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Abstract 24 

[1] The real-time availability of satellite-derived precipitation estimates provides hydrologists 25 

an opportunity to improve current hydrologic prediction capability for medium to large river 26 

basins. Due to the availability of new satellite data and upgrades to the precipitation algorithms, 27 

the Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis real-time 28 

estimates (TMPA-RT) have been undergoing several important revisions over the past ten years. 29 

In this study, the changes of the relative accuracy and hydrologic potential of TMPA-RT 30 

estimates over its three major evolving periods were evaluated and inter-compared at daily, 31 

monthly and seasonal scales in the high-latitude Laohahe basin in China. Assessment results show 32 

that the performance of TMPA-RT in terms of precipitation estimation and streamflow simulation 33 

was significantly improved after 3 February 2005. Overestimation during winter months was 34 

noteworthy and consistent, which is suggested to be a consequence from interference of snow 35 

cover to the passive microwave retrievals. Rainfall estimated by the new version 6 of TMPA-RT 36 

starting from 1 October 2008 to present has higher correlations with independent gauge 37 

observations and tends to perform better in detecting rain compared to the prior periods, although 38 

it suffers larger mean error and relative bias. After a simple bias correction, this latest dataset of 39 

TMPA-RT exhibited the best capability in capturing hydrologic response among the three tested 40 

periods. In summary, this study demonstrated that there is an increasing potential in the use of 41 

TMPA-RT in hydrologic streamflow simulations over its three algorithm upgrade periods, but 42 

still with significant challenges during the winter snowing events. 43 

 44 

 45 

 46 
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1. Introduction 47 

[2] Precipitation is fundamental to life on Earth, and it is among the most important factors in 48 

energy and mass fluxes that dominate the weather, climate, hydrology, and ecological systems. 49 

Therefore, precipitation measurements offer essential information in understanding the balance of 50 

the global energy and water cycle exchange that drives most hydrologic models and has direct 51 

impacts on the planetary circulation of the atmosphere [Sorooshian, 2004; Elizabeth et al., 2007]. 52 

However, accurately measuring precipitation at regional or global scales has been a challenging 53 

task due to its high small-scale variability in space and time. Conventional rain gauge and 54 

meteorological radar networks have their own limitations because their distributions are often 55 

sparse and data availability in remote regions and in complex terrain is rather limited [Griffith et 56 

al., 1978; Simpson et al., 1996; Astin et al., 1997; Vicente et al., 1998; Huffman et al., 2001; 57 

Margulis et al., 2001; Maddox et al., 2002; Steiner et al., 2003]. Thus, satellite-based 58 

precipitation estimates play an important role in detecting rainfall distribution and have been 59 

complementary to the ground-based rain gauge and radar measurements. Since the launch of the 60 

Tropical Rainfall Measuring Mission [TRMM; Simpson et al., 1988 and Kummerow et al., 2000] 61 

in 1997, there has been a growing number of real-time and quasi-global satellite precipitation 62 

products [Sorooshian et al., 2000; Joyce et al., 2004; Hong et al., 2004; Turk and Miller, 2005; 63 

Huffman et al., 2007; Kubota et al., 2007] for a variety of scientific uses and natural hazard 64 

detection and warning, such as flood forecasting, drought assistance, landslide detection, and 65 

water quality monitoring. The planned Global Precipitation Measurement (GPM) mission with an 66 

approaching launch date of 14 February 2014 [Tapiador et al., 2012], which will use an 67 

international constellation of microwave sensors, is anticipated to provide more accurate global 68 

precipitation products so as to improve our scientific understanding of the Earth system from 69 
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space [Smith et al., 2006; Hou, 2008]. As a prelude to GPM, the current operational TRMM 70 

Multi-satellite Precipitation Analysis (TMPA) is intended to provide the best estimates of 71 

quasi-global precipitation [Huffman et al., 2007]. The TMPA merged data collected by two 72 

different types of satellite sensors: low-Earth orbiting passive microwave (PMW) data, which 73 

have a direct physical connection to the hydrometeor profiles but sparse sampling of the 74 

time-space occurrence of precipitation, and geostationary infrared (IR) data with excellent 75 

space-time coverage (approximately 30 min/4 4 km), but indirect physical relations with 76 

precipitation. The standard TMPA products include real time (3B42 RT, hereafter referred to as 77 

TMPA-RT) and post-real time research products (3B42 V6, hereafter referred to as TMPA-V6), 78 

and both versions of the TMPA products have been provided for a sufficiently long time that 79 

researchers have had the chances to develop and start reporting on various applications and 80 

validation studies that employ one or both versions [Huffman et al., 2010]. 81 

[3] Many prior studies have reported on the improvement of the TMPA-V6 products over 82 

TMPA-RT products through bias correction using monthly rain gauge accumulations [e.g., Tian 83 

et al., 2007; Su et al., 2008; Li et al., 2009; Dinku et al., 2010; Gourley et al., 2010; Hirpa et al., 84 

2010; Tobin and Bennett, 2010; Behrangi et al., 2011; Betew and Gebremichael, 2011; Yong et 85 

al., 2010; Su et al., 2011]. However, it is the near real-time availability of the TMPA-RT products 86 

and high spatial (0.25 0.25 ) and temporal (3h) resolution that has made them very attractive to 87 

the water resources community, especially in developing countries, in order to provide hydrologic 88 

predictions from which actions can be taken on medium to large river basins. Presently, 89 

TMPA-RT products have been widely utilized in a variety of research and operational 90 

applications [e.g., Gottschalck et al., 2005; Li et al., 2009; Yong et al., 2010; Tobin and Bennett, 91 

2010; Behrangi et al., 2011; Khan et al., 2011; Romilly and Gebremichael, 2011; Su et al., 2011; 92 
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Wang et al., 2011]. For example, currently the global real-time flood monitoring system 93 

developed by NASA TRMM group [http://trmm.gsfc.nasa.gov/; Hong et al., 2007; Wang et al., 94 

2011; Wu et al., 2012] has demonstrated the initial capability of using satellite-derived 95 

precipitation data as forcing for global river forecast models.  96 

[4] During the course of TMPA-RT development, precipitation estimates from new sensors on 97 

various satellites were integrated and thus the real-time algorithm has undergone several updates. 98 

Table 1 summarizes all precipitation-sensing microwave satellites/sensors that were introduced 99 

into the TMPA processing at different historical periods. Generally speaking, the evolution of 100 

TMPA-RT can be separated into the following three main development periods: 29 January 2002 101 

to 3 February 2005 (Period I), 3 February 2005 to 1 October 2008 (Period II), and 1 October 2008 102 

to present (Period III). Specific details regarding the sensors used, nominal coverage, and 103 

algorithmic changes are provided in Appendix A.  104 

Insert Table 1 here 105 

 [5] Given the dynamical evolution of the TMPA-RT algorithm by the Appendix A, a thorough 106 

understanding to the above-mentioned major upgrades is critical to physically analyzing the 107 

changes of data accuracy and hydrologic potential of the real-time TMPA products across the 108 

three different developing periods. Many efforts have been made in prior studies to evaluate the 109 

hydrologic utility of TMPA-RT for different basins throughout the globe [e.g., Li et al., 2009; 110 

Dinku et al., 2010; Hirpa et al., 2010; Betew and Gebremichael, 2011; Khan et al., 2011; Su et al., 111 

2011]. Yet, their study areas are rarely located at the high latitude bands beyond the current 112 

TMI/PR orbiting regions. Below, we highlight a number of questions about the TMPA-RT 113 

algorithm evolution with the intention of addressing them in this study:  114 

(1) Have the TMPA-RT estimates been significantly improved over the three major evolution 115 

periods? 116 
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(2) TMI and TCI, the calibrators of TMPA-RT, provide coverage from 40 N-S. Thus, do the 117 

data of TMPA-RT that cover higher latitude bands beyond 40 suffer from large bias, especially in 118 

basins with snow-covered land surfaces? 119 

(3) Are the latest TMPA-RT products (i.e., 3B42RT-Version6) much more similar to the 120 

gauge-adjusted TMPA-V6 estimates than the previous two periods as suggested by the developers, 121 

particularly in high-latitude basins? 122 

(4) Finally, how did changes in input data and algorithm design for TMPA-RT over the three 123 

different periods impact hydrologic prediction skill? 124 

[6] Yong et al. [2010] evaluated the data accuracy and hydrological potential of TMPA-RT and 125 

TMPA-V6 in the Laohahe Basin, China within the TMPA latitude band (50 NS) but beyond the 126 

latitude band of the TMPA calibrator (40 N-S). In this study, we extend the work of Yong et al. 127 

[2010] by specifically addressing the above questions through evaluation of TMPA-RT 128 

precipitation products using independent gauge reports and examination of TMPA-RT estimates 129 

on hydrologic simulation using the three-layer Variable Infiltration Capacity (VIC-3L) Model 130 

[Liang et al., 1994, 1996]. Section 2 describes the Laohahe basin, the datasets used, and the 131 

statistics used to evaluate TMPA precipitation estimates and resulting hydrologic simulations. 132 

The precipitation evaluation is divided into daily, monthly, and seasonal analyses in section 3; 133 

this section also evaluates the similarity between TMPA-RT to TMPA-V6. The impact of the 134 

algorithmic changes on hydrologic simulation is evaluated in section 4, and the paper is closed in 135 

section 5 with conclusions and future recommendations.    136 

2. Study Basin, Observed Data and Methodology 137 
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 [7] The Laohahe basin, of which a detailed description is provided in Yong et al. [2010], is 138 

located within the Chinese typical arid and semi-arid regions. Accurate precipitation estimates at 139 

high spatio-temporal scale is of particular importance for such drought-prone basins with 140 

heterogeneous distributions of surface water resources. Compared to other basins in the northern 141 

part of China, the Laohahe basin has a remarkably dense observation network that can offer 142 

detailed ground verification for the satellite-derived precipitation estimates (Figure 1). There are 143 

52 rain gauges evenly distributed within this 18,112 km2 basin and a streamflow station of 144 

Xinlongpo located at the watershed outlet to record observations of daily precipitation and 145 

streamflow continuously from January 1990 to September 2010. Both the China Meteorological 146 

Administration (CMA) and the Chinese Ministry of Water Resources (CMWR) operate all rain 147 

gauge networks over mainland China. In practice, the local workers record the precipitation using 148 

two approaches (i.e., tipping-bucket raingauge and manual traditional ombrometer). Then these 149 

two types of recorded data are crosschecked and the final errors have to be controlled within 4% 150 

for daily rainfall observation according to the ministerial standard. Hence, the Laohahe basin 151 

gauge network is of high quality and is independent from what Huffman et al. [2007] used for the 152 

gauge correction of TMPA post-real-time products. With respect to snow observations, they 153 

introduced a known volume of warm water to thaw the snow in the standard vessel. So the liquid 154 

equivalency of the snow is computed as the total water volume minus the input warm water 155 

volume. The observers make a particular mark after the snow water equivalent digit in order to 156 

distinguish snow or rainfall as the precipitation type. Such manual but effective recording 157 

techniques can ensure the data quality and information of observed snow for our study. Ultimately, 158 

these precipitation data will be collected and edited in the Chinese Hydrology Almanac at the end 159 

of every year. 160 

Insert Figure 1 here 161 
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[8] Daily maximum and minimum temperature and daily average wind speed from 1990 to 162 

2010 were gathered from four meteorological stations to force the hydrologic model (see Figure. 163 

1). Other data sources such as a digital elevation model (DEM), soil surveys, and vegetation, 164 

which are needed to run the VIC-3L model, were taken from Yong et al. [2010]. The grid mesh 165 

size of the hydrologic model used in this study is 1 1
16 16

1
16
11 . To quantify the accuracy of 166 

satellite-derived precipitation estimates, we used three types of statistical indices including 167 

Pearson linear correlation coefficient (CC), mean error (ME), root mean squared error (RMSE), 168 

relative bias (BIAS), and contingency table-based detection of rainy events (i.e., probability of 169 

detection (POD), false alarm rate (FAR), and critical success index (CSI)). In addition, 170 

Nash-Sutcliffe Coefficient of Efficiency (NSCE) was used to assess the hydrologic model fit 171 

between simulated and observed streamflow. The interested reader can refer to all above 172 

statistical indices for their corresponding formulae and meaning in Table 1 in Yong et al. [2010]. 173 

3. Evaluation and Comparison of Satellite Precipitation Estimates  174 

[9] Our evaluation and comparison were performed over three domains including two selected 175 

0.25 0.25 grids (hereafter labeled as “Grid0501” and “Grid0401”, see Figure 1) corresponding 176 

to TRMM pixel resolution as well as the basin-averaged analysis (hereafter referred to as “Basin 177 

Average”). The two, nested grid locations were chosen because they contain 4-5 rain gauges 178 

within them and provide an analysis at the fine, TRMM pixel scale. Furthermore, there are 179 

significant differences in terrain and land cover between these two grids though they are adjacent 180 

to each other. Almost 80% of Grid0401 is at high elevation (>1000 m) with evergreen broadleaf 181 

or coniferous trees, while most regions within Grid0501 are considered flat croplands and 182 

lowlands (elevations < 1000 m) and are predominately covered by sparse grassland and shrubs. 183 
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The rain gauge accumulations from each gauge are averaged within each TRMM pixel so that 184 

they can be compared to the TMPA estimates. The objective aims to investigate the evolution of 185 

the performance of TMPA-RT during the three periods at daily, monthly, and seasonal time scale. 186 

Algorithm skill in estimating rainfall amounts is compared to that obtained with TMPA-V6 in 187 

order to assess whether TMPA-RT is approaching the skill of TMPA-V6 following the critical 188 

algorithm updates. Considering both the major upgrade periods of TMPA-RT and the time span 189 

of available observation data in the Laohahe basin, we separated the comparison periods of this 190 

study into three parts: Period I (1 February 2002 – 1 January 2005), Period II (1 February 2005 – 191 

30 September 2008), and Period III (1 October 2008 – 30 September 2010). The different sensors, 192 

data inputs, and algorithm changes during these three time periods are summarized in Table 1 and 193 

the details are available in the Appendix A. 194 

3.1 Daily Comparison 195 

[10] We start with the evaluation of daily TMPA-RT against averaged rain gauge observations 196 

over Grid0501, Grid0401, and Basin Average across Periods I, II, III, respectively (Figure 2 and 197 

3). There is a gradually increasing CC between TMPA-RT and observed precipitation from 198 

Period I to III for all three domains (Figure 3a). Taking the domain of Basin Average for example, 199 

the CC value increases from 0.46 in Period I to 0.75 in Period III (increasing by approximately 200 

63%). With respect to ME and BIAS, TMPA-RT during Period III, however, didn’t perform as 201 

well as expected, and was even worse than Period I for Grid 0501 and Basin Average (Figures 3c 202 

and 3e). But, it is worth noting that TMPA-RT exhibits a significant improvement in the skill of 203 

detecting rain events. The indices of POD and CSI are substantially increased throughout the 204 

three evolving periods (Figure 2 and Figure 3g), while the FAR has an obvious decreasing 205 

tendency (Figure 3i). The results suggest that the new algorithm adjustments to 206 

3B42RT-Version6 (i.e., TMPA-RT during Period III) do not always reduce the error and bias of 207 
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the 3B42RT estimates, but they apparently provide higher correlation with gauge observations 208 

and better detection for precipitation events in high-latitude basins, which are potentially 209 

favorable factors for improving the hydrologic potential of TMPA-RT. On the other hand, 210 

statistics describing TMPA-V6 performance don’t reflect the same tendencies noted with 211 

TMPA-RT over the three periods, though it has relatively low ME and BIAS (see the right 212 

column of Figure 3). Lastly, scatterplots in Figure 2 reveal an interesting phenomenon in that 213 

TMPA-RT has a slight tendency to overestimate lower rainfall rates and underestimate higher 214 

ones, which is a similar finding in an evaluation of GOES-based rainfall estimates from Vicente et 215 

al. [1998].  216 

 Insert Figure 2 here 217 

 Insert Figure 3 here 218 

3.2 Monthly Comparison 219 

[11] To directly assess the skill of the TMPA products in tracking the monthly variation of 220 

precipitation over the three tested periods, we compare the time series of TMPA-RT, TMPA-V6, 221 

and gauge observations over Grid 0501, Grid 0401, and Basin Average in Figure 4. Similar to the 222 

daily results, the purely satellite-derived TMPA-RT demonstrated a relatively poor performance 223 

in tracing the monthly variations of precipitation during Period I, while substantial improvements 224 

were realized after 2005. This result confirms the assertion of Huffman et al., [2010] that all 225 

TMPA-RT datasets produced before 3 February 2005 should not be used. However, at least in 226 

this high-latitude study basin, the TMPA-RT estimates after 2005 still overestimate precipitation 227 

compared to gauges, especially during the winter and summer months. The BIAS of TMPA-RT 228 

during Period III is even larger than that during Period II. But the monthly CC of Period III looks 229 

better than the prior two periods. We further analyzed the TMPA-RT estimates for two largest 230 

snowfall events in the winter of 2010 and two heavy rainstorms in the summer of 2010 (see 231 
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Figure 5). TMPA-RT significantly overestimates precipitation during all these extreme weather 232 

events. For example, for the snowfall event that occurred on 26th February 2010, TMPA-RT 233 

dramatically overestimated gauge observations over the whole basin by approximately 2000% 234 

(i.e., 62.24 mm for TMPA-RT versus 2.96 mm by gauges for Basin Average). Similarly, for the 235 

largest rainstorm in 2010, the cumulative gauge precipitation from the 23rd to 31st July is 236 

70.81mm for Basin Average, while the corresponding estimation of TMPA-RT is 198.81mm, 237 

indicating overestimation of 180%. In contrast, precipitation from TMPA-V6 remains in good 238 

agreement with gauge precipitation throughout all the periods (see Figure 4 and 5).  239 

Insert Figure 4 here 240 

Insert Figure 5 here 241 

[12] Next, we selected three statistical indices, CC, ME, and BIAS to illustrate the evolution of 242 

monthly error characteristics of TMPA-RT and TMPA-V6. The values of CC improve throughout 243 

all three tested periods, while relatively large values of ME and BIAS were still found for Period 244 

III (see Figure 6). Above analyses suggest that the incorporation of AMSU-B and AMSR-E on 245 

February 2005, which provides more passive microwave data covering high-latitude bands, 246 

significantly improved the accuracy of TMPA-RT precipitation estimates. Another important 247 

factor might be that the microwave-calibrated IR coefficients were updated every 3hr instead of 248 

each pentad, and thus the IR-based scheme for filling PMW coverage gaps was substantially 249 

changed at higher latitudes. Relative to the prior two periods, the latest upgrades of TMPA-RT 250 

greatly helped it to improve its correlation with observed precipitation and improve the skill of 251 

detecting rainy events, but the incorporation of PMW and IR data did little to reduce ME and 252 

BIAS. We speculate that the causes for such large bias of the current TMPA-RT version come 253 

from two sources: 1) The PMW data for TMPA are first calibrated by the TRMM Combined 254 

Instrument (TCI) estimate, which combines data from TMI and PR. However, the coverage of 255 
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both TMI and PR is limited within the latitude bands between 40 N-S. 2) Likewise, the TMI-TCI 256 

used as the climatological monthly calibrator in 3B42RT-Version6 also cannot cover latitude 257 

bands beyond 40 . Thus, the IR-based schemes are poorly calibrated for higher latitudes to the 258 

passive microwave, especially during the cool season. Therefore, the upgrades to the TMPA 259 

algorithm had little impact on ME and BIAS. The monthly TMPA-V6 data didn’t reveal any clear 260 

trends in error characteristics over the three periods, thus the relatively higher CC and lower ME 261 

can mostly be attributed to the monthly gauge adjustments yielding the post-real-time products 262 

[Su et al., 2008; Yong et al., 2010].    263 

Insert Figure 6 here    264 

3.3 Seasonal Comparison 265 

[13] Table 2 lists the statistical summary of seasonal comparisons including spring 266 

[March-May (MAM)], summer [June-August (JJA)], autumn [September-November (SON)], and 267 

winter [December-February (DJF)]. We also specifically computed the statistics during winter by 268 

separating snow vs. rain events in order to assess the impact of precipitation phase on TMPA-RT. 269 

Generally, there are strong seasonal variations in the computed statistics during the three tested 270 

periods. All evaluations over Grid0501, Grid0401, and Basin Average show higher CC, POD, and 271 

CSI and lower FAR in the summer compared to other seasons, while the worst performance 272 

occurs in winter. In terms of the first four indicators, all seasons tended to experience better 273 

precipitation estimates during the three evolving periods of TMPA-RT. For example, the CC 274 

value of Basin Average in summer rises from 0.48 in Period I to 0.68 in Period II, and finally 275 

reaches 0.85 in Period III. For random error and bias there are the largest values of ME and 276 

RMSE in summer months because both the amount and frequency of precipitation are highest in 277 

this season. By analyzing all values of ME, RMSE, and BIAS for different seasons throughout the 278 
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three different periods, we can conclude that the errors in Period III found in the daily and 279 

monthly comparisons (Figure 3 and 6) are primarily attributed to the overestimation of the 280 

3B42RT-Version6 algorithm for summer rainstorms. In addition, it is worth noting that the largest 281 

relative biases occur in winter in estimating the water equivalent with snowing events. After 282 

excluding these snowing days, we found that the CC evidently increased from Period I to III, 283 

meanwhile ME, RMSE, and BIAS improved significantly in winter. Moreover, the detection of 284 

precipitating events also performs slightly better for rainy days. In general, approximately 45% of 285 

the total annual errors come from heavy rainfall events in summer, while the proportion during 286 

winter is only 15%.  287 

Insert Table 2 here 288 

[14] To help developers diagnose the impact of snow on TMPA estimates in high-latitude 289 

basins, we calculated the number of snowing days, cumulative snow water equivalent, and four 290 

representative statistical indices (i.e., CC, ME, RMSE, and BIAS) of TMPA-RT and TMPA-V6 291 

vs. Gauge for the winters from 2005 to 2010 in the Laohahe basin (see Table 3). It is notable that 292 

TMPA-RT has relatively better cool season performance during the years with the least number 293 

of snowing days. For example, the best performance occurred in the winter of 2009, which only 294 

has two snowing days and 2.35 mm of snowmelt for the whole basin. In contrast, the worst 295 

performance is found in the winter of 2010 with the maximum of snowing days (5 days) and 296 

water-equivalent cumulative snowmelt (10.54 mm). The overestimation with TMPA-RT during 297 

winter months in the Laohahe basin was especially remarkable and consistent, which might be 298 

attributed to two major reasons: 1) The IR-based retrievals with high space-time coverage, but 299 

poor correlation with rainfall (or snow water equivalent), are the main inputs of the TMPA system 300 

in high-latitude areas. Unfortunately, IR-based estimates with warm-top stratiform cloud systems 301 

perform rather poorly during the cold seasons [Vicente et al., 1998; Tian et al., 2007]. 2) As 302 
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another confounding factor, the snow cover in winter very likely interferes with the PMW-based 303 

retrievals [Grody, 1991; Ferraro et al., 1998], such as these two important microwave sensors of 304 

AMSR-E and AMSU-B that can cover higher-latitude bands (beyond 40 N-S). In particular, the 305 

high frequency channels (89 and 150-GHz) of AMSU-B might detect more scattering associated 306 

with precipitation sized ice particles in the winter atmosphere, which indirectly raises its retrieval 307 

precipitation rate [Vila et al., 2007]. Thus, the available PMW-based calibrations of IR and the 308 

PMW data themselves covering high-latitude regions cannot offer accurate retrievals with snow 309 

events. As a result, the TMPA estimates suffer serious bias during the cool seasons.  310 

Insert Table 3 here 311 

3.4 Detection of Similarity between TMPA-RT and TMPA-V6  312 

[15] Some previous studies have verified that TMPA-V6 showed better performance in 313 

hydrologic simulation than TMPA-RT in many basins over the globe [Su et al., 2008; Stisen and 314 

Sandlholt, 2010; Yong et al., 2010; Betew and Gebremichael, 2011]. Meanwhile, the TMPA 315 

producers also suggested that the real-time datasets were made to be similar to the research 316 

products as much as possible. Therefore, we specifically address the following question that 317 

naturally arises amongst data users: Did the latest upgrades make TMPA-RT closer to TMPA-V6 318 

than before? To address this issue, we first plotted the annual statistical indices of TMPA-RT vs. 319 

TMPA-V6 over Grid0501, Grid0401, and Basin Average during 2002-2010 (Figure 7). The 320 

results of annual statistics show that the TMPA-RT estimates after 2005 generally have higher 321 

correlation, lower errors, and better rain detection against TMPA-V6 than before. However, 322 

TMPA-RT of Period III doesn’t continue the tendency of approaching the skill of TMPA-V6 like 323 

that from Period I to Period II. Four statistics (i.e., CC, POD, FAR, and CSI) of Period III show 324 

no clear significant improvements compared with Period II. The indices of error and bias (i.e., 325 
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ME, RMSE, and BIAS) are even larger than those of Period II. 326 

Insert Figure 7 here 327 

[16] Considering the strong seasonality within satellite-based precipitation estimates, we 328 

further investigated the seasonal statistics of TMPA-RT vs. TMPA-V6 for more insightful 329 

understanding. Figure 8a and 8c show that there are gradually increasing CC, POD, and CSI 330 

between TMPA-RT and TMPA-V6 from Period I to III during the spring and autumn seasons. 331 

Interestingly, the values of error and bias (ME, RMSE, and BIAS) and false alarm ratio (FAR) 332 

have a significant decreasing tendency for these two seasons, which is different from the annual 333 

statistics. However, such variations expected by the TMPA producers were not found in the 334 

seasons of summer and winter (Figure 8b and 8d). For instance, the values of ME, RMSE, and 335 

BIAS in Period III are higher than those values in Period II during the summer months. For winter, 336 

besides similar overestimation of error and bias, the POD values of three domains even show 337 

anomalous fluctuations. Therefore, it can be concluded that relative to the prior two periods, the 338 

larger bias and error between TMPA-RT and TMPA-V6 during Period III are chiefly attributed to 339 

the remarkable overestimation of the TMPA-RT algorithm for the summer rainstorms and the 340 

winter snowfall over our high-latitude basin.  341 

Insert Figure 8 here 342 

4. Evaluation and Comparison of Hydrologic Streamflow Simulations  343 

[17] Up to this point, we have directly evaluated the precipitation estimates from TMPA-RT 344 

and TMPA-V6. The purpose of this section is to assess the impacts of the TMPA-RT’s upgrades 345 

over the three evolving periods from the hydrologic perspective after applying the estimates as 346 

forcing to the VIC-3L hydrologic model. The VIC-3L model was calibrated using monthly rain 347 

gauge and streamflow observations on the Laohahe basin for the period 1990-1999 by Yong et al., 348 
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[2010]. Figure 9a shows the monthly series of observed and VIC-simulated streamflow using rain 349 

gauge inputs from 1990-2010. The plots of cumulative annual precipitation and streamflow 350 

indicate that the annual rainfall of the Laohahe basin hardly changed during the last twenty years 351 

(Figure 9b). However, there is a dramatic decreasing tendency with the observed discharge after 352 

2000 (Figure 9c). Yong et al. [2010] concluded that human activities such as increased water 353 

diversions for irrigation, newly built reservoirs and dams, rapid development of water-consuming 354 

industries, and growth of local economies have substantially altered the natural hydrologic system. 355 

Here, we emphasize that the streamflow after 2000 cannot be used as a standard reference for 356 

assessing TMPA’s hydrologic potential provided that the model parameters were estimated prior 357 

to 2000 due to the tremendous human impacts in this basin. Therefore, as recommended by some 358 

previous studies [e.g., Wang et al., 2010; Yong et al., 2010], we adopted the streamflow 359 

reconstructed with gauge-observed precipitation input to the hydrologic model as the surrogate 360 

for the observed streamflow during 2000-2010 (i.e., reconstruction period) in following 361 

hydrologic evaluations.  362 

Insert Figure 9 here 363 

[18] We designed three simulation schemes (i.e., validation, bias-correction, and recalibration) 364 

to assess and inter-compare the hydrologic potential of TMPA-RT over the three evolving periods 365 

using the reconstructed streamflow as the reference. First, we kept the same calibrated parameters 366 

optimized during the calibration period 1990-1999 unchanged and used the 1 1
16 16

1
16
11  gridded 367 

TMPA-RT and TMPA-V6 data to directly force the VIC-3L model for hydrologic simulation. 368 

Figure 10 shows that simulations using TMPA-RT significantly overestimates streamflow in the 369 

Laohahe basin mostly due to its unrealistically high precipitation estimates as presented in section 370 

3. However, it is worth noting that there is a gradually increasing tendency in the correlation 371 
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between TMPA-RT-derived and reconstructed streamflow during the three periods. For example, 372 

CC of daily streamflow in Period I is 0.02, while this value rises to 0.24 in Period II and to 0.45 in 373 

Period III. With respect to monthly simulation, the values of CC are -0.11, 0.49, and 0.61 for the 374 

three periods, respectively. On the other hand, TMPA-V6 exhibits very good performance in 375 

simulating the daily and monthly variations of reconstructed streamflow, compared with 376 

TMPA-RT. Moreover, the streamflow driven by TMPA-V6 even agrees with the reconstructed 377 

reference runoff more than the observed streamflow due to the significance of land use changes 378 

and human infrastructure impacts on streamflow in the Laohahe basin. In other words, 379 

satellite-derived precipitation estimates should have greater potential applications in simulating 380 

natural hydrologic processes for typical ungauged basins which experience much lower human 381 

impacts. 382 

Insert Figure 10 here 383 

[19] The hydrologic validation in Figure 10 suggests that there exists a high system bias in the 384 

TMPA-RT estimates for our study basin. We speculate that similar results might be prevailing 385 

with other high-latitude basins. Therefore, next we adopted a simple bias reduction method to 386 

potentially improve streamflow prediction using TMPA-RT at basin scale. In the proposed 387 

approach, we defined a ratio bias correction factor (rr) as: 388 

                       1
1 B I A

rr 1
1 B I AB I A

                           (1) 389 

where the relative bias (BIAS) is defined as following: 390 
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In (2), Si is the daily or monthly precipitation of TMPA-RT at the ith time step, Gi is the 392 
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corresponding gauge precipitation, and n is the number of time steps. 393 

 [20] Next, the bias correction factor (rr) was applied to the satellite precipitation retrievals 394 

(i.e., TMPArr TMPA) for each of the three tested periods (rr was 0.5622 for Period I, 0.6038 for 395 

Period II, and 0.4918 for Period III). We kept the calibrated model parameters the same and 396 

merely replaced the original TMPA-RT estimates with the bias-corrected inputs to drive the 397 

VIC-3L hydrologic model. As we anticipated, the simple approach of bias-correction remarkably 398 

improved the application of TMPA-RT estimates to streamflow simulation (Figure 11). The 399 

TMPA-RT-driven simulation agrees well with the reconstructed streamflow especially after 2005. 400 

The best hydrological performance was found in Period III (NSCE of 0.39 and 0.67, CC of 0.63 401 

and 0.85 for daily and monthly streamflow prediction, respectively) despite some overestimates 402 

during the summer and winter months of 2010. Apparently, it was the higher CC and better 403 

rainfall detection skill (POD, FAR, and CSI) of TMPA-RT precipitation with rain gauges during 404 

Period III compared to the prior two periods that drastically improved its hydrologic capability. 405 

Following the simple procedure of bias-correction, the TMPA-RT was closer to observed 406 

precipitation and its potential for capturing the hydrological features of the basin was significantly 407 

enhanced for our study basin, though it still cannot achieve the simulation accuracy as in medium- 408 

or low-latitude basins (e.g. those reported by Behrangi et al. [2011], Betew and Gebremichael 409 

[2011], and Su et al. [2011]).         410 

Insert Figure 11 here 411 

[21] Presently, there is an increasing realization that many hydrologic models are sensitive to 412 

the meteorological forcing data, in particular precipitation [Wilk et al., 2006]. If the error 413 

characteristics of input precipitation change dramatically, then it is likely that sensitive model 414 

parameters, such as soil infiltration parameters and baseflow parameters will need to change 415 

accordingly in order to achieve accurate streamflow simulations [Su et al., 2005; Yong et al., 416 
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2010]. Although bias correction to the forcing data is the preferred approach, these error 417 

characteristics may only be known after a given algorithm was implemented and evaluated after a 418 

significant passage of time. In other words, the identification of bias may not be readily available 419 

for a recently implemented precipitation algorithm or in locations where there are scarce or 420 

nonexistent gauge networks. In the third experiment, we recalibrated the sensitive parameters of 421 

VIC-3L for the whole period of February 2002 – September 2010 by using the original 422 

TMPA-RT precipitation estimates as forcing data. Table 4 lists the calibrated and recalibrated 423 

values of the seven sensitive parameters in the VIC-3L model. These parameters are briefly 424 

depicted as follows: 1) the infiltration parameter (b) which controls the amount of water that can 425 

infiltrate into the soil; 2) the three soil layer thicknesses (d1, d2, d3) which affect the maximum 426 

storage available in the soil layers and consequently the water available for transpiration; 3) three 427 

baseflow parameters including the maximum velocity of baseflow (Dm), the fraction of maximum 428 

baseflow (Ds), and the fraction of maximum soil moisture (Ws), which jointly determine how 429 

quickly the water stored in the third layer is withdrawn [Liang et al., 1996; Su et al., 2005]. 430 

Among them, the most intensive parameters are the infiltration parameter (b) and the second soil 431 

layer thicknesses (d2), which were targeted for intensive calibration/recalibration. Similar to 432 

Figure 11, the recalibrated simulations also show that the TMPA-RT after 2005 performed much 433 

better than prior periods for hydrologic simulation (see Figure 12). From the values of NSCE and 434 

CC, it can be seen that the best performance still occurred in Period III. The recalibrated results 435 

suggest again that hydrologic potential of TMPA-RT tends to gradually increase during its three 436 

evolving periods. However, the recalibration approach compromised the model’s parameterized 437 

representation of real-world physical processes. For example, the recalibrated parameter, b, is 438 

0.0055 (see Table 4), which almost reaches its minimum value of zero. The other sensitive 439 

parameter, d2, has an optimized value of 5.7 m that substantially exceeded the upper limit of its 440 
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normal physical range (0.1-2.0 m). Thus, it can be seen that the bias of TMPA-RT overestimation 441 

was mitigated at the cost of comprising the physical representativeness of hydraulic properties of 442 

the basin, which seriously alters the basin response under varying wetness conditions. Although 443 

the recalibration may not be a physically consistent approach for modeling the hydrologic 444 

response of real basins, it certainly helps us to confirm two facts: 1) the errors in simulating 445 

streamflow forced by TMPA-RT are mostly due to the unrealistically high precipitation 446 

estimation, and 2) there is an increasing hydrologic potential for TMPA-RT in streamflow 447 

simulations over its three historic development periods. However, we did not intend to advocate 448 

the recalibration as the norm for the satellite QPE-hydrology community, rather than an 449 

investigation tactic in this study. 450 

Insert Figure 12 here 451 

Insert Table 4 here 452 

[22] Hossain and Lattenmaier [2006] have argued that a shift in paradigm is needed to properly 453 

assess estimates of rainfall from satellite sensors for modeling dynamic hydrologic processes such 454 

as the rainfall-runoff transformation and associated energy and moisture fluxes. To better 455 

understand how error characteristics of input precipitation affect hydrologic model results, we 456 

compared the error propagation of TMPA-RT through VIC-3L rainfall-runoff processes at daily 457 

and monthly scale for the above three types of simulation schemes. For NSCE and CC, Table 5 458 

shows that the hydrological simulations of scheme 2 (bias-correction) and 3 (recalibration) 459 

performed much better than those of scheme 1 (validation). This suggests that both 460 

bias-correction and model-parameter adjustment can effectively remove the system bias of 461 

TMPA-RT through the VIC-3L model and then improve the hydrologic potential of satellite 462 

precipitation in this specific basin. NSCE and CC of TMPA-RT-driven streamflow in scheme 2 463 

and 3 exhibit an apparent upward trend over the three tested periods (e.g., NSCE of -1.44, 0.47, 464 
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and 0.67; CC of 0.18, 0.71, and 0.85 for the monthly streamflow simulation in scheme 2, 465 

respectively), which is closely corresponding to the trend in CC between satellite precipitation 466 

inputs and observations (e.g., CC of 0.67, 0.80, and 0.91 for the monthly rainfall in scheme 2). 467 

Among the three tested periods, the best performance is in Period III. This implies that the 468 

upgraded algorithm using climatological monthly calibration that increased the CC, POD, CSI 469 

and decreased the FAR between satellite precipitation and gauged observations potentially 470 

improved the hydrologic application of TMPA-RT. In terms of BIAS and RMSE, it is shown that 471 

the VIC-3L model significantly amplified the errors propagated from original satellite rainfall to 472 

the TMPA-RT-driven simulations (refer to the statistics of scheme 1 in Table 5). However, 473 

following precipitation bias-correction or model-parameter adjustment, both procedures having 474 

the same effect on hydrologic simulation, this situation was remarkably improved. Overall, the 475 

results of rainfall-runoff error propagation suggest that the hydrological potential of TMPA-RT 476 

tends to become better and better during its evolving periods even in high-latitude regions. The 477 

authors argue that such improvements of hydrologic prediction are closely related to the inclusion 478 

of new satellite data sources and upgrades to the precipitation algorithms in the TMPA real-time 479 

precipitation systems. Additionally, the error in rainfall versus error in runoff presented in Table 5 480 

indicates that the hydrologic propagation of satellite rainfall error through the VIC model exhibits 481 

a quasi-linear behavior due to the large basin scale (18,112 km2) and longer time scales (daily or 482 

monthly) in this study. While previous studies [Nikolopoulos et al., 2010; Serpetzoglou et al., 483 

2010] have indicated that a strong non-linearity exists in the rainfall-runoff error transformation, 484 

those results are generally for hourly flood simulations on smaller-scale basins (<600 km2). 485 

Clearly, our results demonstrate that there is a dependence of satellite rainfall error propagation 486 

on basin scale. 487 

Insert Table 5 here 488 
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5. Conclusions and Recommendations 489 

[23] In this study, we have evaluated and inter-compared the TMPA-RT precipitation estimates 490 

over three major evolution periods at daily, monthly and seasonal time scales using an 491 

independent, high-quality rain gauge network in a high-latitude basin in China. Then, we 492 

investigated whether the latest updates within Period III made the TMPA-RT data more similar to 493 

the gauge-adjusted TMPA-V6 estimates as intended by the algorithm developers. Lastly, we 494 

designed three types of streamflow simulation experiments using the VIC-3L model forced by 495 

TMPA-RT precipitation estimates in order to explore their hydrologic potential throughout the 496 

three evaluation periods. Results drawn from the above analyses may be specific to the Laohahe 497 

basin but are likely to be more generally applicable to basins situated in 40˚-50˚ latitude bands; 498 

they are summarized as follows: 499 

(1) TMPA-RT estimates were least accurate and had the poorest hydrologic performance prior to 500 

February 2005 (in Period I), while substantial improvements by use of AMSR-E and 501 

AMSU-B data occurred thereafter as the developers have documented. Our results support 502 

their recommendation that users of TMPA precipitation should not utilize the real-time 503 

datasets before February 2005 for application to or feasibility studies involving hydrologic 504 

prediction or other natural hazard studies (e.g., landslides). The post-real-time research 505 

products (i.e., TMPA-V6) can be regarded as a reliable substitute to use prior to February 506 

2005.  507 

(2) Compared to the two prior periods before October 2008 (Periods I and II), the most recent 508 

version of TMPA-RT (i.e., 3B42RT-Version6 for Period III in this study) has higher CC, 509 

POD, and CSI and lower FAR compared to rain gauge observations. However, it was noted 510 

that it also has larger ME, RMSE and BIAS in our study basin. This implied that the latest 511 
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algorithm upgrades to TMPA-RT tended to increase its correlation with independent rain 512 

gauge observations and improve the skill of detecting rainy events, but was not capable of 513 

systematically reducing bias. Therefore, caution must be exercised when using the current 514 

version 6 of TMPA-RT as inputs for flood forecasting models due to its propensity to 515 

overestimate precipitation in higher-latitude basins. 516 

(3) The latest upgrades to TMPA-RT during Period III made it more statistically similar to 517 

TMPA-V6 than the real-time algorithm running in Period II during the spring and autumn 518 

seasons. However, such improved performance anticipated by both the TMPA produced and 519 

data users was not found in the summer and winter seasons due to the remarkable 520 

overestimation of the current 3B42RT-Version6 algorithm in detecting the summer 521 

rainstorms and the winter snowfall over this high-latitude basin. 522 

(4) In the present version of TMPA-RT, one of the most serious issues was its notably poor 523 

performance (i.e., BIAS > 1000%) during winter months, in particular with snowy events. 524 

Apparently, satellite-based precipitation estimates in high latitudes during cold seasons still 525 

present significant challenges. Snow-covered surfaces present problems for passive 526 

microwave retrievals, which are infrequent at high latitudes. It is also possible that IR-based 527 

schemes are poorly calibrated for high-latitude, cool season precipitation estimates.   528 

(5) Prior to performing a hydrologic evaluation, streamflow was reconstructed on the Laohahe 529 

basin using rain gauge inputs to the calibrated VIC-3L model. This reconstruction step was 530 

needed in order to account for the tremendous, unnatural and difficult-to-model reductions to 531 

streamflow caused by human impacts after 2000. The first experiment directly input 532 

TMPA-RT estimates to the calibrated VIC-3L model and compared simulations with the 533 

reconstructed streamflow. Not surprisingly, the TMPA-RT-driven model simulation 534 

significantly overestimated the daily and monthly hydrographs for the entire period from 535 
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2002 to 2010. The second experiment applied a mean bias correction factor to the TMPA-RT 536 

estimates for each of the three periods and evaluated them as inputs to the calibrated VIC-3L 537 

hydrologic model. In this hydrologic evaluation, the TMPA-RT datasets revealed 538 

improvements throughout the three evolving periods. The third, naive experiment 539 

incorporated no information about TMPA-RT precipitation bias, which will be the case in 540 

basins lacking rain gauge networks, and recalibrated model parameters to the uncorrected, 541 

biased TMPA-RT estimates. The hydrologic skill in this latter experiment was essentially the 542 

same as that achieved in the second experiment. This indicates the model parameters can be 543 

estimated in a manner to effectively remove precipitation bias. However, it is noted that 544 

model parameter estimation procedures require a long, multi-year dataset, over which the 545 

error characteristics of precipitation might change especially following algorithm updates. 546 

Furthermore, the recalibrated parameters didn’t always represent the realistic changes of 547 

hydraulic properties for real basins. Thus, it is recommended that the best procedure to 548 

increase the hydrologic use of TMPA-RT precipitation estimates is to improve their accuracy 549 

as much as possible and be cognizant of potential biases.  550 

[24] Looking to the future, Huffman et al. [2010] suggested that more work is needed to extend 551 

TMPA precipitation estimates to higher latitudes and further evaluate the effectiveness of ongoing 552 

algorithm upgrades. Compared to the post-real-time research products, TMPA-RT data have 553 

attracted the attention of hydrologists who are engaging in studies of flood forecasting and 554 

landslide warning over vast regions due to the availability of the data in near-real time over most 555 

parts of the globe. We expect the results reported here will both provide the retrieval developers 556 

with some valuable references and offer hydrologic users of TMPA-RT data a better 557 

understanding of their error characteristics and potential utilization for various operational 558 

hydrological applications in high-latitude basins. In summary, this study demonstrated that there 559 
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is an increasing potential in the use of TMPA-RT in hydrologic streamflow simulations over its 560 

evolving periods. But, accurate detection and estimation of precipitation during the winter months 561 

(especially for snowing events) is still a challenging task for the satellite-based precipitation 562 

estimates. We also note that the evaluation of TMPA-RT across the time history of algorithm 563 

development presented herein potentially mixes effects due to varying storm or snowfall 564 

characteristics during various years and the changes in the retrieval algorithms themselves. 565 

Therefore, a more fair comparison could be accomplished by applying the different algorithmic 566 

versions on the same data period, a topic inviting future research. Additionally, the results shown 567 

in this study are only from a representative, semi-arid, high-latitude basin in China, so future 568 

work should extend to different hydroclimatic basins located in different latitude bands. Moreover, 569 

the evaluation framework developed herein can apply to new satellite precipitation products such 570 

as the forthcoming 3B42RT Version 7 datasets and future GPM-era products.  571 

 572 

Appendix A:  Major Upgrades of TMPA-RT During Its Three Evolving 573 

Periods 574 

[25] (1) 29 January 2002 to 3 February 2005 (Period I): Only the observations from two 575 

multi-channel passive microwave radiometers, i.e. the TRMM Microwave Imager (TMI) and the 576 

Special Sensor Microwave/Imager (SSM/I) on Defense Meteorological Satellite Program (DMSP) 577 

platforms, are converted to the merged microwave (3B40RT, or HQ product) precipitation 578 

estimates with sensor-specific versions of the Goddard Profiling Algorithm [GPROF; Kummerow 579 

et al., 1996; Olson et al., 1999]. During this initial period, the microwave HQ product, merged 580 

from TMI, PR (precipitation radar, TRMM product 2B31) and SSM/I, was used to calibrate the 581 
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IR inputs collected from a variety of sensors flying on several geosynchronous Meteorological 582 

satellites (refer to the note of Table 1). 583 

[26] (2) 3 February 2005 to 1 October 2008 (Period II): Several important upgrades occurred 584 

at the beginning of this period for improving the data accuracy and algorithm stability of TMPA. 585 

First, Advanced Microwave Scanning Radiometer for Earth Observing System (AMSR-E) on 586 

Aqua and 3 Advanced Microwave Sounding Unit-B (AMSU-B) sensors onboard NOAA-series 587 

satellites were included into the PMW mosaics to further calibrate the TMPA-RT algorithm, 588 

which nearly doubles the typical combined microwave coverage in the latitude band 50 N-S from 589 

~45% to nearly 80% [Huffman et al., 2007]. The polar orbits of AMSR-E and AMSU-B provide 590 

broader nominal coverage (see Table 1). Especially, the use of AMSU-B offers an excellent 591 

opportunity to reduce the errors associated with the inadequate samples by combining PMW 592 

information from three NOAA POES satellites spaced approximately 4 h apart with a spatial 593 

resolution of 16 km at nadir and a wider swath than prior SSMI (2200 km) [Vila et al., 2007]. 594 

However, both AMSU-B and AMSR-E still have some limitations in their retrieval techniques 595 

which prevent useful precipitation estimates over many land surfaces or sea ice. Second, the 596 

Microwave Humidity Sounder (MHS) on NOAA-18 was incorporated in TMPA-RT to replace 597 

the AMSU-B on board NOAA-17 since 27 November 2007. Similar to AMSU-B, the MHS 598 

contains 5 channels and maintains almost same algorithm-wise within TMPA-RT. But it was an 599 

afternoon sounder with a 1330 equator-crossing time, while the previous AMSU-B on NOAA-17 600 

has a morning equator-crossing time of around 1030 local time [Labow et al., 2011]. According to 601 

Turk et al. [2010], the local crossing time of the AMSU-like sounders did have an impact upon 602 

the soil moisture simulated with two land surface models. So presumably they might also affect 603 

the hydrologic performance of the TRMM-based precipitation estimation. Third, inter-satellite 604 
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calibration in the HQ product is climatological, which reduced the real-time computational load 605 

and prepared for the eventual decommissioning of TRMM. Finally, the microwave-calibrated IR 606 

coefficients are recomputed every three hr to better control unrealistically high estimates 607 

associated to unusually cold IR background temperatures (Tb's) but with low rainfall rates, such 608 

as with high-level cirrus clouds (ftp://trmmopen.gsfc.nasa.gov/pub/merged/3B4XRT_doc.pdf).  609 

[27] (3) 1 October 2008 to present (Period III): The last major upgrades for the TMPA 610 

real-time system occurred on 17 February 2009. The datasets of the new Version 6 of the 611 

TMPA-RT (hereafter “3B42RT-Version6”; note that this should not to be confused with TMPA 612 

post-real time product “3B42V6”) starting from 1 October 2008 were released so as to provide 613 

the users a backlog for validation and application activities with the new data. Once the new 614 

system is stable, the algorithm developers will seriously consider that the entire data record of 615 

TMPA-RT might be reprocessed by the 3B42RT-Version6 scheme. The primary goal of the new 616 

design of this algorithm and input data is to enable the real-time TMPA-RT and the post real-time 617 

gauge-adjusted products TMPA-V6 systems to be as similar as possible for ensuring consistency 618 

between these two datasets [Huffman et al., 2010]. One important difference between them is the 619 

calibrator of TMPA-V6, TRMM Combined Instrument (TCI) that combines data from both TMI 620 

and PR, is not available in real time. Therefore, the developers first determined a matched 621 

histogram calibration of TMI to the TCI, computed from 10 years of coincident data to establish 622 

the climatology for each calendar month. Then, a climatological monthly calibration of TCI to 623 

3B43 V6 (another TRMM product computed at monthly time intervals; not to be confused with 624 

aforementioned “3B42V6” and “3B42RT-Version6”) is calculated as a simple ratio on a 1 1625 

grid, aggregated to an overlapping 3 3 template, and using 10 years of data. Finally, the 626 

TMI-TCI and TCI-3B43 calibrations are successively applied to the preliminary real-time 627 
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products to create the 3B42RT-Version 6 products. One of the main purposes of this algorithm 628 

upgrade is to reduce the bias of TMPA-RT over land. In addition, the AMSU-B sensor on 629 

NOAA-17 was inactive on 12 December 2009 and it was replaced by the MHS sensor on the 630 

European Operational Meteorological (MetOp) satellite since 27 March 2009 (Table 1). Later 631 

enhancements to the TMPA standard products mainly include improving error quantification and 632 

more importantly, extension to higher latitudes. 633 
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Table 1. Time History of Major Upgrades of Microwave Satellites/Sensors Introduced into the 814 

TMPA Processinga  815 

Period Satellites Sensors Period of Record nominal 
coverage 

Current 
Status 

Period I  

TRMM TMI 8 Dec. 1997 – Current 40˚ N-S Active 
TRMM PR 8 Dec. 1997 – Current 38˚ N-S Active 
DMSP-F13 SSM/I 29 Jan. 2002 – 18 Nov. 2009 85˚ N-S Inactive 
DMSP-F14 SSM/I 29 Jan. 2002 – 23 Aug. 2008 85˚ N-S Inactive 

DMSP-F15 SSM/I 29 Jan. 2002 – 14 Aug. 2006 85˚ N-S Active, but 
unusable 

Period II 

Aqua AMSR-E 3 Feb. 2005 – Current 85˚ N-S Active 
NOAA-15 AMSU-B 3 Feb. 2005 – Current  Global Active 

NOAA-16 AMSU-B 3 Feb. 2005 – Current Global Active 

NOAA-17 AMSU-B 3 Feb. 2005 – 17 Dec. 2009 Global Inactive 

NOAA-18 MHS 27 Nov. 2007 – Current Global Active 

Period III 

MetOP-1 MHS 27 Mar. 2009 – Current Global Active 

DMSP-F16 SSMIS Being incorporated into TMPA 85˚ N-S Active 

DMSP-F17 SSMIS Being incorporated into TMPA 85˚ N-S Active 
 816 

aNotation. Except for above microwave satellites/sensors, the international constellation of geosynchronous-orbit 817 

meteorological satellites including the Geosynchronous Operational Environmental Satellites (GOES, United 818 

States), the Geosynchronous Meteorological Satellite (GMS, Japan), and the Meteorological Satellite (Meteosat, 819 

European Community) provide the infrared (IR) data on a 4 km-equivalent grid over the latitude band 60˚ N-S for 820 

TMPA-RT.   821 
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Table 4. Comparison of Calibrated and Recalibrated Parameter Values in VIC-3L Hydrologic 861 

Model for TMPA-RT-driven Streamflow Simulationsa  862 

Parameter Unit Typical 
Range 

Calibrated values 
with gauge precipitation  

Recalibrated values for 
TMPA-RT 

b N/A 0~0.5 0.01 0.0055 
d2 m 0.1~2.0 1.2 5.7 

Ds Fraction 0~1.0 0.004 0.0025 

Dm mm/day 0~30.0 8.0 7.3 

Ws Fraction 0~1.0 0.98 0.98 

d1 m 0~0.1 0.05 0.05 

d3 m 0.1~2.0 1.5 2.0 
 863 

aNotation. In this study, the calibration period is Jan. 1990 - Dec. 1999 and the recalibration period is Feb. 2002 – 864 

Sep. 2010.   865 

 866 

 867 

 868 

 869 

 870 

 871 

 872 

 873 

 874 

 875 

 876 

 877 

 878 

 879 
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FIGURE CAPTIONS 887 

Figure 1. Map of Laohahe Basin situated beyond the TMI/PR orbiting bands (40 NS) and 888 

locations of rain gauges, meteorological stations, and streamflow station included in the study. 889 

Hydrologic evaluation of TMPA-RT during three major evolving periods was performed over the 890 

whole basin (i.e., Basin Average) and two selected 0.25 0.25 grids with black squares (i.e., 891 

Grid0501 and Grid0401), which contain 5 and 4 rain gauges, respectively. 892 

Figure 2. Scatterplots of the daily TMPA-RT vs. gauge observation for (1st row) Grid 0501, (2nd 893 

row) Grid 0401, and (3rd row) Basin Average at (left column) period I, (middle column) period II, 894 

and (right column) period III. 895 

Figure 3. Comparisons of statistical indices of the daily (left) TMPA-RT and (right) TMPA-V6 896 

vs. gauge observation at three evolving periods (I-III): (a and b) correlation coefficient, (c and d) 897 

mean error, and (e and f) relative bias, (g and h) probability of detection, (i and j) false alarm 898 

ratio. 899 

Figure 4. Monthly variations of gauged precipitation, TMPA-RT, and TMPA-V6 during three 900 

evolving periods, i.e. Period I (Feb. 2002 – Jan. 2005), Period II (Feb. 2005 – Sep. 2008), and 901 

Period III (Oct. 2008 – Sep. 2010): (a) Grid 0501, (b) Grid 0401, and (c) Basin Average. 902 

Figure 5. Comparisons of gauge observation, TMPA-RT, and TMPA-V6 for two largest snowfall 903 

events (i.e., 3 Jan. and 26 Feb.) in the winter of 2010 and two heavy rainstorms (i.e., 23-31 Jul. 904 

and 17-22 Aug.) in the summer of 2010: (a and b) Grid 0501, (c and d) Grid 0401, and (e and f) 905 

Basin Average. 906 

Figure 6. Same as Figure 3 but for monthly precipitation: (a and b) correlation coefficient, (c and 907 

d) mean error, and (e and f) relative bias. 908 
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Figure 7. Annual variations of statistical indices for daily TMPA-RT vs. TMPA-V6 over Grid 909 

0501, Grid 0401, and Basin Average, respectively. 910 

Figure 8. Same as Figure 7 but for seasonal statistics: (a) Spring [March-May (MAM)], (b) 911 

Summer [June-August (JJA)], (c) Autumn [September-November (SON)], (d) Winter 912 

[December-February (DJF)]. 913 

Figure 9. (a) Observed and gauge-driven VIC-simulated monthly streamflow for calibration 914 

period (1990-1999) and reconstruction period (2000-2010), (b) Cumulative annual precipitation 915 

from 1990 to 2010 for the Laohahe basin, (c) same as (b) but for streamflow.  916 

Figure 10. Hydrologic simulation scheme 1: validation for TMPA-RT and TMPA-V6. VIC-3L 917 

reconstructed streamflow with the observed gauge precipitation and VIC-3L simulated 918 

streamflow directly forced by TMPA-RT and TMPA-V6 during three evolving periods: (a) daily 919 

scale and (b) monthly scale.  920 

Figure 11. Hydrologic simulation scheme 2: Simulation forced with bias-adjusted TMPA-RT. 921 

Simulated streamflow with bias-adjusted TMPA-RT referenced by the reconstructed streamflow 922 

with the gauged precipitation during three evolving periods: (a) daily scale and (b) monthly scale.  923 

Figure 12. Hydrologic simulation scheme 3: recalibration for TMPA-RT. Recalibrated 924 

streamflow with TMPA-RT (recalibrated model parameter values listed in Table 4) referenced by 925 

the reconstructed streamflow with the gauged precipitation during three evolving periods: (a) 926 

daily scale and (b) monthly scale.  927 

 928 


























