Advanced Seal Sessions I & II

Dr. Bruce M. Steinetz, General Chair Mr. Patrick H. Dunlap, Structural Seals Co-Chair NASA Glenn Research Center

> Dr. Neelesh Sarawate Turbine Seals Co-Chair GE Global Research Center

49th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, San Jose, CA July 16, 2013

Outline

Turbine Seals

- Why work advanced seals?
 - NASA engine/propulsion technologies NASA N+3 Studies
 - Challenges
- Advanced concepts under development
 - NASA Glenn
 - GE Global Research

Spacecraft Seals

- Habitable volume seals
- Thermal Barrier seals

Turbine Seals

Turbine Engine Improvement Map

- System improvements require advances in propulsor and core technologies
- Core technologies:
 - improved internal aerodynamic
 - higher operating temperature
 - control of parasitic losses

Why Seals?

NASA Study Results: Expected Seal Technology Payoffs

Transport System Goals Baseline: 2005

NASA Subsonic

Seal Technology	nology Study Engine/Co. System Benefits				
Large diameter aspirating seals (mult.	GE90-Transport/GE	-1.86% SFC -0.69% DOC + I	Target	Fuel Burn	Cruise NOx Emissions
locations)			N+1:	-33%	-55%
Interstage seals (mult. locations)	GE90-Transport/GE	–1.25% SFC –0.36% DOC + I	N+2:	-50%	-70%
Film riding seals	Regional-AE3007/	> -0.9% SFC	2020		
(Turbine inter-stage seals, mult. locations)	Allison-RR	> -0.89% DOC+ I	N+3: 2025	-60%	-80%
Advanced finger seals (mult. locations)	Regional/Honeywell	-1.4% SFC -0.7% DOC + I			

- Seals provide high return on technology \$ investment
- Same performance goals possible through modest investment in the technology development
 - Example: 1/5th to 1/4th cost of obtaining same performance improvements of re-designing/requalifying the compressor

Advanced Seal Technology: An Important Player

Engine/Propulsion Technologies from NASA N+3 Studies

- High OPR, high T4 cycle
 - CMC Turbine Blades/Vanes
 - high temp disk material
 - improved seal design
 - intercooled compressor
- High Efficiency Small Cores

 mitigate efficiency decrement
 active clearance control
 - flow control

www.nasa.gov

Turbine Seals: Challenges

- Minimize leakage to enable: reduced fuel consumption and emissions
- High temperatures:
- Minimize heat generation
- High speeds
- Moderate pressure
- Operate with little or no wear for long life <a>20,000 hrs
- Occupy small "footprint"

1200 to 1500°F

1000 to 1500 fps 250 psi

GRC Non-contacting Finger Seals

Key benefits are ...

•Avoids wearing out parts: No contact avoids wear found in brush seals and labyrinth seals

 Reduced flow: <1/3 the flow of a straight tooth labyrinth seal and <1/2 the flow of a contacting brush seal

•Comparable power loss: Power loss is the same order of magnitude as brush and finger seals

GE Global Research

Neelesh Sarawate GE Global Research

www.nasa.gov

GE Global Research: Advanced Sealing Synergy

GE Global Research Center •First industrial R&D lab •Established in 1900 •Nearly 180 research labs •~2,000 technologists, 2/3rd hold PhDs

10 2013 AIAA Joint Propulsion Conference, San Jose, CA 7/16/2013

GE Sealing & Performance Technologies

- Brush seals
- Cloth seals
- Aspirating seals
- Abradable coatings
- Non-metallic brush seals
- Retractable seals
- Compliant plate seals

ST Brush seals 1990s-2000

Cloth Seals AIAA 2001

Aspirating seals JPP 2006

Abradable coatings GT2004-53029

Non-metallic brush seals AIAA-2010 GT2012-69329

Compliant plate seals GT2011-45756

11 2013 AIAA Joint Propulsion Conference, San Jose, CA 7/16/2013

Spacecraft Seals

Pat Dunlap NASA Glenn Research Center

www.nasa.gov

Types of Seals

• Habitable volume seals

- Seals for hatches, windows, docking interfaces, penetrations/ feed-throughs
- Require extremely low leak rates to ensure that astronauts have sufficient breathable air for extended missions
- Typically made of elastomer materials
- Thermal barrier seals
 - Seals for interfaces in vehicle thermal protection systems (TPS)
 - Must withstand extreme heating during re-entry
 - Typically made of high temperature fibers, wires, or insulating materials

Thermal barrier seals for vehicle re-entry

Potential Missions

Asteroid retrieval mission

Future space station (e.g., cislunar)

Lunar/Mars outpost

Habitable Volume Seals

Habitable Volume Seal Challenges

Low leakage	Near hermetic levels (~0.002 lb _m air/day)
Space environments	Resist damaging effects of atomic oxygen, UV radiation, ionizing radiation, MMOD
Resiliency	Exhibit acceptable compression set vs. cycling and re-mate after long term holds
Temperature	Survival: -65 to +100°C (-85 to +212°F) Operational: -50 to +75°C (-58 to +167°F)
Loads	Low compression and adhesion loads
Androgynous docking	Design for seal-on-seal operation for vehicle-to- vehicle craft emergency rescue
Fault tolerance	Include multiple seals/bulbs for redundancy
Surface operations	Exhibit robust operation in presence of dust, FOD, etc.

NASA Docking System

- NASA implementation of the International Docking System Standard (IDSS)
- Under development as a common docking system for a variety of host vehicles
- Requires a large (~51" diameter) near hermetic seal to prevent loss of cabin air
- Operate in either of following modes:
 - Seal-on-Flange
 - Seal-on-Seal (androgynous)

Potential NDS Applications

Space-X Dragon

Sierra-Nevada Dream Chaser

WWW.Nasa.gov 18

Advanced Habitat + Rover Seals

Advanced Habitable Volume Seals for Space Envrionments

Seals with UV-resistant coatings

Seals with additives for UV resistance

Seals with retractable "shrouds"

Thermal Barrier Seals

Thermal Barrier Seal Challenges

Temperature

Leakage

Resiliency

Loads

Durability

Space environments

Near term missions: 2600°F with short (<1 min.) exposures to 3200°F for single heating pulse

Far term missions: 2600°F with longer (2-3 min.) exposures to 3200°F for multiple heating pulses (e.g., Mars re-entry/return)

Prevent excessive heat flow to underlying structures

Resist damaging effects of atomic oxygen, UV radiation, ionizing radiation, MMOD

Maintain contact with adjacent sealing surfaces; exhibit acceptable compression set vs. cycling

Exhibit light loads to prevent damage to TPS tile surfaces

For dynamic interfaces, tolerate scrubbing with minimal damage or loss of performance

www.nasa.gov 22

Advanced Thermal Barrier Seals

Use of advanced high temperature fibers

Advanced seal preloaders for improved resiliency at high temperatures

Agenda Information

Advanced Seal Technology I 2013 AIAA Joint Propulsion Conf. – Session: SCP-03 Tuesday Morning, July 16, Room 210 G Co-Chairmen: Bruce M. Steinetz and Patrick H. Dunlap, NASA Glenn; Neelesh Sarawate, GE Global Research

10:00 am Oral Presentation: Overview of Advanced Seals Challenges and Opportunities

Bruce M. Steinetz and Patrick H. Dunlap, NASA Glenn Research Center; Neelesh Sarawate, GE Global Research Center

10:30 am Oral Presentation: Turbomachinery Sealing Technology- Survey of Past Success and Strategy for Future Development

Joel Kirk, GE Aviation

11:00 am: Design, Manufacture and Testing of Variable Bristle Diameter Brush Seals (AIAA- 2013-3859)

Xiaoqing Zheng, Mike Mack, Mehmed Demiroglu General Electric Co.; Deepak Trivedi, Binayak Roy, GE Global Research Center. *Presented by Neelesh Sarawate GE GRC*

11:30 am: A Novel Air/Oil Separator and Its Integration to a Prototype Miniature Jet Engine (AIAA- 2013-3860)

Emre Tan Topal, TUSAS Engine Industries Inc; Sercan Acarer, TEI TUSAS Engine Industries Inc. /Izmir Institute of Technology; Tuna Kirgiz, TEI TUSAS Engine Industries Inc.

Advanced Seal Technology II 2013 AIAA Joint Propulsion Conf. – Session: SCP-04 Tuesday Afternoon, July 16, Room 210 G Co-Chairmen: Bruce M. Steinetz and Patrick H. Dunlap, NASA Glenn; Neelesh Sarawate, GE Global Research

1:00 pm Oral Presentation: Characterizing Multi-Scale Viscoelasticity of Polymers: A Transient Sealing Perspective

Azam Thatte, GE Global Research

1:30 pm: Transient Simulations of Rotordynamic Problems with Whirling Motion (AIAA- 2013-3914)

Chandrasekhar Kannepalli, Vineet Ahuja, and Ashvin Hosangadi, Combustion Research and Flow Technology, Inc. (CRAFT Tech)

2:00 pm: Use of VUV Radiation to Control Elastomer Seal Adhesion (AIAA- 2013-3915)

Henry C. de Groh III, Bernadette J. ("Sue") Puleo, and Deborah L. Waters, NASA Glenn Research; *Presented by Sue Puleo*