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ABSTRACT

The nature of solar wind (SW) turbulence below the proton gyroscale is a topic that is being investigated extensively
nowadays, both theoretically and observationally. Although recent observations gave evidence of the dominance
of kinetic Alfvén waves (KAWs) at sub-ion scales with ω < ωci, other studies suggest that the KAW mode cannot
carry the turbulence cascade down to electron scales and that the whistler mode (i.e., ω > ωci) is more relevant.
Here, we study key properties of the short-wavelength plasma modes under limited, but realistic, SW conditions,
typically βi � βe ∼ 1 and for high oblique angles of propagation 80◦ � ΘkB < 90◦ as observed from the Cluster
spacecraft data. The linear properties of the plasma modes under these conditions are poorly known, which contrasts
with the well-documented cold plasma limit and/or moderate oblique angles of propagation (ΘkB < 80◦). Based on
linear solutions of the Vlasov kinetic theory, we discuss the relevance of each plasma mode (fast, Bernstein, KAW,
whistler) in carrying the energy cascade down to electron scales. We show, in particular, that the shear Alfvén mode
(known in the magnetohydrodynamic limit) extends at scales kρi � 1 to frequencies either larger or smaller than
ωci, depending on the anisotropy k‖/k⊥. This extension into small scales is more readily called whistler (ω > ωci)
or KAW (ω < ωci), although the mode is essentially the same. This contrasts with the well-accepted idea that the
whistler branch always develops as a continuation at high frequencies of the fast magnetosonic mode. We show,
furthermore, that the whistler branch is more damped than the KAW one, which makes the latter the more relevant
candidate to carry the energy cascade down to electron scales. We discuss how these new findings may facilitate
resolution of the controversy concerning the nature of the small-scale turbulence, and we discuss the implications
for present and future spacecraft wave measurements in the SW.
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1. INTRODUCTION

The nature of the solar wind (SW) turbulence below the ion
scale (typically ρi ∼ 100 km, corresponding to an observed
frequency in the spacecraft frame of fsc ∼ 0.5 Hz) has attracted
considerable interest in the space and astrophysical communities
in recent years. This has been encouraged in particular by
recent observations from the Cluster mission that provided
the most complete and detailed picture of the SW turbulence
cascade from magnetohydrodynamic (MHD) scales (L � ρi)
to electron scales (L ∼ ρe ∼ 1 km; Sahraoui et al. 2009,
2010b; Kiyani et al. 2009; Alexandrova et al. 2009; Chen et al.
2010). Determining the nature and properties (e.g., scaling,
anisotropy) of the turbulence at small scales is indeed a crucial
point to understanding the problems of energy dissipation and
heating, particle acceleration, and magnetic reconnection in
space and astrophysical plasmas (Schekochihin et al. 2009).
Recent Cluster observations provided clear evidence that SW
turbulence cascades below the ion scale ρi down to the electron
scale ρe where dissipation becomes important and the spectra
steepen to ∼fsc

−α , with α � 4 (Sahraoui et al. 2009, 2010b).
The spectrum thus formed was termed the dissipation range
while the range of scales between ρi and ρe has been termed
the dispersive range in reference to the dispersive nature of the
plasma modes at those scales (Stawicki et al. 2001). In a case
study, Sahraoui et al. (2010b) performed a detailed analysis
of the energy cascade from MHD to sub-ion scales using a
multipoint measurement technique called k-filtering (Pinçon &
Lefeuvre 1991; Sahraoui et al. 2003b, 2010a; Narita et al. 2010a,
2010b; Tjulin et al. 2005). The results clearly showed that:

(1) the magnetic turbulence is strongly anisotropic (k⊥ � k‖)
down to the observed scale k⊥ρi ∼ 2; (2) the cascade is
consistent with kinetic Alfvén wave (KAW) turbulence as
proposed in Howes (2008) and Schekochihin et al. (2009) with
frequencies in the plasma rest frame ω � 0.1ωci, although the
frequencies in the spacecraft frame reached 20ωci; and (3) the
turbulence undergoes a transition range near the ion scale ρi

characterized by a steepening of the spectrum from k−1.6
⊥ to

k−4.5
⊥ , which has been interpreted as due to Landau damping

of magnetic energy into ion heating (Howes et al. 2008). The
remaining energy cascades following a power law ∼f −2.8

sc
down to the electron scale where the energy was suggested
to dissipate into electron heating. The wavenumber spectra at
those frequencies could not have been directly measured using
the k-filtering technique due to the limitation imposed by the
satellites separations, which are larger than 100 km (Sahraoui
et al. 2010c). However, one-dimensional wavenumber spectra
can be inferred indirectly by means of the Taylor frozen-in-
flow approximation provided that it is valid (Bale et al. 2005;
Sahraoui et al. 2009; Alexandrova et al. 2009). Similar analyses
of magnetic turbulence at MHD and sub-ion scales using the
k-filtering technique have been carried out recently and have
confirmed most of these results (Narita et al. 2010a, 2010b,
2011; F. Sahraoui et al. 2011, in preparation).3

3 Narita et al. (2011) have claimed to have observed several plasma modes,
other than the KAW, based on the random spread of the observed dispersion
relations. However, given the absence of any statistical error bars in those
observations, one cannot reliably interpret those results. A detailed discussion
of these important issues will be given elsewhere.
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From the theoretical point of view, the debate is generally
polarized between those who advocate for the relevance of KAW
turbulence to explain observations of small-scale SW turbulence
(Howes 2008; Howes et al. 2008, 2011b; Schekochihin et al.
2009) and those who believe in the necessity that whistler (or
another type of) turbulence should exist at small scales (Stawicki
et al. 2001; Gary & Smith 2009; Podesta et al. 2010). Indeed,
Podesta et al. (2010) have used a toy model of energy cascade
where the linear damping rate of the KAW waves is considered
and showed that the KAW cascade cannot reach the electron
scale because the energy flux of the cascade vanishes at scales
kρi ∼ 20. However, recent GyroKinetic simulations, which self-
consistently contain kinetic damping of the plasma modes, did
not confirm that conclusion and showed rather that the KAW
mode can carry turbulence cascade down to electron scales
(Howes et al. 2011b). Recent two-dimensional PIC simulations
also showed the formation of a power-law spectrum k−5.8

⊥ below
the electron inertial length (Camporeale & Burgess 2011). In
the framework of incompressible electron-MHD turbulence,
Mayrand & Galtier (2010) showed that the magnetic energy
spectra should follow a power law k−11/3 at scales smaller than
de (the electron inertial length), which they proposed to explain
the steepening of the spectra near the electron scale reported
in Sahraoui et al. (2009, 2010b). Note, however, that this fluid
model is non-dissipative and does not consider any damping of
the turbulence via kinetic effects, which are important in the
dispersive and the dissipation ranges.

Here we derive and analyze the linear solutions of the
Vlasov–Maxwell equations to shed light on new aspects of
small-scale kinetic plasma modes. Based on the obtained damp-
ing rates of the waves and their magnetic compressibilities, we
discuss the relevance of each mode to carry the energy cascade
in the SW down to electron scales. Unlike the previous papers
that had dealt with this problem, in this article we focus only on
the properties of the plasma modes under a restricted range of
SW parameters, namely, hot plasma with βi � βe ∼ 1 and high
oblique angles of propagation, typically 80◦ � θkB < 90◦, as
observed recently using the k-filtering technique (Sahraoui et al.
2010b; Narita et al. 2011; F. Sahraoui et al. 2011, in prepara-
tion). This range of parameters has not been addressed carefully
so far. Filling this gap should help resolve part of the ongoing
controversies on the problem of energy cascade and dissipation
in the dispersive range.

Before studying in detail the plasma kinetic modes, in the
next section we will first derive the linear solutions of the two-
fluid theory in the cold and hot plasma cases. Although one
may question the validity of the fluid description of hot plasmas
(we do not address that issue here; see Krauss-Varban et al.
1994; Howes 2009), we believe nevertheless that deriving the
fluid solutions is a necessary step to better understand the more
complex solutions given by the kinetic theory. This complexity
is essentially due to the damping of the modes by kinetic effects,
which makes them hard to trace at all scales, in addition to
the rising of several mode conversions (Krauss-Varban et al.
1994; Li & Habbal 2001). As we will show, the reduced-two-
fluid theory indeed helps track the various plasma modes and
understand the important changes in their properties depending
on the plasma β and the obliquity of the waves. It also allows
us to derive analytically various asymptotic properties of the
waves that will be used to discuss new properties of the Alfvén
and the whistler modes. In the last section we discuss the results
and their implications on spacecraft measurements of waves in
the SW.

2. LINEAR SOLUTIONS OF THE
REDUCED-TWO-FLUID MODEL

We use the reduced-two-fluid theory as described in Sahraoui
et al. (2003a), whose equations are the following:

∂tns + ∇ · (nsvs) = 0 (1)

∂tvs + vs · ∇vs = − ∇Ps

msns

+
qs

ms

(E + vs × B) (2)

dt

[
Ps

(msns)γs

]
= 0 (3)

∂tB = −∇ × E (4)

∇ × B = μ0J, (5)

where the subscript s denotes ions and electrons, γs is the
polytropic index, and J = ∑

s qsnsvs is the electric current.
The system of Equations (1)–(5) is essentially equivalent to
the classical two-fluid model when the non-relativistic and
quasi-neutrality assumptions are considered. This translates into
neglecting both the longitudinal and the transverse components
of the displacement current, which yields the simplified form of
Equation (5). This system has the advantage of ruling out the
three high-frequency modes of the two-fluid theory: the optic
modes (with Vφ ∼ c, the speed of light) and the Langmuir mode
ω ∼ ωpe. However, it still includes the electron inertia, which
allows us to describe properly the whistler mode. The system has
therefore three eigenmodes whose dispersion relations can be
derived analytically. The main simplification with respect to the
complete kinetic system that will be studied in the next section
concerns the introduction of polytropic closure equations that
excludes any resonant phenomenon, in particular any effect of
wave damping.

To derive the linear solutions we linearize Equations (1)–(5)
by assuming that ns = n0 + δns, Ps = P0 + δPs, B =
B0 + δB. If, furthermore, we assume that the perturbations
vary as e−j (ωt−k·r), one can obtain (after some calculations) the
following set of equations:

δE = B0Mi · δvi (6)

δE = B0Me · δve (7)

δvi − δve = 1

B0
M · δE, (8)

where

Mi =
[
−j

ω

ωci
I + jγi

k2Vthi
2

ωωci
ekek + G

]
(9)

Me =
[
j

ω

ωce
I − jγe

k2Vthe
2

ωωce
ekek + G

]
(10)

M = j
k2VAi

2

ωωci
[ekek − I], (11)
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Figure 1. Dispersion relations of the reduced-two-fluid model in the hot (red) and cold (black) plasmas with Ti = Te , γi = 5/3, and γe = 1 at different angles of
propagation. The vertical dashed lines correspond to the electron inertial length kde = 1 for the two values of βi . The inset in the top panel is a zoom on the very small
scales of the plot to show the asymptotes ω+ and ω−.

(A color version of this figure is available in the online journal.)

where I is the identity tensor, G = eyex − exey, and ek is the
unit wave vector assumed to be in the XZ plane

ek = k/k =
(

sin θkB
0

cos θkB

)
.

B0 = B0ez, ωcs = eB/ms , Vths , and VAs are the back-
ground magnetic field, the gyropulsation, the thermal, and
the Alfvén speeds of the particle s, respectively. Regrouping
Equations (9)–(11) we obtain the final equation

[
Mi

−1 − Me

−1 − M
]

· δE = 0,

which admits solutions only if

Det
[
Me − Mi − Me · M · Mi

]
= 0. (12)

Equation (12) yields the final dispersion equation of the reduced-
two-fluid model

c4γX6 − c2[(1 + μei)(1 + 2βiγ )X4 +
(
1 + μ2

ei

)
γX6]Y 2

+
[
βi(1 + μei)

2(1 + c2 + βiγ )X2 +
[
c2

(
1 + μ3

ei

)
+ μei(1 + μei)(1 + 2βiγ )

]
X4 + μ2

eiγX6
]
Y 4 − (1 + μei)[

βi
2
(
1 + μ2

ei

)
+ 2βiμei(1 + μei)X

2 + μ2
eiX

4
]
Y 6 = 0, (13)

where X = kρi , Y = ω/ωci, ρi = Vthi
/ωci, βi = Vthi

2/VA
2,

c = cos θkB, μei = me/mi , and γ = γe + γi is the total
polytropic index. The solution of Equations (13) are plotted
in Figures 1 and 2 in low and high βi plasmas for the given
angles of propagation and SW parameters.

At low frequencies (ω < ωci) we found that the slow
magnetosonic mode in both low and high β has an asymptotic
frequency

ω0 ∼ ωci cos θkB.
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Figure 2. Dispersion relations on a log–log scale of the reduced-two-fluid model
in the hot (red) and cold (black) plasmas showing the connection between high-
and low-frequency modes (the same description as in Figure 1 applies).

(A color version of this figure is available in the online journal.)

At high frequencies (ω > ωci) both hot and cold plasmas have
two modes with different asymptotes. Figure 2 shows a similar
dispersion curve in log–log scale. One can see that the first
mode is connected at low frequency (ω < ωci) to the shear
Alfvén mode (known in MHD) and at kde � 1 develops an
asymptote ω− given by

ω− ∼ ωce cos θkB.

It is worth recalling here that the asymptote ω− is usually
attributed to the whistler mode, which in this case is connected
at low frequency to the Alfvén mode and not to the fast
magnetosonic mode. Therefore, in the following we will refer
to this mode as the Alfvén-whistler mode for the sake of
clarity. We recall here that the designation of slow and fast
modes is based upon the ordering in the phase speeds of the
modes. While this ordering remains valid in fluid theories at
low and high frequency, it can be totally violated in kinetic
theory due to possible interconnections between low- and high-
frequency modes (Krauss-Varban et al. 1994; Li & Habbal
2001). Figure 2 also shows that the second high-frequency mode
is connected at low frequency (both in high and low βi) to
the fast magnetosonic mode. Therefore, we will refer to this
mode as the classical-whistler mode. In the low βi limit the
classical-whistler mode undergoes significant curvature near
ω+ at all angles of propagation before converging toward the
magnetosonic dispersion ω ∼ kCs , where Cs = √

Teiγe + γiVthi

is the sound speed and Tei = Te/Ti . From Equation (13) one
can easily show that in the cold case (βi = 0) the “asymptote”
ω+ is given by

ω+ ∼
√

ωce
2 cos2 θkB + ωciωce,

which has two interesting limits (for ωci 
 ωce):

1.
lim

θkB→0
ω+ ∼ lim

θkB→0
ω− = ωce,

2.
lim

θkB→ π
2

ω+ = √
ωciωce.

The first limit shows that the branch ω+ tends toward
the known whistler asymptote ω+ ∼ ωce in quasi-parallel
propagation as shown in Figure 1 (top panel), while the second

limit shows that ω+ tends toward the lower-hybrid frequency
ωLH ∼ √

ωciωce ∼ 42ωci for quasi-perpendicular propagation.
In contrast, and as can be seen in Figure 1, the asymptote ω− of
the Alfvén-whistler mode continues decreasing as θkB → π/2
in both low and high βi and becomes even smaller than ωci at
all scales for the angles of propagation

θkB > θcrit. = cos−1(μei).

For the real mass ratio μei = 1/1836 one obtains θcrit. = 89.◦97.
This implies that at quasi-perpendicular propagation (i.e., θkB >
θcrit.) there are two asymptotes below ωci: one at extremely low
frequency, which is the slow magnetosonic mode discussed
above (ω0 ∼ ωci cos θkB) and the other one is the Alfvén-
whistler mode with the asymptote ω− ∼ ωce cos θkB. This is
the first important conclusion of this part. It is worth recalling
that these two modes were found to be linear solutions of
the Hall-MHD equations in the incompressible limit (Sahraoui
et al. 2007; Galtier 2006), and become degenerate at large
(MHD) scales. They were referred to, respectively, as the
Alfvén and the whistler modes. In such incompressible fluid
theories, the classical-whistler mode is indeed ruled out by the
incompressibility assumption (i.e., β → ∞). All turbulence
theories built in the framework of those incompressible fluid
models are thus based on the slow and Alfvén-whistler modes
discussed here (Galtier 2006, 2008). The second important
finding from Figure 1 is the major change that the classical-
whistler mode undergoes in high βi : when approaching quasi-
perpendicular propagation the curvature near ω+ disappears
and the dispersion curve tends toward the magnetosonic mode
ω ∼ kCs . As we will show in the next section, when kinetic
effects are considered, the classical-whistler mode does not
simply extend above ωci, but rather splits there into different
ion Bernstein modes. Because the slow magnetosonic mode is
strongly damped in high β plasma by kinetic effects, the only
relevant mode to carry the energy cascade down to the electron
scale is the new Alfvén-whistler mode.

3. LINEAR SOLUTIONS OF THE VLASOV–MAXWELL
EQUATIONS FOR HIGH OBLIQUE PROPAGATION

In this section we solve numerically the linear
Maxwell–Vlasov equations using the WHAMP code (Rönnmark
1982), and compare to the previous linear solutions of the re-
duced hot two-fluid theory. We assume Maxwellian distribution
functions of electrons and ions and use realistic SW param-
eters reported in Sahraoui et al. (2009). Part of the obtained
dispersion relations and damping rates are given in Figure 3
(the slow magnetosonic mode was found to be heavily damped
and thus not plotted here, nor is that mode studied in the rest of
this paper). The plot shows that the fast magnetosonic modes
at high oblique angles undergo resonances at the ion cyclotron
frequency, which contrasts with the better known fast mode in
quasi-parallel propagation or low βi . This result is confirmed
by the analysis of the wave polarization. In Figure 4, we plot
the phase of the electric field component Ey whose sign gives
the sense of polarization: Arg(Ey) > 0 (resp. < 0) for right
(resp. left) hand polarized waves. We see a clear transition from
right- to left-hand polarization of the fast mode near kρi ∼ 1
(corresponding to ω ∼ ωci).

In Figure 3, we also find the kinetic counterpart of the
Alfvén-whistler mode derived from the hot two-fluid theory. The
Alfvén-whistler mode extends the shear Alfvén mode to small
scales as can be seen in the inset of Figure 3 (this result was also

4



The Astrophysical Journal, 748:100 (11pp), 2012 April 1 Sahraoui, Belmont, & Goldstein

 0  2  4  6  8 10

 0.0

-1.0

 1.0

 2.0

 3.0

 4.0

80.

80.

81.

81.

82.

82.

83.

83.

84.

84.

85.

85.

86.

86.

87.

87.

88.

88.

89.

89.

80.

80.

81.

81.

82.

82.

83.

83.

84.

84.

85.

85.

86.

86.

87.

87.

88.

88.

89.

89.

kρ
i

β
i
=2.9

T
i
=5T

e

Alfvén-whistle
r

Fa
st

ω/
ω

i c

W
hi

st
le

r

KAW

fast

whi
st.

KAW

kρ
i

ω/
ω

i c

Shear A
lfvén

Figure 3. Linear solutions of the Maxwell–Vlasov equations: dispersion
relations (blue) and damping rates (red) for the angles of propagation 80◦ �
θkB � 89◦. The inset is a log–log plot of the same dispersion relations to show
the connection between low- and high-frequency modes.

(A color version of this figure is available in the online journal.)

found in Figure 1 of Krauss-Varban et al. 1994, although not
discussed in detail in that paper). The mode becomes dispersive
at scales kρi � 1 and develops frequencies larger (resp. smaller)
than ωci for θkB < 88◦ (resp. � 88◦) up to the scale kρi � 10.
We refer to the branches ω < ωci and ω � ωci, respectively, as
the KAW and the whistler modes. Note that the limit ω = ωci
is reached at different spatial scales depending on the value
of the angle θkB. Figure 4 shows that in contrast to the fast
magnetosonic mode, the Alfvén-whistler mode has a right-hand
polarization at all scales and does not undergo significant change
near kρi ∼ 1. Nevertheless, the Alfvén-whistler modes show
features related to wave–particle resonances near the harmonics
of ions (because they are not strictly circularly polarized). This
can be seen in Figure 5 which shows the enhancement of
the damping of the Alfvén-whistler modes near the harmonics
ωN = Nωci − k‖Vthi

(a similar observation can be made in
Figure 9 at other angles of propagation).

θkB=87°

Figure 5. Exponential of the normalized damping rate of the Alfvén-whistler at
θkB = 87◦ showing enhancement of the damping near the harmonics of ions.

Figure 6 shows the Alfvén-whistler solutions extended to high
frequencies and small scales. We observe that the damping of the
Alfvén-whistler mode becomes more important when departing
from θkB ∼ 90◦ toward less oblique angles. For θkB = 89.◦99
the solution extends down to the electron gyroscale ρe, where
the damping rate remains small,4 γ /ωr ∼ 0.4. For less oblique
angles, the Alfvén-whistler mode develops frequencies higher
than ωci but they are subject to stronger damping. This can be
seen clearly in Figure 7, which shows the damping rate in one
period of each wave mode. Figure 7 (top panel) shows that
the Alfvén-whistler modes are abruptly damped at kρi ∼ 1. At
smaller scales the most oblique modes are the least damped.
The linear damping rate may thus play a role of a “filter that
lets pass” only very oblique modes at small scales. This may
explain the high oblique modes frequently observed in the SW
(Sahraoui et al. 2010b; Narita et al. 2011; F. Sahraoui et al. 2011,
in preparation).

A similar extension of the fast mode solutions to frequencies
higher than ωci is shown in Figure 8. We observe frequency gaps
in the dispersion curves caused by the ion Bernstein modes,
known to develop in hot plasmas at quasi-perpendicular angles
of propagation (e.g., Li & Habbal 2001). The more oblique
Bernstein modes are the least damped as shown in Figure 7
(lower panel). This result clearly invalidates the magnetosonic
dispersion ω ∼ kCs of the classical-whistler mode at ω > ωci
found in the previous section from the hot two-fluid theory.

Figure 7 shows clearly that, while the Bernstein and the
fast modes are less damped than the Alfvén-whistler modes
near kρi ∼ 1, both the Bernstein and the fast magnetosonic
modes become heavily damped at kρi � 3. The Alfvén-whistler

4 This solution has been used in Sahraoui et al. (2009) to interpret SW
observations.

Figure 4. Phase of the electric field component Ey of the Alfvén-whistler and the fast modes for the angles of propagation 80◦ � θkB � 89◦: it is positive (negative)
for right (left) hand polarized waves.
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Figure 7. Exponential of the damping rates of the Alfvén-whistler, fast, and Bernstein modes, normalized to the frequency of each wave for angles of propagation
80◦ � θkB � 89◦.

modes appear to be the less damped ones at scales kρi � 3.
Furthermore, among these modes the most oblique one is the
least damped, which is the KAW mode at θkB = 89.◦99 in
Figure 7.

In Figure 9 we tested the validity of these results for different
high βi values and with Ti = Te. We see clearly that the

conclusions above remain valid and that the ratio Ti/Te does
not modify much the results except for slight changes of the
dispersion curves near the harmonics of ions. This can be seen
for instance by comparing Figure 9 (middle panel) to Figure 3
which was plotted for the same βi = 2.9 but with Ti = 5Te.
It is important, however, to note that when βi is becoming
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Figure 8. Dispersion relations of the fast and the ion Bernstein modes (blue) and their damping rates (red) for the angles of propagation 80◦ � θkB � 89◦.

(A color version of this figure is available in the online journal.)

smaller (i.e., decreasing toward 1) the damping of Alfvén-
whistler modes by cyclotron resonances become important for
some angles of propagation, as can be seen in Figure 9 (top
panel). We tested other values of βi (not shown here) and found
that the conclusions above remain valid. Moreover, we found
that higher values of βi allow extending the Alfvén-whistler
modes to even smaller scales (for βi = βe = 25, the highest
tested value, the modes were found to extend up to kρi ∼ 30).
On the contrary, for βi ∼ 1 we found that none of the Alfvén-
whistler modes (when 80◦ � θ < 90◦) can propagate at ω > ωci
because they are strongly damped at ω ∼ ωci.

Now one can ask the question: which of these plasma modes,
fast, Bernstein, KAW, or whistler, is likely to carry the energy
cascade of turbulence down to the dissipation scales in the
limited range of SW parameters studied here? While all these
modes might contribute to the energy cascade in the SW, based
on linear damping rates and assuming that (quasi-)linear theory
is applicable to small-scale SW fluctuations, we can conclude
that the KAW branch (ω < ωci) is more likely to be observed
in the data than the whistler branch (ω > ωci). However,
damping rates alone cannot rule out the presence of fast or
ion Bernstein modes in the transition range 0.5 � kρi � 3
where they are found to be less damped than the Alfvén-whistler
modes. Why, then, rule out the fast and the Bernstein modes in
this range of scales? It has been often argued (e.g., Howes
2009) that the Bernstein modes are highly electrostatic and
therefore cannot account for the magnetic spectra observed in
the dispersion range in the SW. This is not totally correct as
can be seen in Figure 10, which shows the three components

of the electric field of each mode. With k chosen in the XZ
plane, and considering the high oblique angles studied here
(80◦ � θkB � 89◦), the EX component (in red in the plot)
represents essentially the electrostatic field. It is instructive to
observe that the electromagnetic part of the Bernstein mode
dominates over the electrostatic part at scales 0.2 � kρi � 1
and that the electrostatic component dominates only at smaller
scales. More interestingly, we observe that the Alfvén-whistler
modes are essentially electrostatic at all scales. This, in fact,
is not surprising: in the MHD limit the field perturbations of
the shear Alfvén mode δE and δB and the mean field B0 are
orthogonal to each other. At quasi-perpendicular angles the
electric field δE is therefore necessarily quasi-longitudinal (i.e.,
parallel to k).

Figure 10 shows that only the fast mode has a dominant
electromagnetic field up to scales kρi � 3 where it becomes
comparable to the electrostatic part. The three modes have very
small parallel electric field (given by the Ez component in
the plot). Therefore, Figure 10 shows clearly that one cannot
rule out any mode only on the basis of the strength of its
electrostatic component. Instead we suggest using the magnetic
compressibility (Song et al. 1994; Lacombe et al. 1995), in
addition to the damping rates discussed above, to rule out the
fast and the Bernstein modes in SW observations.

We define the magnetic compressibility by CB = δB‖2/δB2

(where δB2 is the total magnetic power). It is a well-established
result that SW magnetic compressibility is small in the inertial
range, i.e., CB ∼ 0.1, then it increases to CB ∼ 0.4 in the tran-
sition and the dispersive ranges (Sahraoui et al. 2010b; Kiyani
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Figure 9. Dispersion relations of the Alfvén-whistler modes (blue) and their damping rates (red) for the angles of propagation 80◦ � θkB � 89◦ and for different
values of βi (all have Ti = Te).

(A color version of this figure is available in the online journal.)

et al. 2011). In Figure 11 we plot the magnetic compressibilities
of the three modes for the same angles of propagation as be-
fore. The magnetic compressibility profile of each mode shows
clearly that the Alfvén-whistler modes fit SW observations bet-
ter, at least at the scales kρi � 1, since both the Bernstein and
the fast modes show the dominance of parallel power over per-
pendicular power (CB ∼ 1). However, it is important to note in
Figure 11 (top panel) that all of the Alfvén-whistler modes (at
different angles) have the same profile of magnetic compress-
ibility. This implies that, at the oblique angles studied here,
one cannot answer the question as to which branch, KAW or
the whistler, dominates in the data solely from the measure-
ment of the magnetic compressibility. This contrasts with the

conclusions given in Gary & Smith (2009). As discussed above,
the computed damping rates showed that the whistler branch is
more damped than the KAW branch at small scales.

4. DISCUSSION

The previous results show that in high βi plasma and at
high oblique angles of propagation, there is one solution that
extends from the MHD to the electron scales: it is the Alfvén-
whistler mode. The whistler mode discussed here develops as a
continuation at high frequency of the shear Alfvén mode and not
of the fast magnetosonic mode. This result rises some exceptions
to the general claim made by Howes et al. (2011a) in the absence
of whistler modes in small-scale SW turbulence because of the
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Figure 10. Electric field components Ex (red), Ey (green), and Ez (blue) of the Alfvén-whistler, fast magnetosonic, and the ion Bernstein modes normalized to their
total electric field, computed for the angles of propagation 80◦ � θkB � 89◦. The Ex component (red) is essentially the electrostatic part of the electric field in each
mode, while Ez (blue) is the parallel component (to B0) of the electric field.

(A color version of this figure is available in the online journal.)

Figure 11. Magnetic compressibility of the Alfvén-whistler, fast, and Bernstein modes for the angles of propagation 80◦ � θkB � 89◦.

absence of fast magnetosonic modes in the inertial range. The
fast mode strongly resonates with ions near ωci and splits into
different ion Bernstein modes at higher frequencies. In contrast,
the shear Alfvén mode extends at scales kρi � 1 to frequencies

either larger or smaller than ωci, depending on the ratio k‖/k⊥.
The same mode can thus be called whistler (ω > ωci) or KAW
(ω < ωci) depending on this ratio. If k‖/k⊥ < μei , then the
Alfvén mode follows the KAW mode with ω < ωci at all scales

9
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(even at kρe > 1). For larger values of k‖/k⊥, the Alfvén mode
develops a whistler branch with ω � ωci at a given scale, but
the damping rate increases as well. Based on the damping rates
one would expect to observe more oblique KAW than oblique
whistlers. This result may be considered as another, rather
simpler, alternative to explain the strong anisotropies (k⊥ � k‖)
observed in the SW. Indeed, there are several predictions from
different MHD and kinetic turbulence models, e.g., critical
balance conjecture (Goldreich & Sridhar 1995), that predict
stronger anisotropy at small scales (Shebalin et al. 1983). Here
we argue that the linear kinetic damping of the Alfvén-whistler
modes as discussed above may as well explain such observed
strong anisotropy: the more oblique Alfvén-whistler modes are
indeed the less damped ones.

From this result it appears clear that the question as to which
branch, KAW or whistler, dominates in the data reduces to the
question as to how oblique is the wave vector k. The answer
requires accurate measurement of the angle θkB, which in turn
requires simultaneous measurement of k‖ and k⊥. This is now
possible using the k-filtering technique on Cluster spacecraft
data (Sahraoui et al. 2006, 2010b; Narita et al. 2010a). However,
as one can see from Figure 3, a change in the angle of
propagation from θkB = 80◦ to θkB ∼ 90◦ will change the
physics from the whistler branch to the KAW branch. Measuring
the angle θkB with an accuracy better than 10◦ is quite difficult,
even with the powerful multi-spacecraft techniques, owing to the
various sources of uncertainties in the measurements (Sahraoui
et al. 2003b, 2010c).

When simultaneous measurement of k‖ and k⊥ is not possible,
for instance when only single spacecraft data are available,
another alternative, evoked briefly in Sahraoui et al. (2009),
exists to test which mode (whistler or KAW) is present in the
data. As we will show below, this method is however limited to
situations where turbulence is not confined to the very oblique
angles studied here. Let us discuss it in more detail here. The
general formula relating the frequency of the wave in the SW
rest frame ω to the measured one onboard the spacecraft ωsc is
given by

ωsc = ω + kVsw cos θkV, (14)

where Vsw is the SW speed forming an angle θkV with the k
vector. If the KAW branch (ω < ωci) dominates in the dispersive
range down to the electron scale, then the Taylor frozen-in-
flow assumption should be valid, meaning that Equation (14)
reduces to ωsc ∼ kVsw cos θkV. Now, let us assume furthermore
that two breakpoints occur in the turbulence energy spectra at
the ion and the electron gyroscales ρi and ρe (Sahraoui et al.
2009). As shown in Figure 12, these breakpoints should be
observed in the spacecraft frame, respectively, at the Doppler-
shifted frequencies fρi

= ωρi
/2π = Vsw cos θkV/2πρi and

fρe
= ωρe

/2π = Vsw cos θkV/2πρe. Assuming a similar angle
θkV at the ion and the electron scale, the ratio between the two
frequencies should fulfill the relation

fρe

fρi

= ρi

ρe

=
√

μei

Ti

Te

 42

√
Ti

Te

. (15)

From Figure 12 one obtains the ratio fρe
/fρi

∼ 42 considering
that Ti = Te. In the data studied in Sahraoui et al. (2009)
Equation (15) has been accurately verified: with Ti/Te ∼ 5 the
predicted ratio from Equation (15) is fρe

/fρi
∼ 95, which was

very close to the ratio between the frequencies corresponding
to the observed electron breakpoint at fρe

∼ 40 Hz and ion
breakpoint at fρi

∼ 0.4 Hz.
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Figure 12. Frequency signatures of the ion and electron gyroscales a frozen-in
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(A color version of this figure is available in the online journal.)

If, however, relation (15) is not fulfilled by two observed
breakpoints, then this would imply that the Taylor assumption
fails, or equivalently, that a dispersive branch of the whistler
type exists within the data. To show that let us now assume
that the whistler branch is dominant in the dispersive range. In
this case the Taylor hypothesis will naturally fail (since phase
speeds comparable to Vsw are present). At the very small scale,
i.e., near ρe, one can even expect that the phase speed of the
whistler mode, being linear in k (since ω ∝ k2), will be larger
than Vsw as can be seen in Figure 12. In this case Equation (14)
yields ωsc ∼ ω. This means that the relevant temporal scale will
be given, not by “Doppler-shifting” ρe, but by the dispersion
curve of the whistler mode in the plasma rest frame. From
Figure 12 one can see that the scale ρe (=de) will yield a
different breakpoint frequency depending on the angle θkB:
ω1  500ωci and ω2  1000ωci, respectively, for θkB = 60◦ and
θkB = 10◦. With fci ∼ 0.5 Hz, the breakpoint at the electron
scale should thus be observed onboard the spacecraft at the
frequencies 500 Hz and 250 Hz, respectively. These frequencies
are much higher than those reported in Sahraoui et al. (2009),
which validates the conclusions of that work that turbulence
was more consistent with the KAW modes (or quasi-stationary
fluctuations) than with whistlers modes. At higher oblique
angles (θkB > 60◦) one can extrapolate from Figure 12 that the
phase speed of the whistler branch will become comparable or
smaller than Vsw, therefore the Doppler shift cannot be neglected
in Equation (14). An accurate estimation of both terms in the
right-hand side of Equation (14) is then necessary. As mentioned
above, this shows the limit of this simple method and emphasizes
again the difficulty in distinguishing between the two branches,
KAW and whistler, of the same mode at the very high oblique
angles. The estimations given here can be tested on SW magnetic
power spectra that can be measured by the high-time resolution
Cluster search coils (up to 225 Hz in the spacecraft frame of
reference Sahraoui et al. 2009, 2010c) to search for data intervals
when parallel or moderate oblique whistler mode turbulence
may exist (i.e., intervals not fulfilling Equation (15)). However,
very often, the level of the magnetic turbulence in the SW is
not sufficiently high and can hit the sensitivity floor of the
magnetometers at frequencies as low as 20 Hz. This limitation
emphasizes the need in the future space missions for new search
coils that have higher levels of sensitivity in the dispersive and
the dissipation ranges of SW turbulence.
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5. CONCLUSIONS

Using the hot two-fluid and the Vlasov theories we studied
key properties of the linear plasma modes under realistic SW
conditions at 1 AU, namely, βi � βe ∼ 1, Ti � Te and focused
on high oblique angles of propagation 89◦ � θkB < 90◦ as
observed frequently from the Cluster multi-spacecraft data. We
discussed the relevance of each of the main modes (the KAW,
the whistler, the fast magnetosonic, and the ion Bernstein) to
carry the energy cascade below the ion gyroscale (the slow
magnetosonic mode being heavily damped by kinetic effects).
We showed in particular that the whistler branch develops as a
continuation at high frequency of the classical (shear) Alfvén
wave known in the MHD limit, and not of the fast magnetosonic
mode. The Alfvén mode extends indeed at scales kρi � 1 to
frequencies either larger or smaller than ωci, depending on
the anisotropy k‖/k⊥. The same mode is thus called whistler
(ω > ωci) or KAW (ω < ωci) depending on the anisotropy ratio.

Unlike the two-fluid model, the Vlasov theory shows that the
fast magnetosonic mode undergoes strong cyclotron damping
at ω ∼ ωci and splits up into ion Bernstein modes at ω > ωci,
in agreement with the analysis of the wave polarization. We
also showed that ruling out the fast and the Bernstein modes
from the cascade process in the dispersive range based on their
electrostatic nature is incorrect, since the Alfvén-whistler modes
are shown to be electrostatic as well at high oblique angles. We
suggest rather that one must combine magnetic compressibility
and damping rates to rule out those modes: both were shown to
be highly compressible (i.e., B2

‖ � B2
⊥) in disagreement with

typical SW observations of magnetic field data. In addition,
those modes were shown to be heavily damped in the dispersive
range as compared with the Alfvén-whistler mode. We showed,
finally, that the modes on the whistler branch are more damped
than those of the KAW branch, which makes the latter a more
relevant candidate to carry the energy cascade down to electron
scales. We also demonstrate a way to test the presence of either
branch in SW spacecraft data and discussed the limitation of the
existing spacecraft observations that need to be kept in mind in
the planning of the future space missions.

Finally, it is important to keep in mind that the conclusions of
this work may not be applicable to all SW observations because
the present study is fully linear (one can question the relevance
of linear theories to SW turbulence, see, for instance, Dmitruk
& Matthaeus 2009; Howes 2009) and restricted to the range
of parameters discussed above. Moreover, the role that can be
played by several plasma instabilities (both at ion and electron
scales) as reported in several space observations (Sahraoui et al.
2006; Hellinger et al. 2006; Bale et al. 2009) is not addressed
here.

This work is part of the project THESOW funded by l’Agence
Nationale de la Recherche (ANR, France). F. S. thanks G. Howes
for stimulating discussions.
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