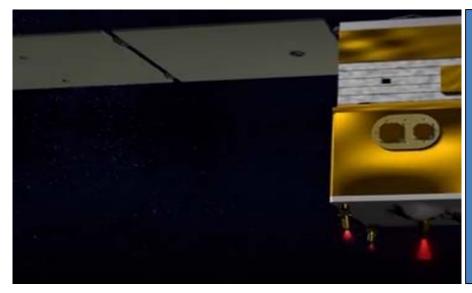


Technology Workshop for Discovery Green Propellant Infusion Mission

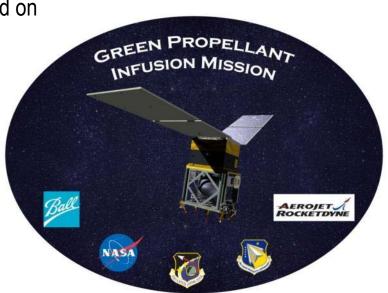
April 9, 2014



Technology Demonstration Mission

"A high performance green propellant has the potential to revolutionize how we travel to, from and in space" Michael Gazarik,

NASA Associate Administrator,
Space Technology Mission Directorate



GPIM Project Summary

- Project Description
 - Public/private partnership involving multiple government organizations and multiple contractors

 Demonstrate advanced in-space propulsion system based on USAF developed AF-M315E "green" propellant

- Over \$15M of industry/government investment
- More than a decade of research (handling, performance, etc.)
- Mature technology to TRL9
- Baseline mission:
 - Demonstrate ESPA class propulsion subsystem
 - Multiple orbit lowering operations/inclination change
- Project Status
 - Conducted CDR in March 2014
 - Component production and testing underway
 - Manifested Falcon Heavy STP-2 mission, August 2015

Why Green Propellant Matters

Propellant Performance

- ~50% higher density-specific impulse than hydrazine
- Comparable system performance to bi-propellents
- Lower temperature capability opens mission trade space

Science

- More payload capability or longer mission duration
- Wide range of spacecraft sizes: large to nano
- More launch options for benign secondary payloads without hazardous propellants

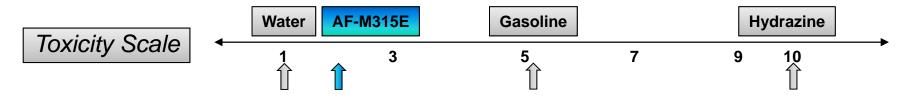
Safety

- Reduced toxicity enables easier handling and processing
- Human Space Operations

Economics

- Reduced launch, range, and operations costs
- US developed propellant and thrusters enable domestic sources
- Supports "ship and shoot" concept of operations

Aerojet Rocketdyne Technician handles AFM315E propellant


Traditional HAZMAT suit for fueling is not required

Propellant Comparison

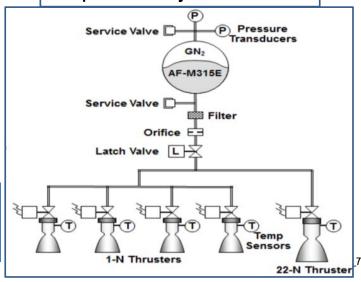
	AF-M315E Propellant	Hydrazine/Bi-propellants	
Performance	~50% greater density-impulse performance than hydrazine, competitive with bi-prop at system level		
Flammability	Vapor flammability essential non-existent, can even reduce small fires	Highly reactive/flammable	
Handling	"Short sleeve" operations/ FedEx can deliver it	Requires HAZMAT suit for handling and redundant containment facilities	
Human Spaceflight	Low vapor pressure, low toxicity, safer working environment, non-reactive, water bi-product	Reactive, easily evolves, can cause unanticipated failures (Apollo 15 parachute)	
System Complexity	Comparable to hydrazine	50% less complexity than bi-prop (no pressure, no regulators, no oxidizer tanks, etc.)	

Green Propellant is not only environmentally benign, it offers substantial improvements in performance, cost, and safety

Examples of Performance Benefits to Planetary Missions

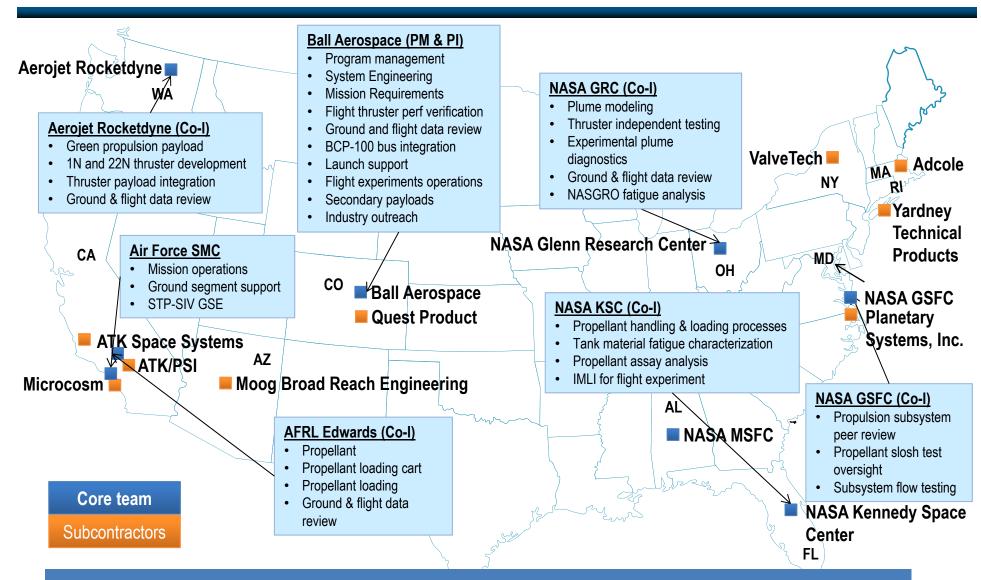
Mission	Propulsion Functions	System Replaced	AFM315E Enhancement
Asteroid Redirect Mission	Asteroid De-spinRCS	Bipropellant	 60% reduction in system complexity Reduced propulsion system volume and 22" bus length reduction Significant cost reduction Lower risk with crew visit
WFIRST Mission	Primary ∆VsMid-course corrections	Hydrazine	 10% reduction in propellant mass System dry mass reduction of >30%.
Mars Geyser Hopper	LandingGeyser site hopping	Hydrazine	 Improved density*Isp allows for two extra hops Provides an additional year of science Loosens launch constraints due to low temp
Spun Mars Ascent Vehicle	All RCS functions	 Electric TVC N2 Gas generator/ Cold Gas Systems 	 Isp density and low temperature capability replace complex electric system where hydrazine won't work due to density & temperature limits Eliminates systems, complexity, and reduces risk
Int'l Lunar Network lander	Vernier descent controlLanding propulsion	Hydrazine	 Antares to Minotaur V launch vehicle reduction Improved mass/lsp performance
Deep Space Microsat	Primary ∆VsMid-course corrections	Hydrazine	 Increases primary ∆V by 70% RCS propellant by 100% allowing for follow-on science opportunities

GPIM offers similar benefits to other science missions


GPIM Flight Objectives

- Space and ground demonstration/ validation of advanced propellant and propulsion system offering:
 - Increased propulsion efficiency
 - Significant improvements to ground & space crew safety
 - Reduced propulsion subsystem complexity
- Demonstrate 1 N and 22 N thruster performance:
 - 3-axis attitude control
 - Momentum dumping capability
 - Primary Divert (215 m/sec)
- Technology maturation
 - Components validation, TRL = 9 post flight
 - System flight validation, TRL = 7+ post flight

GPIM will flight demonstrate advanced propellant and thrusters, advancing the technology to TRL 9


Propulsion Subsystem Schematic

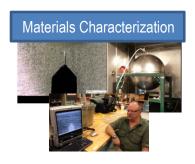
GPIM Team Contributors and Locations

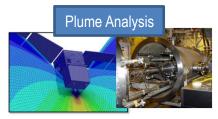
Cross-cutting team includes all technology stake-holders: NASA, DoD, industry

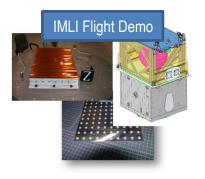
Conclusion

- Innovative, Government Industry partnership
 - Leverages 15+ years USAF investments
 - Collaboration includes 4 NASA Centers
 - 1N & 22N thrusters will be a part of Aerojet Rocketdyne catalog
- GPIM has potential for significant, lasting impact to:
 - Propulsion performance
 - Science return
 - Ground and space safety
 - National competitiveness
- Technology applicable to nearly all space missions:
 - Science
 - Defense
 - Commercial

BACKUP


April 9, 2014





2013 / 2014 GPIM Progress

- Established project technical, schedule and cost baselines
- Completed SRR, KDP-B, PDR, IBR, KDP-C, CDR
- Completed plume modeling (GRC)
- Completed design and validation of 22N lab model thruster (AR)
- Initiated all propulsion subsystem procurements
- Initiated all bus procurements
- Initiated upgrades to test facilities (GRC, AR)
- Initiated propellant loading cart development (AFRL Edwards)
- Initiated DOT and hazard classification development (AFRL Edwards)
- Initiated development of launch site fuel handling procedures and fracture mechanics testing (KSC)
- Range Safety reduced hazard classification from 'catastrophic' (heritage storable propellant) to 'critical'

