

Ensembles of numerical model forecasts are of interest to operational early warning forecasters as the

spread of the ensemble provides an indication of the uncertainty of the alerts, and the mean value is deemed to

outperform the forecasts of the individual models. This paper explores two ensembles on a severe weather

episode in Spain, aiming to ascertain the relative usefulness of each one. One ensemble uses sensible choices

of physical parameterizations (precipitation microphysics, land surface physics, and cumulus physics) while

the other follows a perturbed initial conditions approach. The results show that, depending on the parame-

terizations, large differences can be expected in terms of storm location, spatial structure of the precipitation

field, and rain intensity. It is also found that the spread of the perturbed initial conditions ensemble is smaller

than the dispersion due to physical parameterizations. This confirms that in severe weather situations oper-

ational forecasts should address moist physics deficiencies to realize the full benefits of the ensemble ap-

proach, in addition to optimizing initial conditions. The results also provide insights into differences in

simulations arising from ensembles of weather models using several combinations of different physical pa-

rameterizations.

1. Introduction

Localized heavy precipitation episodes are common in

the Mediterranean Sea region. Providing better forecasts

for such episodes is fundamental to deliver early warnings

and thus to minimize personal losses. However, the task of

forecasting and simulating precipitation is plagued with

difficulties. First, precipitation is the consequence of

several atmospheric factors including 3D temperature

structure (Mahrt 2000), evaporation (Choudhury 2000),

convective available potential energy (CAPE; Lorenz

1978), availability of condensation nuclei (Hudson and

Li 1995), and orography modeling (Roe 2005). Uncer-

tainties in the measuring of any of those processes prop-

agate to the precipitation forecast, affecting model skill.

Second, all weather forecasts are affected by the de-

fining characteristic of nonlinear systems, namely sensi-

tivity to initial conditions (SIC). Two twin (arbitrarily close)

initial conditions will soon generate different forecasts, so
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regardless of how accurate the estimates of the actual

atmospheric state are, the forecasts are going to be dif-

ferent. This impedes generating deterministic forecasts,

which have been replaced by probabilistic forecasts.

The third major factor affecting precipitation forecast

skill is the incomplete treatment of some key physical

processes in numerical models. Even if perfect measure-

ments were available, both numerical weather prediction

(NWP) models and regional climate models have to

include parameterizations to account for unresolved

physics at the model resolution (Lenderink et al. 2007).

Processes such as small-scale turbulence, which operates

at the Kolmogorov scale, cannot be formalized as ex-

plicit equations into the model as that would require

unrealistic computing power. (In this particular exam-

ple, eddies in the atmosphere are as small as a few mil-

limeters in diameter, so mesoscale models have to use

Reynolds averaging to make the problem numerically

tractable.) In the case of precipitation, estimates are

directly dependent on at least the parameterizations

used for turbulence, radiation, land physics, cloud mi-

crophysics, and convection (Khain et al. 2005).

While the first problem is difficult to address, the sec-

ond one, the effects of SIC into the forecast, can be

mitigated by running the model with several different

initial conditions. The spread of the ensemble provides

an indication of the predictability of the atmospheric

situation and of the uncertainty of the forecast, whereas

the ensemble mean can be considered as the least biased

estimate of the true state of the atmosphere. This per-

turbed initial conditions (PIC) ensemble approach is rou-

tinely employed by major operational centers such as the

National Centers for Environmental Prediction (NCEP)

or the European Centre for Medium-Range Weather

Forecasts (ECMWF).

The effect of parameterizations is also approached in

a similar way by running several models with different

configurations. Providing that each individual model is

better than any other in at least one aspect, it is accepted

that the resulting multiphysics parameterization (MPP)

ensemble is more skillful than the individual runs.

The sensitivity of modeled precipitation to both PIC and

MPP ensemble approaches has been explored by several

authors (Schwartz et al. 2010; Gallus and Bresch 2006;

Jankov et al. 2005, to name but a few). Ensembles built

using only initial perturbations generally have insufficient

dispersion (Jankov et al. 2005), but large differences have

been reported depending on parameterizations, dynam-

ical cores, season, and location. Therefore, the objective

of this paper is to compare both PIC and MPP strategies

for a limited set of parameterizations, a single dynamical

core, one episode, and in Spain. To that end, two sets of

simulations—the PIC and MPP runs—were performed.

In the case of the MPP runs, the number of possible

combinations between parameterizations is very high, so

to focus on the role of microphysics, land model, and

cumulus parameterizations, a limited set of options was

explored. The use of different schemes for the planetary

boundary layer (PBL) also has a significant effect on

precipitation forecasts (Shin and Hong 2011; Parodi and

Tanelli 2010), so here a single scheme is used to isolate

the effects of microphysics, land model and cumulus pa-

rameterizations. For the same reason, the same numeri-

cal core was used in all the simulations, as it is known that

differences in the numerics of the dynamic cores result

in small differences in the initializations.

There has been several previous works on PIC and

MPP parameterization ensembles using the Weather

Research and Forecasting (WRF) model (Skamarock

et al. 2008). Clark et al. (2008) found among other results

that the ensemble variance in their MPP ensemble was

greater than that in a PIC ensemble during the first 24 h of

the forecast. In another experiment comparing MPP and

a stochastic kinetic-energy backscatter scheme, Berner

et al. (2011) argued for a combination of both approaches.

Vich and Romero (2010) followed a different approach

using a MPP superensemble and ECMWF forecasts as

initial data, obtaining good forecast skill for heavy pre-

cipitation episodes in the Mediterranean.

In this paper, the comparison is done within the con-

straints posed by limited validation data, as described in

the next section below.

2. Data and experimental design

While the comparison of the MPP and PIC ensembles

is the primary focus of this paper, ground radar and sat-

ellite rainfall estimates are used to provide a qualitative

estimate of the simulations rainfall performance. No

quantitative validation is attempted because of the lack

of quality data in the study area, as described below.

a. Ground radar data

The available radar data for this study corresponds to

the standard operational product from the Spanish Me-

teorological Agency (AEMET) network of 15 radars

covering continental Spain and the Balearics. In this pro-

duct, the raw reflectivity from the retrievals is calibrated,

quality controlled, and filtered to provide the best-guess

surface rainfall estimate. A fixed, Marshall and Palmer

reflectivity–rainfall (Z–R) relationship is used across the

year regardless of the type of precipitation, so this prod-

uct is only useful to provide a qualitative estimate of ac-

tual rainfall rates. While the available single-polarization

radars can provide an adequate estimate of the storm

location and the spatial structure of precipitation fields,
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their quantitative estimates are subject to many error

sources and uncertainties. To name but one, the param-

eterization of the raindrop size distribution greatly affects

the retrieval of precipitation from measured reflectivities.

The 15-min radar data were aggregated to a 24-h ac-

cumulation (Fig. 1). As some individual radars did fail for

some minutes along the episode, a small bias is expected

in the daily totals. Radar data do not compare well with

gauge data for this particular episode. Thus, Barcelona

(41.288N, 2.068E) recorded 104.9 (radar ; 15) mm,

Valencia (39.58N, 0.468W) 30.4 (25) mm, Reus (41.158N,

1.168E) 57.9 (10) mm, Palma (39.558N, 2.738E) 13.9 (15)

mm, and Valladolid (41.658N, 4.768W) 17.7 (5) mm for 11

May 2008. Most of those values (notably Barcelona) are at

variance with radar estimates, illustrating either the effects

of local factors in ground-measured precipitation, the

limited quality of the radar estimates, or both issues. Given

those shortcomings, radar data are used only qualitatively.

FIG. 1. Ground radar precipitation for 11 May 2008, WRF simulation domain, satellite precipitation estimate, and

model topography.
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b. Satellite data

Satellite data were used to have another independent

estimate of precipitation to qualitatively cross compare

with models and radar estimates. While satellite pre-

cipitation products are algorithm dependent and cannot

be used for validation, they are informative of the large-

scale spatial distribution of precipitation and thus can

give an impression on model performance. The use of

satellite products is also justified in this case as it allows

one to extend the comparisons beyond the limited cov-

erage of the ground radar.

The precipitation algorithm chosen was the Climate

Prediction Center morphing technique (CMORPH; Joyce

et al. 2004). The rationale of this algorithm consists in

advecting microwave rainfall estimates along infrared-

derived cloud motion winds. Those winds are then used

to propagate the precipitation estimate provided

by microwave (MW) sensors, thus generating a merged,

high-temporal-resolution product. In this way, the more-

frequent IR data are used to fill the gaps between more-

direct MW overpasses. The spatial resolution of the

NCEP’s CMORPH product used here is 0.258.

As with the radar operational data, the CMORPH

satellite estimates are accumulated into daily totals for

the qualitative comparison (Fig. 1). As in Gallus and

Bresch (2006), it was found that correlation coefficients

with these data did not appear to add meaningful in-

sight into the sensitivity of forecasts and are not used.

Quantitative comparison with available ground data

epitomizes the limitations of satellite algorithms, espe-

cially in coastal cities such as Barcelona, Valencia, Reus,

and Palma, where the satellite greatly underestimates

precipitation.

c. Model setup

The WRF model (Skamarock et al. 2008) was used to

carry out the simulations. The version used corresponds

to 2.2.1, which was modified to include the National

Aeronautics and Space Administration Goddard Space

Flight Center’s microphysics. WRF model has the key

advantage of having been extensively tested over a vari-

ety of locations and has been validated over many me-

teorological regimes and conditions. Another reason to

prefer this model over the plethora of NWP models

currently available is the vast number of scientists col-

laborating in its improvement, which results in an ex-

tensive set of well-documented, stable, and fully tested

parameterizations.

The case selected (11 May 2008) is one with both high

rain rates and full radar coverage of the episode. The

synoptic situation (Fig. 2) corresponds to the dominance

of an upper-level high over the British Isles and large

portions of central Europe. A large storm developed

over the east coast of Spain when a weakening upper-

level cutoff low over the Balearic Islands remained al-

most stationary. At its southern flank, a jet streak with

FIG. 2. Synoptic situation for the case study (11 May 2008). Here, B indicates a low center and

A indicates a high center.

492 J O U R N A L O F A P P L I E D M E T E O R O L O G Y A N D C L I M A T O L O G Y VOLUME 51



40 m s21 at 300 hPa moved across northern Algeria (not

shown). Underneath the upper low, steep midlevel lapse

rates and rich boundary layer moisture led to instability at

the southwestern flank of the upper high. Some multicells

developed over the east coast of the Iberian Peninsula

and the Balearic Islands where large hail was reported.

The comparisons were performed on 11 May 2008

when good quality radar data were available. To allow

for sufficient spinup time, the model was initialized 24 h

earlier (on 10 May). This 24-h period is more than double

the time WRF requires to generate a realistic kinetic

energy spectra (Skamarock et al. 2008). The next 24 h

(11 May 2008) was those actually used for comparison.

The grid space of the simulations is 25 km.

The initial and boundary conditions for the simulations

were from the Global Forecast System. A single domain

(Fig. 1) was designed to minimize boundary issues.

Given the computational burden of high-resolution en-

semble simulations, the runs were carried out at the

Barcelona Supercomputing Center’s Mare Nostrum com-

puter (94.21 Teraflops; flops 5 floating-point operations

per second) using a parallel architecture on 256 pro-

cessors. The use of more processors (512) did not show

good scaling properties.

d. Model parameterizations

Four sets of parameterizations: microphysics, cumulus

scheme, land physics, and radiation were analyzed. The

MPP simulations were run for all possible combinations

except for those not allowed by the model, resulting in

56 different runs. The PIC ensemble was made of 49

members. The rationale of the parameterizations is de-

scribed in the following sections. The reader is directed

to Skamarock et al. (2008) for a full account of the WRF

physics.

1) PRECIPITATION MICROPHYSICS

Precipitation microphysics is used to model the pro-

cesses resulting in the several forms of precipitation

(rain, snow, hail, etc.). We used the Kessler (Kessler

et al. 2006), Purdue–Lin (Rutledge and Hobbs 1984)

[implemented as in Chen and Dudhia (2001)], WRF single-

moment 3-class (WSM3; Hong et al. 1998, 2004), WRF

5-class (WSM5; Hong et al. 1998, 2004), WRF 6-class

(WSM6; Lin et al. 1983), Goddard (Shi et al. 2010), and

Thompson (Thompson et al. 2004) schemes.

The Kessler scheme is a simple warm cloud scheme

that includes water vapor, cloud water, and rain. The

physics processes used are production, fall, and evapora-

tion of rain; accretion and autoconversion of cloud water;

and the production of cloud water from condensation.

The Purdue–Lin scheme (after the Purdue cloud scheme

and Lin) takes a step forward by adding cloud ice, snow,

and graupel. This scheme includes saturation adjustment

and ice sedimentation.

The WSM schemes differ in the species of precipita-

tion modeled. The WSM3 includes vapor, cloud water–

ice and rain–snow with the differences between the liquid

and the solid phase dependent on temperature. In WSM5,

water and rain are treated separately from ice and snow.

WSM6 differs from WSM5 in that it adds graupel to the

other species, and in differences in the calculations, im-

proved calculation of heat profile, optimized order of

processes to decrease sensitivity to the time step of the

model, and separated treatment of ice and water satu-

ration processes.

The Thompson scheme uses six classes of moisture

species and is deemed as suitable for a variety of situa-

tions. Known problems of this parameterization include

overestimation of snow and graupel and underestimation

of ice in outflow regions. This scheme includes improve-

ments in the modeling such as the use of the Gamma

distribution instead of the exponential and dependent

intercept parameters for the raindrop size distribution.

The new Goddard bulk microphysics (Shi et al. 2010)

was also incorporated into the simulations before been

implemented in the next WRF version. This scheme has

three different options: cloud ice and snow; cloud ice, snow,

and graupel (used here); and cloud ice, snow, and hail.

2) CUMULUS PARAMETERIZATION

Cumulus parameterizations are intended to model sub-

grid updrafts and downdrafts in the models. The cumulus

schemes used in the MPP simulations were Kain–Fritsch

(K–F; Kain and Fritsch 1993), Betts–Miller–Janjic

(B–M–J; Betts and Miller 1986; Janjic 1994), and Grell–

Devenyi (G–D; Grell and Devenyi 2002). We also used

no cumulus option in a set of simulations to ascertain the

actual effect of the parameterizations.

The WRF version of the K–F parameterization is a

simple cloud model with moist updrafts and downdrafts.

The B–M–J is a convective-adjustment type scheme. It

makes cloud efficiency dependent on the entropy change,

precipitation, and mean temperature of the cloud. It has

been reported that this scheme may overpredict areas of

light precipitation (Jankov et al. 2005). The G–D ap-

proach uses an ensemble of cumulus schemes for each

grid box. The ensemble members differ in updraft and

downdraft entrainment and detrainment parameters and

in precipitation efficiency. The value back to the model is

a weighted average of the ensemble. Here, we used the

mean of the ensemble.

3) LAND PHYSICS

Land surface models (LSM) deal with surface heat

and moisture fluxes. While land parameterization has
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traditionally been considered to have little influence on

the short-term forecast of a situation dominated by

a synoptic weather event [see Chang et al. (2009) for an

example], two different parameterizations were used to

quantify the actual influence in this severe weather

episode. The schemes chosen were relatively complex

parameterizations: a 5-layer thermal diffusion model

with layers 1, 2, 4, 8, and 16 cm thick, and the Noah

LSM (Chen and Dudhia 2001) scheme consisting of

a 4-layer soil temperature and moisture model with

canopy moisture and snow cover prediction. The latest

parameterization includes surface emissivity proper-

ties and provides sensible and latent fluxes to the PBL

scheme.

4) RADIATION AND PBL

Radiation schemes model the interactions of solar

(shortwave) and thermal (longwave) radiation with the

atmosphere. The modeling of these processes in WRF

follows the plane-parallel simplification. Goddard short-

wave (Chou and Suarez 1994) and the Rapid Radiative

Transfer Model (RRTM) longwave (Mlawer et al. 1997)

schemes were used in the runs, with climatological pro-

files for carbon dioxide, ozone, and trace gases. Regard-

ing the PBL parameterization, the Mellor–Yamada–Janjic

(M–Y–J) scheme (Mellor and Yamada 1982; Janjic 1994)

was used.

e. Perturbed initial conditions ensemble

The ensemble members were constructed by adding

perturbations to a base initial condition field. In this

experiment only wind, temperature, and moisture fields

were perturbed. The model physics involved in the en-

semble forecast error covariance estimation consists of

Goddard microphysics and radiation scheme, Noah sur-

face scheme, Yonsei University PBL scheme and K–F

cumulus scheme. The perturbations were generated fol-

lowing the ensemble forecast error covariance procedure

in an ensemble data assimilation system (EDAS) WRF-

EDAS developed by Goddard and Colorado State

University (Zupanski et al. 2011).

3. Results and discussion

Two sets of simulations starting 10 May 2008 were

performed at 25-km resolution. One set of runs was done

for the MPP ensemble and another for the PIC ensemble.

The period of interest was the 24–48-h interval corre-

sponding to 11 May 2008.

Figures 3 and 4 show the daily accumulations of the

two types of experiments using a poststamp plot. The

area shown corresponds to that of the satellite and radar

in Fig. 1. In the multiphysics case (Fig. 3), a numerical

key is used to identify the setup. In the PIC case (Fig. 4),

every individual plot represents a member of the en-

semble. As those are indistinguishable, there is no need

for labeling each single run.

The visual comparison of these stamp plots with radar

and satellite estimates (Fig. 1) shows that the main fea-

tures of the daily precipitation are captured in both MPP

and PIC ensembles. The fingerprint of the storm is ap-

parent in the east coast of Spain and corresponds to the

approximate location given by the satellite and the ra-

dar. The precipitation system in southern France is also

modeled by most of the simulations, and the same ap-

plies to the system off the coast of Algiers. Some known

effects in the MPP runs (Jankov et al. 2005) are apparent

in the plots, including that the areal coverage of the

precipitation in the no-cumulus runs is quite different

than the coverage in those using a cumulus parameteri-

zation. The former setup exhibits heavier intensities

when compared to cumulus parameterizations. At 25-km

resolution, convection is not explicitly resolved but is

dependent on the convective scheme used. Although

comparing cumulus parameterizations with explicit mi-

crophysics is not straightforward, contrasting the outputs

with and without this parameterization may allow one to

isolate the effects of this parameterization.

While the internal variability within the PIC ensemble

seems lower than in the MPP ensemble, quantitative

estimates are required to ascertain the full extent of such

variability. Thus, three types of quantitative metrics were

used: the storm center location, used here as a mean to

gauge differences in locating precipitation patterns;

the semivariogram, used to analyze the spatial vari-

ability of the simulations; and the mean, maximum, and

standard deviation of the daily precipitation accumu-

lations in the whole domain, which is a simple but ef-

fective method of characterizing each setup with a few

aggregated values.

The combined use of three complementary metrics is

justified by noting that two simulations can forecast two

very different storms in terms of mean and minimum

values but with the same center. The same applies to

spatial variability: two forecasts possessing very differ-

ent spatial structures and clustering patterns may well

have the same mean and maximum values and place the

storm in the same location. The combination of the three

estimates increases confidence in the simulations pre-

senting the same precipitation pattern if their three

metrics are similar.

a. Precipitation centroid location

A sensible way of quantifying model differences is

to compare the estimates of the precipitation centroid

across runs. This is a broad comparison over an area of
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FIG. 3. Estimates of daily accumulation of precipitation for each one of the 56 MPP parameterizations. As described in the key below

the coding is as follows: from left to right the seven digits correspond to 1) cloud microphysics (1: Kessler, 2: Lin et al., 3: WSM3 simple

ice, 4: WSM5, 6: WSM6, 7: new Goddard, 8: Thompson et al.); 2) LW radiation (1: RRTM); 3) SW radiation (2: Goddard shortwave); 4)

surface layer (2: Monin–Obukhov–Janjic); 5) land surface physics (1: thermal diffusion scheme, 2: Noah land surface model); 6) PBL

scheme (2: M–Y–J); and 7) cumulus option [0: none, 1: K–F (new Eta), 2: B–M–J, 3: G–D]. The area covered is that of the satellite

estimate in Fig. 1.
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hundreds of squared kilometers, thus being indicative of

the ability of the individual simulations to capture the

evolution of a mesoscale system.

The precipitation centroid was considered as a sur-

rogate for the center of the storm. It was obtained from

visual inspection of the radar data (398N, 08). This nom-

inal centroid was used as the reference center for the

WRF simulations. The centroid for each run was cal-

culated not visually but as the weighted average of the

daily accumulated precipitation over a 48 3 48 window

centered at 398N, 08. It should be noted that the aim here

is to compare the dispersion of the storm center estimate

across the runs so the actual method to derive the cen-

troid is unimportant. Besides, several tests using various

window sizes and centers gave minute absolute differ-

ences and no relative changes.

To compare the simulations, the relative storm center

location was used. This is defined as the meridional and

FIG. 4. Estimates of daily accumulation of precipitation for each one of the 49 ensemble members of the PIC ensemble.
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zonal differences in kilometers from the calculated pre-

cipitation centroid to the nominal centroid.

Figure 5 shows the relative storm center location for

the MPP (left) and the PIC (right) ensembles. The MPP

plot shows that the new Goddard and the Thompson

microphysics are closer than the others in estimating the

nominal, visually identified storm center. Both micro-

physics are also consistent over the range of cumulus

parameterizations. By contrast, Kessler microphysics

presents highly variable estimates with differences as

large as 200 km.

As mentioned above, the dispersion shown by the en-

semble of parameterizations is as important as the indi-

vidual performances in the ensemble approach. Leaving

aside the Kessler parameterization, the remaining param-

eterizations give estimates that vary more than 100 km

from the nominal value. The effect of the land param-

eterization is not included in Fig. 5 for clarity.

The contrast of these results with the PIC plots (Fig. 5,

right) is apparent. Here, the estimates of the storm center

are tightly clustered, which confirms the qualitative ap-

praisal of fewer differences across simulations in the PIC

ensemble than in the MPP ensemble. It is worth noting

that this lower dispersion (high precision) may yield to

severe forecasting errors if the center of the cluster com-

pletely miscalculates the storm center (low accuracy), and

that the PIC ensemble approach would add no value in

such a case.

b. Spatial structure

The empirical semivariogram is another complementary

method to compare MPP and PIC simulations quantita-

tively. It expresses the change of the spatial variance with

distance. The semivariance g at d distance [g(d)] is cal-

culated as (Cressie 1993)

g(d) 5
1

2N(d)
�

(i,j)2N(d)

jpi 2 pjj
2,

where pi and pj are the precipitation at two different grid

points at d distance, and N(d) is the number of grid

points at d distance. This function has been proved useful

when comparing simulations in weather (Marzban et al.

2009) and climate (Tapiador 2010), as it provides a quan-

titative mean to gauge the spatial variability of the

fields. Thus, spatially contrasting fields have a faster-

growing semivariance with distance than less contrasted

fields, which feature as a flatter line in a semivariogram

plot.

Figure 6 illustrates such a clear difference between the

MPP and PIC simulations. The figure also shows that in

terms of the spatial structure of the precipitation fields,

the semivariograms of the PIC simulation cluster around

a run, so little new information in terms of spatial struc-

ture is added by this ensemble strategy. In contrast, the

spread of the MPP semivariograms is far wider, which

indicates more spatially different precipitation fields

among MPP ensemble members. In other words, the

MPP ensemble increases the variability of the members

in terms of spatial structure. This is relevant as there is

no a priori reason for this to happen. Precipitation fields

from different ensemble strategies may well be different

in terms of mean, maxima, or minima, but similar in terms

of spatial structure (the converse is also true). Here, it is

shown that there can be such a fundamental spatial dif-

ference between PIC and MPP ensembles.

c. Maxima, minima, and standard deviation

The analysis of the mean, maximum, and standard de-

viation of the mean daily precipitation runs confirms the

FIG. 5. Spread in the forecasting of the storm center location for the (left) MPP and (right) PIC ensembles.
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previous observations also for these aggregated values.

The 56 MPP estimates of the mean precipitation in the

domain (Fig. 7, top-left) cluster around 3.5 mm day21

(with a variability ranging from 2.25 to 4.5 mm day21),

whereas the 49 runs of the PIC ensemble (Fig. 7, top-

right) exhibit a much lower dispersion (from 3.9 to

4.25 mm day21). The maximum precipitation in the

domain (Fig. 7, middle row) presents similar dispersion

between the MPP and the PIC ensembles, while the

standard deviation of the PIC ensemble (Fig. 7, bottom-

right) shows in another way the same effect already seen

in the semiovariogram (Fig. 6): the PIC ensemble tends

to cluster around higher values than those in the MPP

ensemble, thus indicating less global dispersion than in

the MPP runs.

To relate those differences with different parameter-

ization setups, the mean, maximum and standard de-

viation can be related to specific choices of the land use

scheme (either thermal diffusion or Noah scheme), cu-

mulus parameterization (none, K–F, B–M–J, or G–D)

and microphysics (Kessler, Lin et al. WSM 3-class simple

ice, WSM 5-class, WSM 6-class graupel, New Goddard,

and Thompson et al.).

Figure 8 shows such dissagregated analysis. There is

a clear effect in the three statistics of the cumulus

parameterization and the microphysics, and to lower

extent the land scheme. One overall observation is that

for the same land and cumulus parameterizations, the

mean and standard deviation of the precipitation fields

given by Goddard microphysics closely follow Lin’s.

However, they differ in the maximum, which is gener-

ally much lower in Goddard’s.

The three WSM microphysics methods behave quite

similarly in most cases. Kessler microphysics tends to

provide far lower mean, maximum, and standard de-

viation values, except when considering the maximum

value with the K–F cumulus parameterization. This

feature is more noticeable if Noah’s land scheme is used

(Fig. 8, middle), and is likely due to the warm-rain-only

character of the K–F parameterization. It may be rele-

vant, in terms of applying these results, to notice that an

ensemble including models with Kessler microphysics

would bias the mean precipitation toward lower values.

The worst-case scenario in terms of expected differences

is the combined use of Kessler and Lin microphysics

with the wrong precipitation type. The performances of

models including both types of microphysics critically

depend on the ability to differentiate warm and cold

clouds (Hong et al. 1999; Anagnostou and Kummerow

1997; Prabhakara et al. 2000; Steiner 2004; Tokay and

Short 1996; Tokay et al. 1999) so a wrong choice could

introduce large errors in the forecasts. The choice is less

critical if Kessler microphysics is combined with schemes

other than Lin’s, but even in that case the differences are

expected to be large compared with other combinations.

In any case, it is critical to select the appropriated pa-

rameterizations for the case so the resulting ensemble is

as realistic as possible.

The variability in the maximum precipitation is large,

and sometimes unexpected for some equally sensible

combinations of the three parameterizations. Thus, the

maximum precipitation (Fig. 8, middle) given by the Lin

microphysics with the B–M–J cumulus and Noah’s pa-

rameterizations sharply differs from the maximum given

by the other microphysics with the same cumulus option.

Figure 8 also shows that, as expected, the effects of the

two land physics setups are small. The plots are almost

symmetrical for the thermal diffusion and for the Noah

scheme, although there are differences.

The larger effect on the maximum, though, comes from

the cumulus parameterization. It has been also observed

that the K–F scheme permits more grid-resolved pre-

cipitation to occur and results in both isolated heavier

amounts and more finescale structure than the B–M–J

scheme (Gallus 1999). In the experiment reported here,

the B–M–J scheme generates lower maximum values

FIG. 6. Semivariogram of the PIC ensemble (blue lines) imposed over

the semivariograms of the MPP ensemble (red lines).
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than the K–F and the G–D schemes (except if the Lin

microphysics is used). The G–D scheme is the one that

generates the lowest daily mean.

The new Goddard microphysics, on the other hand,

gives a consistently higher mean and standard deviation

than the rest of the microphysics with the exception of

Lin’s. This microphysics modeling, however, is not always

the one generating the maximum values, which is indi-

cative of the model generating wider regions with light

rainfall.

It must be noted that the impact of the microphysical

parameterizations might be underestimated, as convection

is not explicitly resolved at 25-km resolution and cumulus

parameterizations has to be used at such grid space.

Therefore, the conclusions in that regard should be

made with caution.

To explore the role of microphysics, runs at 3-km reso-

lution were performed for several explicit cumulus sche-

mes in the parent at the 9-km resolution and no convective

parameterization in the inner domain (Fig. 9). The focus

of this exercise was on the sensitivity of an advanced

and complex microphysics parameterization to the cu-

mulus parameterization in the parent domain. There-

fore, a single microphysics scheme (Goddard’s) was used.

FIG. 7. Dispersion of the (left) MPP ensemble and (right) PIC ensemble for the (top) mean,

(middle) maximum, and (bottom) standard deviation of the daily precipitation model estimates in

the domain.
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FIG. 8. Mean, maximum, and standard deviation of the daily precipitation estimates in the

model domain, for land, cumulus, and microphysics parameterizations.
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The results show that the spatial structure of the 3-km

precipitation fields is consistent with that in the previous

25-km simulations (cf. Fig. 9 with Figs. 3 and 4). Cross

correlations (Fig. 9, inset) and visual inspection show

that no major changes appear in terms of the location of

the main precipitating systems when the cumulus param-

eterization in the parent domain is varied. While a full

analysis of the results of 3-km-grid simulations is beyond

the scope of this paper, varying the microphysics schemes

with several cumulus options in the parent domain will

generate a new dataset worth of further analyses. Com-

parison of MPP and PIC ensembles at such fine spatial

resolution is also a venue for future work. Note that in

Fig. 9 the K–F cumulus parameterization for the 3-km-

grid size domain is presented just as a reference, since at

3-km resolution explicit microphysics should be used. At

such finescale, the model should be capable of resolving

convective eddies and therefore there is little need for

cumulus parameterization.

d. Cross-correlations for physics parameterizations

The relationships between the parameterizations in

terms of the mean forecasted precipitation can be al-

ternatively depicted as a correlation plot (Fig. 10), which

shows the 3136 cross correlations corresponding to all

the combinations of the parameterizations for the 25-km

runs. The key of the plot is described in the inset of the

figure: for each microphysics, the scheme of four cu-

mulus parameterization is repeated for each one of the

two land physics options, resulting in 56 3 56 correla-

tions. Obviously, the resulting matrix is symmetrical and

the main diagonal has a 1.0 r2 value.

Figure 10 exhibits several patterns of interest. The basic

repeating unit is a 4 3 4 square that corresponds to the

cumulus parameterization. The main diagonals within

each microphysics square is highly correlated whatever

the cumulus parameterization (except the noncumulus

option). The land physics, on the other hand, little affects

FIG. 9. WRF forecasts at 3-km grid space for the episode of interest (27-, 9-, and 3-km grid-spacing domains) for the five cumulus

options in the 9- and 3-km domains listed in the lower right. The plots depict the daily accumulated precipitation for 11 May 2008

(cf. with equivalent 25-km-resolution runs in Figs. 3 and 4). The parameterizations used here are Goddard’s (for microphysics),

RRTM (LW radiation), Goddard’s shortwave (SW radiation), Obukhov–Janjic (surface layer), thermal diffusion (land surface), and

M–Y–J (PBL).
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the correlations, as already expected from Fig. 8. There, it

was also clear that the Kessler microphysics is loosely

correlated with the rest of microphysics for this case, so

one can expect large discrepancies in the correlation plot.

It should be emphasized at this point that exactly the

same horizontal grid, vertical levels, and dynamics were

employed for all the MPP and PIC simulations, with the

only difference in the MPP being in some physical pa-

rameterizations. The spread of the MPP ensemble would

be even more marked if several models mixing hydrostatic

and nonhydrostatic models, different numerical schemes,

semiempirical adjustments, and software precision were to

be used. The same applies if the rest of the parameteri-

zations were also modified. Thus for instance, the PBL

scheme is known to affect precipitation as convection starts

when heat and moisture in the cumulus scheme reach a

given value. In the MPP simulations presented here, the

M–Y–J PBL scheme (Mellor and Yamada 1982; Janjic

1994) was held constant. Varying this parameterization

would certainly result in a further increase of the en-

semble dispersion, making stronger the case for using

MPP ensembles in addition to PIC ensembles.

4. Summary

Several simulations with varied microphysics, cumu-

lus, and land parameterizations (MPP runs) have been

run for a severe weather case study over Spain and com-

pared with those from a physically perturbed ensemble

(PIC runs). It has been shown that the dispersion of the

MPP ensemble is larger than that of the PIC ensemble in

terms of storm center location; spatial structure of the

precipitation; and maximum, mean, and standard devi-

ation of the daily precipitation estimates. It should not

be forgotten that the point of designing an ensemble is to

provide a capture of the uncertainty by running equally

likely realistic setups, and that the improvement in the

forecast is contingent upon the spread of the ensemble

being comprehensive enough. This is of the interest to

operational early warning forecasters because, apart from

obtaining better forecasts through the ensemble mean,

the dispersion of the ensemble provides an indication of

the uncertainty of the alerts.

These results suggest that in addition to optimizing

initial conditions, as done in most operational forecasts,

one must address physics deficiencies by using the model

as a weak constraint (Hou and Zhang 2007) in order to

provide better forecasts of extreme precipitation events.

The simulations also show that there are large differ-

ences in storm location and rain intensity depending on

the parameterizations. In the case of the modeling of

precipitation extremes, the differences may be as large

as 100% depending on the modeling done, so attention

should be paid to how multimodel ensembles are built

if changes in extremes or return periods are the variable

of interest.

The conclusions described here are based on only one

case. However, the focus of the research was to analyze

the dispersion of the estimates and not the particular

performances of the parameterizations; so it is likely that

the differences observed here are not a peculiarity of the

case chosen for study. The province of future work will be

FIG. 10. Cross correlations for the 56 parameterizations of microphysics, land physics, and

cumulus. The key of the main plot is given on the right. The values are the r2 correlations of the

mean accumulated precipitation over the simulation domain.
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to investigate the effects of the parameterizations in long-

term simulations at higher spatial resolution.
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