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ABSTRACT

We wish to better constrain the properties of solar flares by exploring how parameterized models of solar flares
interact with uncertainty estimation methods. We compare four different methods of calculating uncertainty
estimates in fitting parameterized models to Ramaty High Energy Solar Spectroscopic Imager X-ray spectra,
considering only statistical sources of error. Three of the four methods are based on estimating the scale-size of the
minimum in a hypersurface formed by the weighted sum of the squares of the differences between the model fit and
the data as a function of the fit parameters, and are implemented as commonly practiced. The fourth method is also
based on the difference between the data and the model, but instead uses Bayesian data analysis and Markov chain
Monte Carlo (MCMC) techniques to calculate an uncertainty estimate. Two flare spectra are modeled: one from
the Geostationary Operational Environmental Satellite X1.3 class flare of 2005 January 19, and the other from the
X4.8 flare of 2002 July 23. We find that the four methods give approximately the same uncertainty estimates for the
2005 January 19 spectral fit parameters, but lead to very different uncertainty estimates for the 2002 July 23 spectral
fit. This is because each method implements different analyses of the hypersurface, yielding method-dependent
results that can differ greatly depending on the shape of the hypersurface. The hypersurface arising from the 2005
January 19 analysis is consistent with a normal distribution; therefore, the assumptions behind the three non-
Bayesian uncertainty estimation methods are satisfied and similar estimates are found. The 2002 July 23 analysis
shows that the hypersurface is not consistent with a normal distribution, indicating that the assumptions behind the
three non-Bayesian uncertainty estimation methods are not satisfied, leading to differing estimates of the uncertainty.
We find that the shape of the hypersurface is crucial in understanding the output from each uncertainty estimation
technique, and that a crucial factor determining the shape of hypersurface is the location of the low-energy cutoff
relative to energies where the thermal emission dominates. The Bayesian/MCMC approach also allows us to
provide detailed information on probable values of the low-energy cutoff, Ec, a crucial parameter in defining the
energy content of the flare-accelerated electrons. We show that for the 2002 July 23 flare data, there is a 95%
probability that Ec lies below approximately 40 keV, and a 68% probability that it lies in the range 7–36 keV.
Further, the low-energy cutoff is more likely to be in the range 25–35 keV than in any other 10 keV wide energy
range. The low-energy cutoff for the 2005 January 19 flare is more tightly constrained to 107 ± 4 keV with 68%
probability. Using the Bayesian/MCMC approach, we also estimate for the first time probability density functions
for the total number of flare-accelerated electrons and the energy they carry for each flare studied. For the 2002 July
23 event, these probability density functions are asymmetric with long tails orders of magnitude higher than the
most probable value, caused by the poorly constrained value of the low-energy cutoff. The most probable electron
power is estimated at 1028.1 erg s−1, with a 68% credible interval estimated at 1028.1–1029.0 erg s−1, and a 95%
credible interval estimated at 1028.0–1030.2 erg s−1. For the 2005 January 19 flare spectrum, the probability density
functions for the total number of flare-accelerated electrons and their energy are much more symmetric and narrow:
the most probable electron power is estimated at 1027.66±0.01 erg s−1 (68% credible intervals). However, in this
case the uncertainty due to systematic sources of error is estimated to dominate the uncertainty due to statistical
sources of error.
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1. INTRODUCTION

The detailed understanding of solar flares requires an un-
derstanding of the physics of accelerated electrons, since elec-
trons carry a large fraction of the total energy released in a
flare (Lin & Hudson 1971, 1976; Emslie et al. 2004, 2005).
Since we cannot measure the electron flux in situ, the behavior
of the flare-accelerated electrons is inferred from the photons
emitted by their interaction with the ambient plasma. For a
general inhomogeneous optically thin source of plasma den-
sity n(r) and electron flux density energy spectrum F (E, r)
(electrons cm−2 s−1 keV−1) in volume V for electron en-
ergy E, the bremsstrahlung photon flux energy spectrum I (ε)

(photons cm−2 s−1 keV−1 at Earth distance R) can be written
(Brown 1971; Brown et al. 2003) as

I (ε) = nV

4πR2

∫ ∞

ε

F (E)Q(ε, E)dE, (1)

where n = ∫
V

ndV/V , F (E) is the mean electron flux distri-
bution, F (E) = ∫

V
n(r)F (E, r)dV/(nV ), and Q(ε, E) is the

bremsstrahlung cross-section differential in photon energy ε. In
this paper we model the photon flux energy spectrum as the
sum of emission due to a flare-injected electron flux spectrum
interacting with a target, and emission from hot plasma with
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a Maxwellian distribution of speeds corresponding to some tem-
perature T.

The Ramaty High Energy Solar Spectroscopic Imager
(RHESSI; Lin et al. 2002) flags all photons detected in any
one of the nine germanium detectors by the time of occurrence
(to 1 μs), the amount of energy lost by the photon in the detec-
tor (in 0.3 keV wide pulse height analyzer (PHA) bins), and the
detector number. For spatially integrated spectral analysis, the
counts can be combined arbitrarily over different detectors and
PHA bins.

We define D = (D1, . . . , Di, . . . , Dn) as the number of counts
observed in a given set of energy-loss bins labeled in the range
1 � i � n in a given time interval. These counts are noisy,
and are assumed to be drawn from a Poisson distribution with a
mean of Ci,

p(Di) = C
Di

i

Di!
e−Ci . (2)

The measured count rate RD
i in energy-loss bin “i” is

determined from the measured counts Di divided by the live
time4 tLT. The predicted count rate RC

i arises from the incident
photon flux rate via

RC
i = MijIj ; (3)

that is, the predicted count rate in an energy-loss bin “i” is
modeled via a detector response matrix Mij for an incident
photon flux spectrum Ij, where the index j, 1 � j � m, labels
energies at which the incident photon spectrum is calculated.
The response matrix Mij is calculated by RHESSI Solarsoft
routines once the count energy-loss bins (indexed by “i”) and
incident photon energies (indexed by “j”) are defined. The
incident photon flux energy spectrum is deduced by comparing
the observed with the predicted count rates in all energy bins
assuming a model for the photon flux energy spectrum until
some criterion for agreement is met.

One goal of RHESSI data analysis is to recover the electron
flux energy spectrum F (E, r) from the detected counts Di in a
given time interval. In general, this requires detailed knowledge
of the energy losses suffered by the bremsstrahlung-producing
electrons in the emitting volume. It is often only practical to
recover F (E); to do this, two approaches are commonly taken.

Since the rates are measured, and everything other than F (E)
is known (either calculated, measured or assumed), F (E) can be
obtained through Equations (1) and (3). This approach is known
as inversion. The advantage of inversion is that one does not
make an assumption as to the nature of the mean electron flux
distribution. The disadvantage of this approach is that noise in
the observed data and errors in instrument calibration can lead to
the creation of spurious features in the solution. This effect can
be mitigated by adding extra constraints to the inversion process
which forces the solution to be smooth across energy bins (note
that this is required by the bremsstrahlung process and RHESSI’s
energy resolution). Consider discretizing Equation (1) by energy
bins to yield a matrix expression,

J = AF (4)

where J is an m-element vector representing the observed
number of photons I (ε), A is an m × n = matrix representing
Q(ε, E), and F is an n-element vector representing the mean

4 The live time is the observation time minus the dead time. The dead time is
the amount of time that the detector cannot respond to an incoming photon.

electron spectrum F (E). The standard approach is to minimize
the residual

||AF − J||

for F where || · || is the Euclidean norm. This matrix problem
can be ill-posed due to the noise sources discussed above, or
by A being ill-conditioned or singular. Regularization mitigates
these issues by imposing extra constraints on the solution for
F. Tikhonov regularization does this by adding an extra term
||�F|| for some choice of Tikhonov matrix �, to the above
minimization problem, yielding

min
F

(||AF − J|| + ||�F||) . (5)

Piana et al. (2003) demonstrate a Tikhonov-regularized inver-
sion algorithm that takes the observed counts and finds F (E)
and the uncertainty on F (E). Piana et al. (2003) show that this
method led to an unexpected “dip” in the mean electron spec-
trum which is thought (in most cases) to arise from the presence
of a significant photospheric albedo flux contributing to the ob-
served X-ray flux (Kontar et al. 2006, 2008).

In the second approach, known as forward fitting, a param-
eterized model for the mean electron flux distribution F (E) is
used to describe the photon flux Ij incident at RHESSI. The
photon emission, parameterized by θ (Nθ variables) is

Ij = Ij (θ ). (6)

A fitting process is then used to find values of the parameters
that best reproduce the counts Di observed by RHESSI. The
disadvantage of this method is that the spectral model is
prescribed rather than derived, and so features that are not in
the model cannot be described by it, although their presence
in the data may be indicated by the residuals (Brown et al.
2006). The advantages of this method are that by judicious
choice of parameterization the major features of the spectrum
can be modeled, and values of the parameters with uncertainty
estimates can be obtained.

In this paper, we use the forward fitting approach and consider
four different methods of estimating a range of “acceptable”
model parameter values that describe our understanding of
the flare within the confines of the model. By comparing
different methods, we seek to understand the differences in
the final answer that may be brought about by the way the
estimates were obtained. Further, by comparing two different
spectra we can better understand how, for a given model, the
estimated parameter values and errors are influenced by the
data. It is assumed that the only source of noise is the Poisson
distribution that follows naturally from independent photon
events (Equation (2)).

Systematic error sources are undoubtedly important in de-
termining the uncertainties in the model parameters (Lee et al.
2011), but they are not explicitly included in the uncertainty de-
termination methods described below. Two types of systematic
uncertainties are common in this type of spectroscopy, integral
and differential. Integral uncertainties are basically the uncer-
tainties in the overall sensitivity of a given detector. Based on
comparisons of flare spectra measured with different detectors,
they are known to be smaller than approximately 10%. They
affect primarily the absolute value of the emission measure
(EM) in the thermal model and the total electron flux in the
non-thermal electron spectrum. The differential uncertainties
are basically the uncertainties in the sensitivity in each energy
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bin with respect to its neighbors. They affect primarily model
parameters that depend on the slope of the measured spectrum.
They are therefore important for the temperature in the ther-
mal model and the low energy cutoff and power-law index of
the non-thermal electron spectrum. For RHESSI, the differential
uncertainties are less than 1% and are generally negligible com-
pared to the statistical uncertainties. Milligan & Dennis (2009,
using detectors 1, 3, 4, 5, 6, and 9) and Su et al. (2011, using de-
tectors 1, 3, 4, 6, 8, and 9) show that there is scatter in the best-fit
parameter values determined from different individual detectors
for the flare models they considered but that the range of the
scatter indicates that the systematic errors are not significantly
greater than the statistical errors. The systematic uncertainties
are not important in developing a basic understanding of how
each uncertainty determination method behaves in the presence
of noisy data and consequently they have not been included in
the analysis done for this paper.

The observations and spectral models are described in
Section 2. Section 3 describes the parameter and uncertainty
estimation methods used. Section 4 describes the results and
Section 5 discusses the implications of these results for fitting
spectral models to RHESSI data.

2. SPECTRAL MODEL AND OBSERVATIONS

In the X-ray energy range covered by RHESSI (Lin et al.
2002)—generally from ∼3 keV up to a few hundred keV—the
emitted photon spectrum is modeled as the sum of a thermal
component that generally dominates at the lower X-ray energies,
typically below ∼10–20 keV, and a non-thermal component
that dominates at higher energies. The thermal component
is the line and continuum emission from the flare-heated plasma.
The line emission is mainly from transitions in highly ionized
iron—primarily Fe xxv—and appears in the RHESSI spectrum
as an unresolved peak at 6.7 keV with a much weaker feature
at ∼8 keV. The continuum emission is a combination of
free–free emission (bremsstrahlung) and free–bound emission
(recombination radiation).

For our spectral analysis, we have used the thermal line-
plus-continuum spectra provided by CHIANTI (Dere et al.
1997, 2009) assuming an isothermal plasma with the ionization
balance given by Mazzotta et al. (1998) and the “sun coronal”
abundances given by Feldman et al. (1992). The only free
parameters are the temperature (kT in keV) and the volume
EM (in cm−3).

The thermal continuum emission is made up of the sum
of bremsstrahlung (or free–free) emission and free–bound
emission. The form of the bremsstrahlung contribution as a
function of photon energy ε is approximately

Ithermal(ε) ∝ [EM]

εT 1/2
exp(−ε/kT ), (7)

where k is Boltzmann’s constant and Ithermal is in units of
photons s−1 erg−1 (Tandberg-Hanssen & Emslie 1988). The
free–bound continuum spectrum has a similar dependency on
EM and T.

The non-thermal component of the measured X-ray spectrum
is bremsstrahlung from flare-accelerated electrons interacting
with the ambient medium. Following Brown (1971), we assume
a cold, thick target, meaning that the electrons collisionally
lose their energy in cold, fully ionized plasma as they radiate.
The energy loss rate per unit distance x as an electron with
speed v streams through the ambient plasma is dE/dx =

−2Kne(x)/(mv2), where m is the electron mass, ne(x) is the
number density of plasma electrons, and K is approximately
constant (see Holman et al. 2011). Using this result, the mean
electron flux becomes

F (E) = 1

nV

mv2

2K

∫ ∞

E

F0(E0)dE0, (8)

where F0(E0) is now the injected electron flux energy spectrum
(electrons s−1 keV−1). We use the following broken power-law
functional form for the spectrum of injected electrons:

F0(E0) = A

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 E0 < Ec

(E0/Ep)−δ1 Ec � E0 < Eb

(E0/Ep)−δ2 (Eb/Ep)δ2−δ1 Eb � E0 < Eh

0 E0 � Eh.

(9)

The seven parameters of this non-thermal component are the
normalization parameter A, the low- and high-energy cutoffs,
Ec and Eh, the pivot energy Ep, the break energy Eb, and the
power-law indices below and above the break energy, δ1 and δ2,
respectively. The radiated X-ray spectrum is modeled as the sum
of the isothermal component and Equation (1), where F (E) is
given by Equations (8) and (9). The X-ray emission is assumed to
be isotropic and, with this assumption, the contribution flux from
photospheric albedo to the total incident X-ray at the instrument
can be estimated (see Kontar et al. 2011).

We model RHESSI spectral data from two flares—the Geo-
stationary Operational Environmental Satellite (GOES) class
X1.3 flare on 2005 January 19 starting at 08:03 UT, and the
X4.8 flare starting at 00:18 UT on 2002 July 23. We choose
these flares because previous studies have shown that the low-
energy cutoff (Ec) is estimated to lie in very different portions of
the spectrum. In the 2002 July 23 event, the low-energy cutoff
of the flare-accelerated electrons is estimated to have an energy
in the region where the observed hard X-ray emission is ther-
mally dominated. This makes it difficult to place limits on the
low-energy cutoff since it is difficult to determine the signal
of the flare-accelerated electrons against the dominant thermal
bremsstrahlung emission. Most flares are thought to have low-
energy cutoffs close to or in the region where the emission is
dominated by thermal bremsstrahlung. In contrast, Warmuth
et al. (2009) studied the 2005 January 19 event, and found that
late in the impulsive phase, the low-energy cutoff energy is much
higher than energies at which the thermal bremsstrahlung domi-
nates. Therefore, thermal bremsstrahlung cannot be a significant
factor in determining the uncertainty in the low-energy cutoff
for this flare. The low-energy cutoff is one of the most important
properties of a flare as its value strongly influences the estimated
flare-accelerated electron energy content. Therefore, knowledge
of the uncertainty in the low-energy cutoff directly influences
knowledge of the energy content of the flare. Hence, these two
flares and the models used to study them are good test-beds
for understanding how different uncertainty estimation meth-
ods operate when generating uncertainties for parameters that
are crucial for understanding the properties of solar flares.

Table 1 has details of the two flares and the two spectral
accumulation times chosen, the models used, and the best-fit
parameter values obtained that fit the spectral models to the data
(see Section 3.1). These two spectra were chosen because they
were both well observed with RHESSI and they highlight the
excellent spectral capabilities of the cooled germanium detectors
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Table 1
Flare Characteristics and Model Parameters

Flare 1 Flare 2
Date 2005 Jan 19 2002 Jul 23
GOES start/peak/end times 08:03/08:22/08:40 UT 00:18/00:35/00:47 UT
GOES class X1.3 X4.8
Location on the Sun N15W51 S13E72
Radial distance from Sun centera 763′′ 904′′
Time interval analyzed 08:26:00–08:26:20 UT 00:30:00–00:30:20.250 UT
Fitted photon energy range 6.45 to 300 keV 15 to 500 keV
Fitted photon energy bins 90 90

Parameter Units Valueb θ̂ Free/Fixedc Valueb θ̂ Free/Fixedc

Thermal plasma
EM 1049 cm−3 2.31 Free 2.16 Free

Temp. (kT) keV 2.03 Free 3.18 Free
Abundance Coronal 1 Fixed 1 Fixed

Non-thermal electrons
F0, integrated fluxd 1035 s−1 0.17 Free Not used

A, fluxe at Ep 1035 s−1 keV−1 Not used 0.028 Free
Ec keV 105 Free 32.0 Free
Ep

f keV 1 Fixed 50 Fixed
Eb keV 32,000 Fixed 256 Free
Eh keV 32,000 Fixed 32,000 Fixed
δ1 3.57 Free 3.40 Free
δ2 6.0 Fixed 3.92 Free

Nuclear template
Normalization photons cm−2 Not used 2.11 Fixed

Gaussians
G1 peak E keV 8.44 Fixed Not used
G2 peak E keV 9.95 Fixed Not used

G1 amplitude photons cm−2 s−1 33,300 Free Not used
G2 amplitude photons cm−2 s−1 12,800 Free Not used
G1,2 FWHM keV 0.1 Fixed Not used

Notes.
a As measured in the Stonyhurst heliographic coordinate system (Thompson 2006).
b Best-fit value of parameter computed using OSPEX—see Section 3.1.
c Parameter fixed or allowed to go free in OSPEX least-squares fitting. Parameters noted as “fixed” are frozen at their values in subsequent uncertainty analyses.
d Total electron flux integrated over all energies from Ec to Eh.
e Electron flux at Ep.
f The use of the pivot value in the implementation of Equation (9) is explained in Sections 2.1 and 2.2.

of this instrument (Smith et al. 2002). Both flares have been
extensively analyzed previously—see, for example, Warmuth
et al. (2009) for the 2005 January 19 flare and Holman et al.
(2003) for the 2002 July 23 flare. The most notable difference
between the two spectra is that the first has a low-energy cutoff
in the electron spectrum of over 100 keV, well above the thermal
component. This is in contrast to the second flare where the low-
energy cutoff is estimated to be below ∼40 keV (Holman et al.
2003) and consequently difficult to determine because of the
dominance of the thermal component at lower energies. This
difference between these two flares motivates their selection for
this study. These two flare events are good candidates that allow
us to explore how well we can determine the value of the crucial
low-energy cutoff parameter (and flare properties that depend
on it) given the data, the model, and the uncertainty estimation
methods used.

Traditionally, RHESSI spectral analysis involves summing
data from multiple RHESSI detectors to improve counting
statistics—see, for example, Su et al. (2009). Instead of this
usual approach, we chose to use data from just one detector with
good energy resolution and sensitivity—detector 4. This allowed
us to apply the most accurate corrections for energy resolution
and calibration, pulse pile-up, and background subtraction. In

the time periods selected, the count rates were sufficiently high
that selecting a single detector did not seriously degrade the
spectroscopy capability up to the highest energies considered of
∼500 keV. The energy bin widths were chosen to be as narrow
as possible to preserve spectral details resolvable with the de-
tector’s ∼1 keV FWHM spectral resolution while maintaining
>30 counts in each bin as required for the χ2 analysis procedure
to be approximately valid (Wasserman 2003). The only part of
the spectral data that is affected by small numbers is at the high
energy part of the spectrum, well away from the low energy part
of the spectrum. At these energies, the simple normal approx-
imation to the Poisson distribution—(Poisson(λ) ≈ N (λ,

√
λ)

for λ “large”)—is no longer appropriate. However, the gross
properties we are most interested in—flare energy content, the
number of flare-accelerated electrons and the probability den-
sity function of the low-energy cutoff, are largely unaffected
by a biased fit of a spectral model to the data at high energies,
since these properties are largely determined by the flare spec-
trum at energies where the normal distribution can be used. We
can assert this for the flares studied in this analysis because
these are relatively large flares with large numbers of counts.
The vast majority of flares are smaller than the ones studied
here, and therefore fits or parameterized models to the data are
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(a) Count Flux Spectrum, 19-January-2005
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(b) Photon Flux Spectrum, 19-January-2005
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Figure 1. Count and photon spectra for the 2005 January 19 flare in the analysis period 08:26:00 to 08:26:20 UT. (a) The histograms with ±1σ statistical error bars
represent the background-subtracted count fluxes (black) and the background fluxes (pink) vs. energy loss in the detector. The smooth curves represent the different
components of the model used to fit the data as follows: isothermal (green), thick-target bremsstrahlung (yellow), and Gaussians (blue and cyan). The sum of all the
components is shown in red. (b) Incident photon flux (in units of photons s−1 cm−2 keV−1) vs. photon energy with the different components of the model shown in
the same colors as in (a). The energy range used for the spectral fits lies between the vertical line at 6.45 keV and the edge of the plot at 300 keV.

more likely to suffer from biased fits over more extensive energy
ranges.5

Both flares have been extensively analyzed previously—see,
for example, Warmuth et al. (2009) for the 2005 January 19 flare
and Holman et al. (2003) for the 2002 July 23 flare. For ease
in comparing results in each case, we have generally followed
their lead in choosing background spectra, energy ranges, model
components, fitting procedures, etc., in the spectral analysis.
Table 1 has details of the two flares and the two spectral
accumulation times chosen, the models used, and the best-fit
parameter values obtained that fit the spectral models to the
data (see Section 3.1). Corresponding count flux6 and photon
flux spectra are shown in Figures 1 and 2. The model count flux
spectrum is computed by taking the best fit photon spectrum and
convolving it with the instrument response matrix. Figures 1(b)
and 2(b) show the best fit photon spectrum and the photon
spectrum derived from the measured count flux spectrum using
the ratio of the best fit photon spectrum to the measured counts
in each energy bin. The units in Figures 1 and 2(b) are photons
s−1 cm−2 keV−1.

2.1. 2005 January 19

The first flare considered was the GOES X1.3 flare that
peaked at 08:22 UT on 2005 January 19 on the solar disc at
N15W51. We used the RHESSI observations of this flare from

5 It should also be noted that even though a substantial part of the spectrum
has large enough counts, biased values to the fit are still possible when
minimizing a χ2-like expression—see Cash (1979) and also Humphrey et al.
(2009) and references therein.
6 By count flux we mean the measured count rate per keV divided by a
nominal detector area corrected for grid transmission, equal to 38 cm2 for the
single detector used in our analysis.

08:26:00–08:26:20 UT, the same time interval when Warmuth
et al. (2009) found an unusually hard spectrum during the
final peak of the impulsive phase, possibly resulting from a
low-energy cutoff in the electron spectrum as high as 120 keV
(see their Figure 1 for RHESSI light curves of this event).

We used the standard procedures that form OSPEX, the stan-
dard spectral analysis package used in RHESSI data analysis, to
determine the best-fit parameters of the thermal and non-thermal
components of the incident photon spectrum. As is common in
RHESSI data analysis, the background spectrum that was sub-
tracted from the measured count rate spectrum was calculated
by linear interpolation in time between spectra measured before
and after the flare. The estimated background spectrum is about
an order of magnitude less than the flare spectrum at all ener-
gies considered. The background can therefore be considered as
having very little influence on the final probability density func-
tions of the model parameters and the gross properties of the flare
such as its energy content and the number of flare-accelerated
electrons. Following Warmuth et al. (2009), we included two
narrow Gaussian-shaped emission lines in the model photon
spectrum to accommodate features in the count-rate spectra that
are believed to be instrumental in origin.

We included the standard corrections for energy calibration
adjustments and pulse pile-up, but these did not play a significant
role for the selected time interval since the attenuators were in
the A3 state (both thick and thin attenuators in place) resulting
in relatively low counting rates. The albedo component was
not included here, although it was included by Warmuth et al.
(2009). We found that adding the albedo component did not
significantly alter the fitted parameters or the estimates of the
uncertainties. We used the following energy bins for this flare:
1/3 keV from 3 to 15 keV, 1 keV from 15 to 50 keV, 5 keV
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(a) Count Flux Spectrum, 23-July-2002
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(b) Photon Flux Spectrum, 23-July-2002
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Figure 2. Similar to Figure 1 for the 2002 July 23 flare. The following three additional components are included in this plot: albedo (purple), pulse pile-up (blue), and
the nuclear template (cyan). The two Gaussians shown in Figure 1 were not used for this fit. The energy range used for the spectral fits lies between the two vertical
lines at 15 and 500 keV.

from 50 to 100 keV, and 10 keV from 100 to 300 keV. The
photon spectrum was extended above the fitted energy range
up to 600 keV to allow for non-photopeak response of the
detector.

Again, following Warmuth et al. (2009), we modeled the
thermal component with a single-temperature function from
CHIANTI using coronal abundances and a Mazzotta et al.
(1998) ionization balance. The non-thermal component was
modeled assuming thick-target interactions of electrons with
a single-power-law spectrum at energies above Ec. This is
accommodated in Equation (9) by fixing both δ2 at the default
value of 6.0 and Eb at 32 MeV so that they have no significant
effect on the bremsstrahlung X-ray spectrum in the fitted photon
energy range below 300 keV. Eh was fixed at 32 MeV so that,
like Eb, it has negligible effect on the bremsstrahlung X-ray
spectrum in the fitted energy range, and so is equivalent to
having no cutoff at all. For this flare, the normalization was
taken to be F0, the total integrated electron flux over the electron
energy range from Ec to Eh with Ep fixed at 1 keV, instead of
A in Equation (9). The advantage in normalizing to F0 is that
this is a physically interesting quantity. The disadvantage is that
it is strongly dependent on the value of both the low-energy
cutoff and the spectral index. For the conditions described here,
F0 = AE1−δ1

c /(δ1 − 1). The package OSPEX was configured
to use this implementation of Equation (9) for this flare. An
alternative implementation was required for the 2002 July 23
event (see Sections 2.2 and 4.2).

In our detailed spectral analysis and assessment of uncer-
tainties, we had a total of seven free parameters—EM, kT,
F0, Ec, δ1, G1, and G2—(see Table 1). Other parameters cov-
ering the instrumental effects—energy calibration, pulse pile-
up, and Gaussian features below 10 keV—were determined
from the analysis of the count-flux spectra for other time in-
tervals and other flares, and then fixed for the subsequent de-

termination of uncertainties in this time interval. The ampli-
tudes of the two Gaussians (G1 and G2) were free during the
spectral fits.

2.2. 2002 July 23

The second flare considered was the GOES X4.3 flare7 that
peaked at 00:35 UT on 2002 July 23 from a location closer to
the limb at S13E72 than the first event. Following Holman et al.
(2003), we chose to analyze the time interval from 00:30:00 to
00:30:20.250 UT during the first peak of the impulsive phase
(see their Figure 1 for RHESSI X-ray light curves of this event;
see also Lin et al. (2003), their Figure 1 for a light curve of
the GOES X-ray flux). The measured X-ray spectrum was again
assumed to be the sum of an isothermal spectrum and the thick-
target bremsstrahlung spectrum from non-thermal electrons
with the broken power-law of Equation (9). In this case, the
full double power-law was assumed with the break energy, Eb,
and the second power-law index, δ2, both free parameters. The
normalization constant for this flare, A in Equation (9), was
defined as the electron flux at the pivot energy Ep that was fixed
at 50 keV. As with the first flare, the high-energy cutoff to the
electron spectrum Eh was set at 32 MeV to ensure that it had no
significant effect in the fitted photon energy range.

The following 130 energy bins were used for this event:
1 keV wide bins from 3.0 to 40 keV, 3 keV from 40 to 100 keV,
5 keV bins from 100 to 150 keV, 10 keV bins from 150 to
500 keV, 1 keV bins from 501 to 520 keV, and 10 keV bins from
520 to 600 keV. We extended the energy range of the assumed
photon spectrum up to 20 MeV to allow for the off-diagonal
elements of the instrument response matrix due to the non-
photopeak response of the detector. The fitted photon energy

7 Many more details concerning this flare can be found in the special issue of
Astrophysical Journal Letters (vol. 595) dedicated to its study.

6



The Astrophysical Journal, 769:89 (22pp), 2013 June 1 Ireland et al.

Table 2
Parameter Values and Uncertainties Derived for the Four Uncertainty Estimation Methods Applied

to the 2005 January 19 Flare Spectrum, as Described in Section 2

Parameter Method Valuea Uncertainties Ratio

68% 95%

EM (1049 cm−3) Covariance matrixb 2.31 ±0.14 Not calculated Not calculated
χ2-mappingc 2.31 −0.14, +0.15 −0.27, +0.31 1.94, 2.05
Monte Carlod 2.31 −0.17, +0.12 −0.30, +0.27 1.75, 2.31
Bayesian/MCMCe 2.30 −0.14, +0.15 −0.27, +0.31 1.96, 2.04

kT (keV) Covariance matrix 2.03 ±0.02 Not calculated Not calculated
χ2-mapping 2.03 ±0.02 ±0.04 1.99, 2.01
Monte Carlo 2.03 ±0.02 −0.03, +0.04 2.13, 1.84
Bayesian/MCMC 2.03 ±0.02 ±0.04 1.98, 2.03

F0 Covariance matrix 0.17 ±0.01 Not calculated Not calculated
(Total integrated electron flux, χ2-mapping 0.17 ±0.01 ±0.02 1.90, 2.10
in units of 1035 electrons s−1) Monte Carlo 0.17 ±0.01 ±0.01 1.87, 2.17

Bayesian/MCMC 0.16 ±0.01 ±0.02 1.94, 1.96

δ1 Covariance matrix 3.57 ±0.03 Not calculated Not calculated
χ2-mapping 3.57 ±0.04 −0.07, +0.08 1.95, 2.04
Monte Carlo 3.57 −0.02, +0.04 −0.05, +0.07 2.15, 1.89
Bayesian/MCMC 3.58 −0.03, + 0.04 −0.06, +0.07 1.88, 2.04

Ec (keV) Covariance matrix 105 ±3 Not calculated Not calculated
χ2-mapping 105 ±4 ±8 2.00, 2.00
Monte Carlo 105 −3, 4 −6, +7 2.10, 1.91
Bayesian/MCMC 107 ±4 −7, +8 1.85, 2.00

Notes. The final column “Ratio” is defined as the ratio of the ±95% uncertainties to the ±68% uncertainties; for an exact normal distribution
the entry in this column would be 1.96, 1.96. Two ratios are quoted in order to reveal the presence of any relative asymmetry in the upper and
lower uncertainty estimates, if present. See Section 3 for a detailed description of how the uncertainty estimates are found for each method.
a The covariance matrix, Monte Carlo, and χ2-mapping methods all start from the same parameter value θ̂ where χ2 is minimized. For the
Bayesian/MCMC approach, the “maximum a posteriori” value θMAP is quoted.
b See Section 3.1.1 and Equation (11) for the definition of the parameter uncertainty for the covariance matrix method.
c See Section 3.1.3 and Equation (15) for the definition of the parameter uncertainty for the χ2-mapping method.
d See Section 3.1.2 and Equation (13) for the definition of the parameter uncertainty for the Monte Carlo method.
e See Section 3.2.1 and Equation (20) for the definition of the parameter uncertainty for the Bayesian/MCMC method.

range was restricted to be above 15 keV to avoid the need
for the two Gaussian emission line sources to accommodate
the supposed instrumental features below 10 keV used for the
first flare. The upper energy of the fit range was extended up
to 500 keV to provide more information on the power-law
spectrum above the break energy. This increase in the upper
energy limit also necessitated adding in a nuclear component in
the form of a template appropriate for a power-law ion spectrum
(Murphy et al. 1991) with the normalization parameter fixed at
the value obtained to give a best fit to the data. This nuclear
component (shown in Figure 2) contributes <10% to the photon
flux at all energies below ∼400 keV and hence has only marginal
significance in the subsequent analysis.

Other parameters were determined from least-squares fits
to the count-flux spectrum and then fixed for the subsequent
determination of uncertainties. These included parameters to
characterize the instrumental effects of pulse pile-up that is
a more important component for this flare since the count
rates were a factor of ∼10 higher than in the first flare. Also,
although it is not significant for flares at the solar limb, the
albedo spectrum was included for this flare assuming isotropic
X-ray emission using the procedure described in Kontar et al.
(2006) and implemented in OSPEX. Both the pile-up and albedo
components are shown in Figure 2.

For our detailed spectral analysis and assessment of un-
certainties for this flare, there was a total of seven free
parameters—EM, kT, A, Ec, Eb, δ1, δ2 (see Table 1). The
background-subtracted count flux and photon spectra are shown

in Figure 2 along with the best-fit model components. Note that
the implementation of the normalization used for this analysis
is different from that used for the 2005 January 19 flare. In
this analysis using the normalization A at the pivot energy Ep is
preferred. The reason for this choice is given in Section 4.2.

3. PARAMETER AND UNCERTAINTY
ESTIMATION METHODS

Four different methods of uncertainty estimation are de-
scribed below. The first three methods—“covariance matrix,”
“χ2-mapping,” and “Monte Carlo” sampling (Sections 3.1.1,
3.1.2, and 3.1.3, respectively) are widely used to estimate errors
in parameter values. The fourth method is based on Bayesian
probability and the Markov chain Monte Carlo (MCMC) method
(Section 3.2.1). Each of these methods is applied to the spec-
tral model and data described in Section 2, and the results
are tabulated in Table 2 (2005 January 19) and Table 3
(2002 July 23).

3.1. Methods 1–3: Parameter and Uncertainty Estimation
via Nonlinear Least-squares Fitting

The first three methods are based on finding a local minimum
χ2

min to the quantity

χ2 =
n∑

i=1

[
RD

i − R
C(θ)
i

]2

w2
i

(10)
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Table 3
Parameter Values and Uncertainty Estimates Derived for the Four Uncertainty Estimation Methods Applied

to the 2002 July 23 Flare Spectrum, as Described in Section 2

Parameter Method Valuea Uncertainties Ratio

68% 95%

EM (1049 cm−3) Covariance matrixb 2.16 ±0.08 Not calculated Not calculated
χ2-mappingc ±0.04 ±0.08 2.05, 1.99
Monte Carlod −0.05, 0.03 −0.09, 0.07 1.82, 2.28
Bayesian/MCMCe 2.17 ±0.04 ±0.08 1.89, 1.96

kT (keV) Covariance matrix 3.18 ±0.03 Not calculated Not calculated
χ2-mapping ±0.01 ±0.02 1.97, 2.13
Monte Carlo ±0.01 −0.02, 0.03 2.20, 1.87
Bayesian/MCMC 3.18 ±0.01 ±0.03 1.93, 1.92

A Covariance matrix 0.028 ±0.004 Not calculated Not calculated
(electron flux at 50 keV, χ2-mapping −0.003, 0.002 −0.006, 0.005 2.15, 1.94
in units of 1035 electrons (sec keV)−1) Monte Carlo −0.002, 0.003 −0.005, 0.005 2.21, 1.74

Bayesian/MCMC 0.028 −0.003, 0.002 −0.006, 0.004 2.09, 1.76

δ1 Covariance matrix 3.40 ±0.16 Not calculated Not calculated
χ2-mapping −0.14, 0.10 −0.36, 0.17 2.61, 1.78
Monte Carlo −0.14, 0.12 −0.34, 0.19 2.52, 1.61
Bayesian/MCMC 3.41 −0.13, 0.08 −0.33, 0.13 2.55, 1.55

Eb (keV) Covariance matrix 256 ±135 Not calculated Not calculated
χ2-mapping −77, 147 −123, 686 1.59, 6.67
Monte Carlo −77, 253 −121, 1319 1.58, 5.22
Bayesian/MCMC 269 −147, 5615 −217, 1239 1.47, 2.01

δ2 Covariance matrix 3.92 ±0.11 Not calculated Not calculated
χ2-mapping −0.08, 0.13 −0.13, 0.78 1.67, 5.67
Monte Carlo −0.07,0.23 −0.12, 3.27 1.74, 14.2
Bayesian/MCMC 3.93 −0.11, 0.58 −0.18, 1.92 1.57, 3.33

Ec (keV) Covariance matrix 32.0 ±24.091 Not calculated Not calculated
χ2-mapping −5.78, 5.05 Not determined, 12.1 Not determined, 2.4
Monte Carlo −6.86, 7.37 −20.7, 15.9 3.02, 2.16
Bayesian/MCMC 31.2 −16.1, 11.7 −23.1, 19.1 1.44, 1.63

Notes. The final column “Ratio” is defined as the ratio of the ±95% uncertainties to the ±68% uncertainties; for an exact normal distribution the entry in this
column would be 1.96, 1.96. Two ratios are quoted in order to reveal the presence of any relative asymmetry in the upper and lower uncertainty estimates, if
present. See Section 3 for a detailed description of how the uncertainty estimates are found for each method. The entry “not determined” indicates that the
value was not determinable by the method.
a The “covariance matrix,” “Monte Carlo” and “χ2-mapping” methods all start from the same parameter value θ̂ where χ2 is minimized. For the Bayesian/

MCMC approach, the “maximum a posteriori” θMAP value is quoted.
b See Section 3.1.2 and Equation (13) for the definition of the parameter uncertainty for the covariance matrix method.
c See Section 3.1.1 and Equation (11) for the definition of the parameter uncertainty for the χ2-mapping method.
d See Section 3.1.3 and Equation (15) for the definition of the parameter uncertainty for the Monte Carlo method.
e See Section 3.2.1 and Equation (20) for the definition of the parameter uncertainty for the Bayesian/MCMC method.

for some value of θ = θ̂ and wi . The quantity χ2 is a hypersur-
face parameterized by θ . The quantity θ̂ is found by performing
a nonlinear weighted least squares fit minimizing χ2 with re-
spect to θ . There are many different ways of implementing this
minimization. The minimization was achieved using the OS-
PEX spectral analysis package which uses the IDL/Solarsoft
routine MCURVEFIT.pro. This routine is based on the non-
linear least-squares Levenberg–Marquardt fitting algorithm of
Press et al. (1992, p. 675–683). This implementation of the algo-
rithm ignores the second derivative of the fitting function R

C(θ)
i

with respect to θ , and is therefore equivalent to assuming that
the fitting function is linear with respect to θ near the best-fit
value θ̂ .

The value of θ̂ is derived as follows. The process is begun
with an initial estimate of θ̂ , θ0. The corresponding flux rate

spectrum R
C(θ0)
i is calculated and wi is set to

√
Ci(θ0)/tLT. This

value of wi is passed to MCURVEFIT.pro. This routine refines
the estimate of the values of the spectral parameters, stopping

when the termination condition is met.8 This first estimate is to
θ̂ is labeled θ1. The fitting routine is run again this time using
θ1 as the initial estimate to θ̂ and with wi set to

√
Ci(θ1)/tLT,

yielding a second estimate θ2. The routine is run a third and
final time using θ2 as the initial estimate to θ̂ and with wi set to√

Ci(θ2)/tLT, yielding a final parameter estimate, labeled θ̂ .
Estimates of the uncertainty in the value θ̂ are found by

defining a scale-size of variation in the χ2-hypersurface around
θ̂ in different ways. Three different methods of defining and
estimating the uncertainty in the value θ̂ are described below.

3.1.1. Method 1: Uncertainty Estimation
by Estimating the Covariance Matrix

This method uses the curvature matrix of the χ2-hypersurface
evaluated at θ̂ to estimate the uncertainty in each parameter, via

8 MCURVEFIT.pro stops iterating the Levenberg–Marquardt fitting
algorithm when the relative change of χ2 from its current value to its previous
value is less than 0.001.
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the assumptions that the measurement errors in the data D are
normally distributed and that either the model R

C(θ)
i is linear in

its parameters, or the region over which the uncertainty estimate
spans can be replaced by a linear approximation to the original
model.

The curvature matrix α of the χ2-hypersurface arises in linear
and nonlinear least-squares fitting algorithms and is defined as
αij = ∂2(χ2)/(∂θi∂θj ) for 1 � i, j � Nθ . The implementation
of MCURVEFIT.pro gives an uncertainty estimate to each of
the free parameters based on the curvature matrix (Press et al.
1992). The uncertainty for θ̂i (for 1 � i � Nθ ) is

δθi = ±
√

α−1
ii , (11)

when evaluated at θ = θ̂ (the value that minimizes χ2,
Equation (10)). The quantity α−1 in the right-hand side of
Equation (11) is the matrix inversion of the curvature matrix
and is an estimate of the covariance matrix of the fit parameters,
evaluated at θ̂ . Its diagonal elements are the covariance scale-
sizes that define the uncertainty estimates in this method. Full
details of the derivation of Equation (11) are given in Press et al.
(1992, p. 690–692). The assumptions in this derivation also
imply that the probability distribution for δθobs (the expected
error in the value of θ̂ ) is a multivariate normal distribution
around θ̂ . The uncertainty estimate given by Equation (11) is
quoted as the 68% value in Tables 2 and 3. The method as
implemented does not calculate 95% uncertainty estimates, and
so the 95% uncertainty estimates in Tables 2 and 3 are labeled
“Not calculated”.

3.1.2. Method 2: Uncertainty Estimation Using χ2-mapping

In this method, parts of the shape of the χ2-hypersurface
around χ2

min are explicitly calculated. It is assumed that the
value of the χ2-hypersurface as defined by Equation (10),
at a particular point θ , follows a χ2-distribution. By fixing
a probability and finding where that probability occurs as a
function of the parameters, one can measure scale-sizes in the
χ2-hypersurface that define an estimate of the uncertainty in
the value of θ̂ with that probability. The procedure is described
below.

One of the parameters θ in the set θ is stepped through a range
of values while the others are allowed to vary so as to minimize
χ2, yielding a value χ2

1 . The quantity δχ2 = χ2
1 − χ2

min is
assumed to have a χ2-distribution with one degree of freedom
(Press et al. 1992). For such a distribution one can therefore
expect that δχ2 < 1 occurs approximately 68% of the time and
δχ2 < 4 occurs approximately 95% of the time. Values for the
68% and 95% confidence intervals are found where

δχ2(θ68%) = 1, δχ2(θ95%) = 4, (12)

respectively. The uncertainty estimates defined by this method
are quoted as differences from θ̂ in Tables 2 and 3, that is,

θ
100q%
i − θ̂i (13)

for 1 � i � Nθ where q = 0.68 and q = 0.95 and θ
100q%
i

is defined by Equation (12). Typically there are two values of
θ

100q%
i that satisfy Equation (12) corresponding to the upper and

lower confidence limits of the parameter value θ̂i . When no value
of θ can be found that satisfies the conditions of Equation (12),

this is reported as “not determined” in Tables 2 and 3. Finally,
this method uses the same underlying assumptions as those in
Section 3.1.1 (Press et al. 1992).

3.1.3. Method 3: Uncertainty Estimation Using
the Monte Carlo Method

This method of obtaining uncertainty estimates on θ̂ is
commonly called the “Monte Carlo” method. This method
begins by assuming that the value θ̂ found in method 1 best
describes the observation via the parameterized model. By
Equation (3), this defines an estimated count flux rate spectrum

of R
C(θ̂ )
i that is assumed to be a good estimate of the true

count flux spectrum. Estimates of the errors in θ̂ are found
by generating a new spectrum such that counts in energy-loss
bin i are drawn from a Poisson distribution with mean value
R

C(θ̂ )
i for all 1 � i � n. This new spectrum is now fit using

the same physical model and fit process as the original fit
generating θ̂ . The sampling and fitting process is repeated; the
distribution of values found is centered at θ̂ , and the width
of the distribution estimates the uncertainty in θ̂ (Press et al.
1992; Su et al. 2009). The sample and fit process is repeated
10,000 times, from which normalized frequency distributions
F (θi) (1 � i � Nθ ) are calculated. The uncertainty estimate
used excludes the tail values in a frequency distribution F (θi).
The 100q% uncertainty estimate for 0 � q � 1 is defined as
[θL|q, θH |q] where

∫ θL|q

−∞
F (θi)dθi =

∫ ∞

θH |q
F (θi)dθi = (1 − q)/2. (14)

This definition finds an interval [θL|q, θH |q] such that 100q% of
the measurements are within the interval and an equal percent-
age of the measurements are both above and below the interval.
This definition of the interval is also guaranteed to contain the
median value (which can be found from Equation (14) by set-
ting q = 0). The uncertainty estimates found by this method are
quoted in Tables 2 and 3 as differences

θL|q − θ̂i , θH |q − θ̂i (15)

for q = 0.68 and q = 0.95 (1 � i � Nθ ).

3.2. Method 4: Parameter and Uncertainty Estimation
Using Bayesian Data Analysis

This method uses parameter and uncertainty estimation based
on Bayesian data analysis methods (Jaynes & Bretthorst 2003;
Gregory 2005). In Bayesian data analysis, the probability of
a hypothesis H is calculated via Bayes’ theorem. Denoting by
p(a|b, c) the conditional probability that proposition a is true
given that propositions b and c are true, Bayes’ theorem is

p(H |D, I) = p(H |I)p(D|H, I)

p(D|I)
(16)

where H is the hypothesis to be tested, D is the observation, and
I is any other applicable information we have prior to calculat-
ing the posterior.

The left hand side p(H |D, I) is called the posterior probabil-
ity of the hypothesis, given the data and the prior information,
and it encapsulates the available knowledge about the hypoth-
esis. The quantity p(H |I) is called the prior distribution and
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Table 4
Details of the Prior Variable Ranges and the Proposal Distribution

Step-size Used in the Bayesian/MCMC Analysis of the
2005 January 19 and 2002 July 23 Flare Data

Flare Parameter Prior Range Proposal Distribution Width

2005 Jan 19 EM 0.77 → 6.94 0.01
kT 0.68 → 6.08 0.01
F0 0.01 → 1000 0.0004
δ1 1.1 → 20 0.002
Ec 6.8 → 290 0.17
G1 3334 → 33347 821
G2 1279 → 12790 283

2002 Jul 23 EM 0.9 → 8.14 0.004
kT 0.5 → 8.0 0.001
A 0.002 → 0.3 0.0003
δ1 1.1 → 50 0.014
Eb 50 → 32000 7.5
δ2 1.1 → 50 0.007
Ec 0.01 → 50 0.57

Notes. Priors for each variable are uniform within the stated ranges. Each
proposal distribution is normal, with width as indicated. See Section 2 for
more detail on the choice of model, and Appendix A for more detail on the
implementation of the Bayesian/MCMC analysis. The proposal distributions
are all normal.

represents what we know about H prior to calculating the pos-
terior. Often a prior describes a probability density function
of likely parameter values. The sampling distribution or like-
lihood, p(D|H, I), represents the likelihood of the data given
the hypothesis H and information I. The quantity p(D|I) is the
unconditional distribution of D and is a constant which ensures
that the posterior integrates to 1.

In this paper, the hypothesis H is that a model count spectrum
C parameterized by θB explain the observations D. Since the
counts in each energy bin are Poisson distributed, the likelihood
of measuring a certain set of counts Ci(θB) becomes

p(D|θB, I) =
n∏

i=1

Ci(θB)Di

Di!
e−Ci (θB ). (17)

Each parameter in the fit has its own prior p(θk|I), 1 � k � Nθ

so that p(H |I) = ∏m
j=1 p(θk|I). Each parameter is given a

flat or uniform prior in a fixed range, that is, there is an equal
probability that the parameter can take any value in the fixed
range. Table 4 tabulates the permitted range of values for each
parameter for each model.

The Bayesian posterior probability that a set of values θB

explains the observations D is proportional to the product of
the likelihood and the prior. The posterior summarizes the
complete state of knowledge of θ . Values that give rise to higher
posterior probability are better explanations of the data, and
vice versa. The best explanation of the data is the maximum
a posteriori (MAP) value θMAP which maximizes the value of
the posterior. Under the Bayesian interpretation of probability,
values θB 
= θMAP are less probable explanations of the data.
The full posterior probability density function p(θB |D, I) is
used to generate summaries that estimate the uncertainty of
each parameter of the model (see Section 3.2.2).

The observed counts above background D in the RHESSI data
for both flares are large enough (�30 counts in all but the very
highest energy-loss bins; Wasserman 2003) that the Poisson
distributions in Equation (17) can be approximated by normal
distributions with mean and variance both equal to Ci(θB).

Therefore, the logarithm of the posterior is approximately

ln p(θB |D, I) ∝
nh∑
i=1

(Di − Ci(θB))2

Ci(θB)
, (18)

where nh < n is the number of energy loss bins at which
the number of counts is large enough that the Gaussian ap-
proximation is valid. Therefore, the hypersurface formed by
the Bayesian posterior probability density function is closely
related to the χ2-hypersurface of Equation (10). To estimate
θMAP and the less probable explanations of the data we turn
to MCMC methods to efficiently explore the posterior prob-
ability density function. Note that the full posterior assuming
the Poisson likelihood Equation (17) was used in the analysis,
and not Equation (18), since Equation (17) is more appropriate
and the MCMC method applied to Bayesian data analysis does
not require normal distributions in order to generate uncertainty
estimates.

We note that a similar application of Bayesian data analysis
techniques was implemented to generate values and uncertainty
estimates in the recovery of the differential emission measure
(DEM) from emission line spectra. Kashyap & Drake (1998)
recast the DEM recovery problem using Bayes’ theorem and
modeled the full DEM as a set of emissivities and elemental
abundances in a fixed number of temperature bins. This model is
convolved with the contribution functions of the emission lines
observed to generate a predicted emission. The parameter space
describing the DEM is explored using a MCMC technique.
The advantage of the Bayesian data analysis approach in
DEM recovery is that it provides confidence limits on the
most probable DEM at each temperature, thus allowing a
determination of the significance of apparent structures that
may be found in a typical reconstruction.

3.2.1. Markov Chain Monte Carlo Methods for Posterior Sampling

Having written down the posterior, the remaining step in
the calculation is to sample from the posterior and calculate
posterior probabilities. A brute force calculation of posterior
probabilities can be prohibitively computationally expensive in
medium or high dimensional spaces. For example, explicitly
calculating the posterior probability density using ten different
values in each of the seven parameters for either of the two
flare models used here would require 107 evaluations of the
posterior function. We adopt a more practical approach by
using a MCMC method to find samples from the posterior
probability density function. MCMC methods allow for the
efficient mapping of Bayesian posterior probability density
functions in multi-dimensional parameter space. After some
initial period (known as “burn-in”), the Markov chain returns
samples directly proportional to their probability density as
defined by the Bayesian posterior, that is, the equilibrium
distribution of the Markov chain is the same as the posterior
probability density function (Gregory 2005). In general, it is
desirable for the Markov chain to have “rapid mixing,” that is,
it quickly reaches its equilibrium distribution. Many different
MCMC algorithms have been designed in order to achieve rapid
mixing. In this paper, we implement a parallel tempering MCMC
algorithm (see Appendix A for more details). Table 4 shows the
priors used for each variable and the range of values of θB

for each flare. Assessing when the post burn-in state has been
achieved can be found by examining the samples. In this paper,
the Gelman R diagnostic is used to assess convergence (Gelman
et al. 2003; see Appendix B).

10



The Astrophysical Journal, 769:89 (22pp), 2013 June 1 Ireland et al.

3.2.2. Summaries of the Posterior Probability Density Function

The Bayesian/MCMC summary probability density func-
tions for a single parameter θi in the set θ (1 � i � Nθ )
are found by integrating the posterior probability distribution
(Equation (16)) over all the other variables, i.e.,

p(θi) =
∫

p(H |D, I)dθ1 . . . dθi−1dθi+1 . . . dθNθ
. (19)

This distribution is called a marginal distribution, and it is the
probability density function for the variable θi given all the
likely values of all the other variables. The marginal distribution
is used to calculate uncertainty estimates of θi . Values of the
68% and 95% uncertainty are calculated using the definition
of the uncertainty interval given by Equation (14), with the
function F (θi) substituted with the marginal distribution p(θi).
The uncertainties quoted for this method in Tables 2 and 3 are
given as

θL|q − median [p(θi)] , θH |q − median [p(θi)] (20)

where θL|q , θH |q are defined using Equation (14) (substituting
p(θi) for F (θi)) for q = 0.68 and q = 0.95 and median [p(θi)]
is the median value of the marginal probability density function
p(θi). Note that this definition of the interval does not necessarily
include the mean or the mode.

4. RESULTS

4.1. 2005 January 19

Figures 3, 4, 5, and Table 2 show the results for each of the
four uncertainty estimation methods under consideration using
the data and electron spectral model for the 2005 January 19
flare, as described in Section 2. Figures 3, 4, and Table 2 show
that the differences between the θMAP and θ̂ values are much less
than the 68% uncertainty estimates. For each variable, the lower
and upper 68% (and 95%) uncertainty estimates found by each
uncertainty estimation method have approximately the same
magnitude. Comparing across methods, it can be seen that each
also gives approximately the same uncertainly estimates. The
ratios of the 95% uncertainty estimate to the 68% uncertainty
estimate are all close to 1.96, as expected from distributions of
measurements which are close to being normally distributed. In
addition, Q–Q plots of all seven marginal distributions obtained
from the Bayesian analysis (see Appendix C) show that each of
them is approximately normally distributed.

Figure 5 plots two-dimensional marginal distributions arising
from the Bayesian/MCMC analysis for every pair of parameters
in the spectral model (the priors used in the Bayesian/MCMC
approach can be found in Table 4). It shows the effect each
parameter has on the value of the other when finding highly
probable parameter values of θ . Next to each plot the Spearman
rank correlation coefficient for the indicated variables is shown.
It can be seen that all the two-dimensional marginal distributions
are elliptical, and the majority of them show that the probability
of getting a particular parameter value is weakly correlated with
the value of any other parameter. The exceptions to this for this
flare are the EM and plasma temperature (kT ) dependency, the
dependency of the spectral normalization F0 on the low-energy
cutoff Ec and the power law index δ1, and the Ec versus δ1
correlation.

The first of these dependencies is anticipated through the
definition of the thermal emission of the plasma (Equation (7)),

Figure 3. Results from each of the four uncertainty analysis methods (Section 3)
for the parameters of the thermal component of the total emission (a) EM and
(b) kT , from the model fit to the 2005 January 19 flare data. The dashed curve
is the value of χ2 found by the χ2-mapping method (values are indicated by
the right-hand plot axis). The normalized frequency distribution of values found
by the Monte Carlo method is shown as a histogram (dot-dashed line). The
marginal probability density function arising from the Bayesian/MCMC method
is shown as a histogram (solid line). Values of these histograms are indicated
by the left-hand plot axis. The horizontal lines show the uncertainty estimates
calculated via the methods indicated (from top to bottom—covariance matrix,
Bayesian/MCMC, Monte Carlo, and χ2-mapping), with the 68% and 95%
uncertainty estimates indicated by larger and smaller vertical lines that cross
those lines. The best-fit value θ̂ found via nonlinear least-squares minimization
(Section 3.1) is indicated by square plot symbols. The MAP value θMAP is
indicated by a ×-symbol. The mean, mode and median values calculated for
each of the two distributions (arising from the Bayesian/MCMC and Monte
Carlo analyses) are indicated by asterisks, diamonds and triangles, respectively.
These symbols are separated vertically for clarity.

and the second two arise from the definition of the normalization.
The normalization factor F0 for this flare is defined as the total
integrated electron flux over all energies, and therefore clearly
depends on the values of Ec and δ1 (see Section 2). Figure 5
also shows a correlation between Ec and δ1. This is obtained
because the rate at which the X-ray spectrum flattens below Ec
depends on the value of δ1. The spectrum flattens more rapidly
with decreasing photon energy for a steeper electron distribution
(larger δ1) than for a flatter electron distribution. Therefore, for
a given X-ray spectrum, a larger value of δ1 requires a higher
value of Ec to obtain the best fit to the spectrum. A similar
correlation, for the same reason, is found between Eb and δ2 in
the fit to the July 23 flare spectrum (Figure 9).

Figure 6(a) shows the (scaled) electron flux spectrum
as a function of energy for the Bayesian/MCMC analysis.
Figure 6(b) shows the ratio of the best fit electron spectrum to
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Figure 4. Results from each of the four uncertainty analysis methods (Section 3) for the parameters of the non-thermal component of the total flare emission (a) F0,
(b) δ1 and (c) Ec (see Equation (9)) from the model fit to 2005 January 19 flare data. The type of data plotted, plot symbols and lines have the same meaning as in
Figure 3.

Figure 5. Two-dimensional marginal probability density functions for the parameters of the model used to fit the spectrum of the 2005 January 19 flare. These plots
are found by integrating the posterior probability density function (found by the Bayesian/MCMC algorithm) over all the parameters excepting those indicated on the
x- and y-axes. This is the extension into two dimensions of the definition of the one-dimensional marginal distribution function given by Equation (19) in Section 3.2.2.
Each of these plots in this figure shows how the posterior probability density of the value of a given parameter depends on the value of another parameter, and so helps
visualize the shape of the full posterior probability density function. Indicated parameter ranges are the lowest and highest values found by the Bayesian/MCMC
algorithm. Darker tones indicate a greater probability density. The number on the upper right of each plot is the Spearman rank correlation coefficient for the two
parameters. For the 2005 January 19 flare, the distributions are all approximately elliptical. The majority of the distributions are weakly correlated; a minority (EM vs.
kT , and F0, δ1 vs. Ec, F0 vs. δ1) show a high degree of correlation. The reasons for these strong correlations are discussed in Section 4.1.
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Figure 6. Electron spectrum results for the flare-injected electrons arising from the Bayesian/MCMC method for the 2005 January 19 flare. (a) Electron spectrum
(flux (in units of erg keV−1 s−1) multiplied by E3.58, where 3.58 is the MAP estimate δ1, the power law index of the flare-injected electron spectrum—see Table 2)
with 68% and 95% credible interval spectra indicated by the dashed and dotted lines, respectively. The electron flux spectrum corresponding to θMAP is indicated by
the solid line. (b) 68% and 95% credible intervals relative to the θMAP electron flux spectrum. In plots (a) and (b) curves with negative gradients indicate a behavior
steeper than E−δ1 and positive gradients indicate a behavior shallower than E−δ1 . Note also that the MAP spectrum extends to its low energy cutoff value; other lower
probability spectra extend to values of Ec that may be different to the MAP value of Ec. (c) Flare-injected electron power probability density function, with 68% and
95% credible intervals indicated; the distribution mean/mode is indicated by the solid/dot-dashed vertical line. The total integrated electron flux injected by the flare
is given in Figure 4(a).

the 68% and 95% uncertainty estimates. Figures 4(a) and 6(c)
show the probability density functions for total integrated elec-
tron number flux and electron power derived from the Bayesian/
MCMC results. Uncertainty estimates for the electron flux spec-
trum as a function of energy are found in the following way.
The electron flux spectrum for each Bayesian/MCMC-derived
sample is calculated. The spectra are then ranked according to
their posterior probability. The 68% curves are found by finding
the highest and lowest values of the electron flux spectrum in
each energy bin for the top 68% most probable samples (the
95% curves are found similarly), yielding the uncertainty esti-
mates as shown in Figure 6(a). In each energy bin, the upper
and lower uncertainties are approximately symmetric around
the best (θMAP) value. Further, the probability density functions
for the electron number flux and power (Figures 4(a) and 6(c)
respectively) are also approximately symmetrical around the
mean and mode. This is not too surprising since the probability
density functions (Figures 3 and 4) for each parameter in the fit
are also approximately symmetrical. Finally, the uncertainties
in the values of the electron number and power are also well
constrained.

4.2. 2002 July 23

Figures 7, 8, 9, and Table 3 show the results for each of the
four uncertainty estimation methods under consideration using

the data and electron spectral model for the 2002 July 23 flare,
as described in Section 2. It is clear from Figures 7, 8, and 9
that the χ2-hypersurface (or equivalently, the Bayesian posterior
hypersurface—see Section 3.2.1) with respect to this model
is quite different from that seen in the 2005 January 19 flare
(Figures 3, 4, and 5). The mode values in the Bayesian/MCMC
marginal distributions are noticeably shifted with respect
to the Monte Carlo distributions. This is because the
Bayesian/MCMC marginal distributions in Figures 7 and 8 are
formed by integrating over a structured seven-dimensional space
(Figure 9). The mode of the one-dimensional marginal distri-
butions need not be at the θMAP or θ̂ value. Note however from
Table 3 that the θMAP value is close to the θ̂ value, which is to be
expected given the priors used in setting up the Bayesian pos-
terior (see Appendix B) and the close correspondence between
the χ2-hypersurface (Equation (10)) and the Bayesian posterior
(Equation (18)).

Figures 7 (thermal model parameters) and 8 (non-thermal
model parameters) show that the uncertainty estimates for
specific parameters can depend on the uncertainty estimation
method used. The methods used are influencing the uncertainty
estimates for some parameters (Table 3). These uncertainty
estimates behave quite differently from those expected from
a normal distribution, with the ratios of the 95% to 68%
uncertainty estimates very different from 1.96. The reason for
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Figure 7. Results from each of the four uncertainty analysis methods (Section 3) for (a) EM and (b) kT from the model fit to the 2002 July 23 flare data. These plots
follow the same convention as Figure 3. See Section 4 for more detail on these results.

this is apparent when considering the two-dimensional Bayesian
posterior marginal distributions as shown in Figure 9. Many of
the distributions are structured, asymmetric, and show extended
tails compared to those derived from the hypersurface of the
2005 January 19 analysis. The low-energy cutoff in particular
shows significant deviation from a simple normal distribution,
as does the break energy Eb and the slope of the spectrum above
the break energy, parameterized by δ2. Many pairs of parameters
have high magnitude correlation coefficients indicating strong
interdependence of one value on another. Further, note that the
correlation of Ec with all other parameters is relatively weak.
This indicates the relative independence of the low-energy cutoff
from other features in the model, given the data.

Figures 8(e) and 9 show that below around 25 keV, all values
of Ec are approximately equally likely, but also that Ec < 25 keV
does not strongly constrain likely values of the EM, the thermal
temperature kT , the normalization A and the lower power-law
index δ1. This leads to a wide range of possible electron-flux
spectra at lower low-energy cutoff energies, the effect of which
leads to wide 68% and 95% credible intervals of Figure 10(a).
The uncertainty estimates for the electron flux in Figure 6(a)
also show a widening at lower energies, but it is much less
pronounced compared to that in Figure 10(a). The reason for
this is that at lower values of Ec, the other parameter values in
the model are constrained, and so there is a restricted range of
electron flux spectra that is generated.

Figure 10 shows the (scaled) electron flux spectrum as a
function of energy, along with probability density functions
for total integrated electron number flux and electron power
derived from the Bayesian/MCMC results. The wide 68%
and 95% credible intervals of Figures 10(a) and (b) show
that the electron spectrum becomes poorly constrained at low
energies. Figures 10(c) and (d) are the electron number and
power probability density functions, respectively (found by
integrating the flare spectrum electron flux spectrum from Ec
to Eh). Both are asymmetric and show more pronounced tails
when compared to the corresponding plots for the 2005 January
19 data (Figures 4(a) and 6(c)). This is due to the asymmetric
low-energy cutoff probability density function which leads to a
tail extending to high values in the probability density function
of the electron number flux. Uncertainty estimates for the
total number of flare-accelerated electrons and their energy
are given in Figures 10(c) and (d). The probability density
function for the energy can be integrated to determine lower
limits to the energy contained in the flare-accelerated electrons

whilst simultaneously supplying a probability estimate. The
cumulative probability distribution function for the energy
shows that there is a 95% probability that the energy in the
flare-accelerated electrons is greater than 1028.0 erg s−1, and a
68% probability that it is greater than 1028.2.

As was noted in Section 2.2, a different spectral normalization
was used in the analysis of the 2002 July 23 flare compared to
the 2005 January 19 flare. The package OSPEX implements the
spectral normalization of the 2005 January 19 model spectrum
using the integrated normalization factor, F0 = AE1−δ1

c /(δ1−1).
This implementation of the flare spectral model therefore
introduces a parameter dependence into the χ2-hypersurface
between the normalization A, the low-energy cutoff and the
spectral index δ1. However, since the low-energy cutoff for
the 2005 January 19 flare is relatively well defined, the integrated
flux F0 is relatively well defined, and the MCMC algorithm can
explore the χ2-hypersurface as a function of F0 and Ec with no
difficulty. However, the low-energy cutoff is not well defined
for the 2002 July 23 flare, and so the range of values of F0 is
large. Therefore when using the implementation of Equation (9)
used in the analysis of the 2005 January 19 flare, the parameter
space that must be covered by the MCMC algorithm is large due
to the inherent dependence of F0 on Ec. This was found to be
prohibitive to an efficient MCMC search, and so an alternative
implementation of Equation (9) was created for OSPEX (re-
parameterization of the fitting function is a recommended tactic
in creating better search spaces for MCMC (Gelman et al.
2003)). In this implementation, the normalization factor used
to describe the spectrum is A, the value of the spectrum at
the pivot value Ep. Moving to a different hypersurface for the
same problem greatly improved the efficiency of the MCMC
algorithm.

5. DISCUSSION

5.1. Comparison of Uncertainty Analyses

The uncertainty analyses performed on both data sets show
that the shape of the χ2-hypersurface has a significant effect
on the values of the uncertainties found. All the uncertainty
estimates found for the spectral parameters describing the 2005
January 19 flare data are similar, regardless of the method.
The uncertainty estimates found for the spectral parameters
describing the 2002 July 23 flare data depend on the method
chosen.
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Figure 8. Results from each of the four uncertainty analysis methods (Section 3) for (a) A, (b) δ1, (c) Eb, (d) δ2, and (e) Ec, from the model fit to the 2002 July 23 flare
data. These plots follow the same convention as Figure 3. See Section 4 for more detail on these results.

Since the data have a large number of counts at almost all en-
ergies, the hypersurfaces described by Equations (10) and (18)
are almost identical. The two-dimensional marginal distribu-
tions for the 2002 July 23 flare data (Figure 9) show structures
which are not simple two-dimensional normal distributions,
and, since the two hypersurfaces described by Equations (18)
and (10) are almost identical, the χ2-hypersurface must have
structures which are not simple two-dimensional normal distri-
butions. This means that one or more of the assumptions that
lead to the assertion that the probability distribution for δθobs

is a multivariate normal distribution around θ̂ does not hold
for this model applied to these flare data (Section 3.1.1). The

non-normal distribution shapes of Figure 9 suggest that the as-
sumption that the spectral model is linear (or at least locally
so within the range of the desired uncertainty calculation) is
not satisfied (Press et al. 1992, p. 690). Hence, the covariance
matrix and χ2-mapping methods cannot be expected to give
reliable and consistent estimates in this case.

The shape of the χ2-hypersurface also influences the results
of the Monte Carlo method. This can be seen in the results for
the low-energy cutoff in the 2002 July 23 data set (Figure 8(e)).
It is expected that below a given energy Eplateau, all values of
the low-energy cutoff are equally likely. This is because in this
energy range the number of counts due to thermal emission
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Figure 9. Two-dimensional marginal probability density functions for the parameters of the model used to fit the spectrum of the 2002 July 23 flare. In contrast to
similar distributions plotted in Figure 5 for the 2005 January 19 flare, some distributions are highly asymmetric within the parameter ranges found. The number on the
upper right of each plot is the Spearman rank correlation coefficient for the abscissa vs. the ordinate. There are many more moderately and strongly (anti-)correlated
pairs of parameters for this flare model compared to the 2005 January 19 flare model. For some pairs of parameters (for example, δ1 vs. A and δ2 vs. Eb), the proportion
of the space taken up by the high probability volume is relatively small, and for others (for example, Ec vs. A), it is relatively large. For the model applied to this flare
spectrum, many of the resulting probability density functions do not show normal distribution shapes. This indicates that the hypersurface for the model fit to these
flare data has a more complicated structure than the hypersurface of the model fit to the 2005 January 19 flare.

greatly exceeds the number due to the flare-injected electron
flux spectrum, and so changing one value of Ec to another
makes no difference to the fit to the data—the value of χ2, or
equivalently, the Bayesian posterior probability, is unaffected.
Therefore, all values below Eplateau are equally likely.9 The
Monte Carlo method results do not show this; the results are
clustered around the best-fit value and do not show the extension
to lower energies as expected. Hence the uncertainty estimate
arising from the Monte Carlo method does not conform to our
prior expectation of what it should report.

In contrast, the Bayesian posterior hypersurface for the
2005 January 19 shows simple normal-like one-dimensional
distributions (and so the assumptions behind the covariance
matrix and χ2-mapping methods are approximately true) and
give similar answers. The Monte Carlo method (Section 3.1.3)
relies on finding local minima to simulated data which are
statistically similar to the original data. This method works
well in the 2005 January 19 analysis as the shape of the
hypersurface (Figure 5) is dominated by a nearly normal single
minimum, a feature the method repeatedly finds in all the similar
χ2-hypersurfaces. The χ2-mapping method does agree with the
Bayesian/MCMC result in that the χ2-mapping method does
indicate that below a certain value (Eplateau), all values of the low-
energy cutoff are equally likely. However, the method cannot
give a lower limit to the 95% uncertainty estimate since at no
point does δχ2 = 4 for E < Emin

c (Section 3.1.2).
The Bayesian/MCMC method samples the parameter space

via the posterior probability and the MCMC algorithm

9 Eplateau can also be interpreted as the energy below which no further
information is available that can be used to better constrain a lower limit to the
low-energy cutoff.

(Section 3.2.1). The Bayesian interpretation of the posterior
probability means that the parameter samples are found in pro-
portion to how well they describe the data (values of θ that
have lower probability are less likely explanations of the data).
The method does not make any assumptions about the nature
of the hypersurface, as the other three methods do. Hence it
agrees with the results from the methods of Section 3.1 when
applied to simple hypersurfaces where the assumptions made
by those methods are valid, but generates different results when
those assumptions do not hold. Therefore, the Bayesian/MCMC
method can, in principle, be used without having to invoke any
special knowledge of the shape of the hypersurface and without
making some simplifying assumptions.

5.2. Probability Density Functions of the Parameters of the
2002 July 23 Electron Spectrum Model

Figures 7 and 8 show the marginal probability density
functions of the parameter values arising from a Bayesian/
MCMC treatment of the data analysis problem. It is notable that
the distributions for Eb, δ2, and Ec are distinctly different from
more symmetrical and normal distribution-like distributions of
the other parameters in the fit. The break energy Eb and the power
law index above the break δ2 are highly correlated (Figure 9)
over a wide range of values. As Eb increases, the value of
δ2 increases. The mild curvature of the spectrum implied by
these probability density functions is consistent with a wide
range of near power-law electron flux spectrum models, leading
to an ill-defined value for Eb and softer power-law indices at
higher values of Eb. A count spectrum that appears to come
from emission that is mildly curved with respect to the radiation
from the thick-target interaction of a flare-injected electron flux
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Figure 10. Electron spectrum results for the flare-injected electrons arising from the Bayesian/MCMC method for the 2002 July 23 flare. (a) Electron spectrum (flux
(in units of erg keV−1 s−1) multiplied by E3.38) with 68% and 95% credible interval spectra indicated by the dashed and dotted lines, respectively. The electron
flux spectrum corresponding to θMAP is indicated by the solid line. (b) 68% and 95% credible intervals (dashed and dotted lines, respectively) relative to the θMAP

electron flux spectrum. (c) Flare injected electron number probability density function, with 68% and 95% credible intervals indicated. (d) Flare injected electron
power probability density function, with 68% and 95% credible intervals indicated. In plots (c) and (d) the distribution mean/mode is indicated by the solid/dot-dashed
vertical line.

spectrum with a power law distribution could arise from an
inaccurate X-ray albedo correction (Kontar et al. 2006) or from
a non-uniform ionization within the target plasma (Su et al.
2009; Kontar et al. 2002).

The low-energy cutoff also has an interesting probability
density function (also reproduced by the χ2-mapping analysis,
Figure 8(e)). There is a peak in the Bayesian/MCMC low-
energy cutoff probability density function at 31 keV, and a tail
at lower energies where the thermal emission of the plasma
dominates over the emission due to the flare-injected electron
flux. We wish to estimate how much more likely the low-energy
cutoff is close to the peak, compared to other parts of the
probability density function. An estimate can be generated using
the following procedure. If the probability density function of
the low-energy cutoff were a normal distribution N (Ecutoff, σ )
(where N(a, b) is a normal distribution centered at a with
standard deviation b), then the total probability that Ec lies in
the range Ecutoff − σ,Ecutoff + σ is about 68%. The maximum
probability that Ec lies in a 2σ wide range of values that does
not overlap with the range Ecutoff − σ,Ecutoff + σ is about 16%.
Therefore the value of Ec is about 4 times more likely to be in the
range Ecutoff − σ,Ecutoff + σ than in a 2σ wide range of values

that does not overlap with the range Ecutoff − σ,Ecutoff + σ .
Fitting the peak of the probability density function of Figure 8(e)
with a normal distribution yields a width σ of about 5 keV.
Applying the estimation procedure above on the probability
density function of Figure 8(e) with σ = 5 keV, it is found that
Ec is about 1.3 times more likely to be in the range 25–35 keV
than in any other continuous window of values 10 keV wide.
This is weak evidence for a peak in the range 25–35 keV.

Therefore, the probability density function is interpreted as
providing evidence for the existence of an observable low-
energy cutoff just above the region where the thermal emission
dominates. If the low-energy cutoff was at higher energies, then
the probability density function for Ec would resemble more
closely the probability density function seen in Figure 4(c) for
the January 19 flare and therefore lower possible values to Ec
would lead to lower posterior probabilities (worse fits). If the
low-energy cutoff was present at energies where the thermal
emission dominates, then no peak in the probability density
function for Ec would be seen. Lower values would account for
more of the flare-injected spectrum, and so lower values would
be more probable. The probability p(Ec) would eventually
plateau at some energy Eplateau since the emission due to the
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flare-injected electron flux would be far less than the emission
due to the thermal plasma below Eplateau, making all values of Ec
equally likely, as there is nothing to distinguish one value from
another. However the observed p(Ec) is a combination of both:
a peak in the probability density function with an approximately
constant probability density at lower energies.

5.3. Flare Electron Number and Energy
Probability Density Functions

The Bayesian/MCMC method allows for the construction of
probability density functions for each flare (Figures 4(a) and 6(c)
and 10(c) and (d)) of the number of flare-accelerated electrons
and the energy they carry, fully expressing the correlated
dependence of one variable on another (Figures 5 and 9).
Since the result is another probability density function, credible
intervals for the number of electrons and their energy can also
be calculated. In contrast, taking the set of 68% upper model
parameter uncertainty estimates (or the other model parameter
uncertainty estimates) from the other methods cannot be used
to calculate the corresponding 68% upper uncertainty estimate
for the number of electrons and their energy. This is because
there is no guarantee that that point on the χ2-hypersurface
has a significant non-zero probability (or equivalently, lies in a
highly probable region of the model parameter hypersurface).
In relatively simple hypersurfaces this may be true, but in
highly correlated hypersurfaces such as in the analysis of the
2002 July 23 flare presented here, it may not be. As far as we
are aware, this is the first time that flare electron number and
energy probability density functions have been estimated from
data.

A significant difference between the two flares studied is
the uncertainty with which the model parameters are known.
This leads to significant differences in how well the gross
properties of the flare are known. The low-energy cutoff is not
well constrained for the 2002 July 23 flare, leading to 68% and
95% credible intervals in the flare electron number and energy
probability density functions that span orders of magnitude.
Notably, the 2002 July 23 probability density functions are
highly asymmetric and so lower values of flare electron number
and energies are much less likely than higher values. It is
interesting to note that there is a peak in the energy probability
density function for the 2002 July 23 flare, even although there
is a non-zero probability for Ec down to the lower limit given
by the prior for the low-energy cutoff. This is due to the peak in
the marginal probability density function of Ec, which therefore
defines a more probable total flare energy than those arising
from the lower probability range Ec < Eplateau.

The estimate of the actual number of electrons and the en-
ergy they carry is also dependent on systematic errors related
to the calibration of each of the RHESSI detectors with each
other. As was noted above, the systematic errors in the indi-
vidual PHA bins are small compared to the systematic error
in the overall sensitivity of each detector (Milligan & Den-
nis 2009; Su et al. 2011). This means that the shape of the
flare-accelerated electron spectrum suffers from a smaller error
compared to the integral under the curve of the flare-accelerated
spectrum. We therefore expect that the broad qualities of the
shapes of the flare electron number and energy distributions will
remain unchanged for each of the two flares studied; the 2005
January 19 results will remain approximately symmetric, and
the 2002 July 23 results will remain quite asymmetric. We es-
timate that allowing for a 10%–30% error in knowledge of the
sensitivity of each detector would smooth out the distribution

peak, and add another 0.1–0.2 in the logarithm (approximately)
of the widths of the probability density functions. This esti-
mated uncertainty is substantially more than the 95% estimated
uncertainty in the case of the 2005 January 19 flare, but is sub-
stantially less than the 95% estimated uncertainty for the 2002
July 23 flare. This suggests that the uncertainty in the true value
of the low-energy cutoff is a more important limiting factor
in understanding the electron and energy content in RHESSI-
observed flares than the detector calibration uncertainty.

5.4. Expanding the Analysis

It is common in RHESSI data analysis to remove a background
component from the observed count data to yield an estimate of
the counts due solely to the flare. These background-subtracted
data are then used in further analysis. Strictly, models for
the background and the flare should be fit simultaneously since
the observed counts are due to the background and the flare
simultaneously. Therefore, the first improvement we will make
is to fit both the flare response and background simultaneously.
This will be done by including a simple parameterization of the
pre- and post-flare hard X-ray flux observed by RHESSI into
the flare model. The parameters of the background model will
also require their own priors. The inclusion of a background
model in the fit is expected to have an effect at higher energies,
where the signal-to-noise ratio of the flare-accelerated electrons
is smaller, such as in smaller flares.

The analyses presented here made use of data from one
single detector. Our second improvement to the existing analysis
will be to include data from more than one detector, which
will increase the signal-to-noise ratio. In order to use data
from more than one detector, information about the relative
calibration of each detector will have to be included. This will
be incorporated into priors for each detector that express the
degree of uncertainty in their calibration. Since each detector
is observing the same flare, the flare model will be the same
across detectors. The posterior will be a product of the priors
for the flare model plus background, a likelihood function for
each detector, and a prior function expressing the degree of
uncertainty in their calibration. The resulting posterior will
express the increased knowledge that comes with a larger
number of counts, but also the uncertainty in their relative
calibration.

We note also that Bayesian data analysis provides a frame-
work that can be used to compare the explanatory power of dif-
ferent models of the data whilst taking into account the number
and type of variables in each model (Gregory 2005). We will use
Bayesian model comparison techniques to determine if RHESSI
data can distinguish between different effects that may con-
tribute to the observed spectra. In particular, we will re-analyze
the 2002 July 23 data presented here using a model that incor-
porates the non-uniform ionization of the thick-target plasma
(Su et al. 2009; Kontar et al. 2003). Such a model produces a
curvature in the flare-accelerated electron spectrum which may
explain the high correlation between the break energy Eb and
the value of δ2 (Section 4.2).

6. CONCLUSIONS

This paper describes in some detail four methods that can
be used to estimate the uncertainties in parameters of flare
models fit to RHESSI hard X-ray flare data. Three of the four
methods—covariance matrix, Monte Carlo, and χ2-mapping—
measure scale-sizes in the χ2-hypersurface (or related
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hypersurfaces) and call them uncertainty estimates. We have
shown that care must be taken in relying upon these uncertainty
measurements, as we have seen that they need not agree with
our expectation of what an uncertainty estimate should report, or
with each other. The fourth method, Bayesian data analysis, can
answer the question “what is the uncertainty in this parameter?”
by calculating a probability density function for that parameter
through the marginalization procedure of Section 3.2.2 without
making any further assumptions about the number of counts in
each bin (see Section 3.2.1). The fourth method broadly agrees
with the other three in the case of the 2005 January 19 flare.
Each method generates different uncertainty estimates for the
2002 July 23 flare.

The source of the different uncertainty estimates is the shape
of the χ2-hypersurface parameterized by the flare model. Hyper-
surfaces that broadly conform to the assumptions underlying the
covariance matrix, Monte Carlo, and χ2-mapping methods yield
consistent uncertainty estimates that agree with each other and
those from the Bayesian/MCMC approach. Conversely, hyper-
surfaces that break those assumptions yield method-dependent
results. The Bayesian/MCMC approach makes no assumptions
on the nature of the hypersurface. Further, the position of the
low-energy cutoff in relation to the region where thermal X-ray
emission dominates is crucial in determining the shape of the
hypersurface. Most flares are thought to have a low-energy cut-
off close to or at the region of thermal emission dominance.
The Bayesian/MCMC method presented here handles both
flare analyses without regard to the location of the low-energy
cutoff, and makes no assumption about the χ2-hypersurface
or Bayesian posterior probability hypersurface. The Bayesian/
MCMC method was the only method to generate an uncertainty
estimate of the low-energy cutoff that reflects our intuition of
how it is constrained by the data, for both flares studied. Since
the χ2-mapping approach does partially map the space around
θ̂ , it is perhaps the best of the three non-Bayesian based meth-
ods that can give an indication that the χ2-hypersurface contains
features that are not similar to normal distribution shapes. If the
χ2-hypersurface does contain features not anticipated by the co-
variance matrix, Monte Carlo, and χ2-mapping methods, then
we suggest a Bayesian/MCMC approach is warranted if reliable
uncertainty estimates are desired.

The 2002 July 23 flare shows evidence for the existence of
a low-energy cutoff in the range 25–35 keV, just above the
region where the thermal emission dominates. The probability
density function of the low-energy cutoff shows significant
non-zero probability below 25 keV, and zero probability above
50 keV. This peak is important, as it leads to highly asymmetric
probability density functions for the total number of flare
electrons accelerated by the flare, and the energy they carry, in
which the upper limits to these quantities are poorly constrained.
In each of these quantities, the 95% upper credible limit is orders
of magnitude larger than the MAP value, whilst the 95% lower
limit is within one order of magnitude of the MAP value. In
comparison, the MAP values for the same quantities of the
2005 January 19 flare are approximately centered within a tenth
of a decade. This points to the importance of the low-energy
cutoff probability density function in determining the quality of
our knowledge of the gross properties of the flare.

Further work will involve improving the modeling of RHESSI
observations by including data from other RHESSI detectors, in-
corporating the simultaneous fitting of the background emission
at the same time as the flare model, and testing different models
of flare emission for the same flare.
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APPENDIX A

PARALLEL TEMPERING MARKOV CHAIN
MONTE CARLO ALGORITHM

A significant problem in MCMC is ensuring that the posterior
is explored sufficiently. The first MCMC algorithms used in
this study did not generate the expected marginal probability
distribution of the low-energy cutoff Ec for the flare of 2002
July 23. The distribution arising from these MCMC algorithms
showed a single peak with p(Ec) = 0 below some value. The
expected distribution contains a plateau region of approximately
constant non-zero probability density for values Ec < Eplateau
for some value of Eplateau determined from the data (see also
Section 5.1). The difference between the expected distribution
and those derived from the MCMC algorithm may be due to
either insufficient exploration of the posterior by the MCMC
algorithm, or to some previously unexpected feature in the flare
spectrum. To test these explanations, a new MCMC algorithm
was implemented to more fully explore the parameter space of
the posterior distribution.

The parallel tempering algorithm allows one to explore
the parameter space by optionally making easier moves in
related spaces (Gregory 2005). Parallel tempering is based on
simulated tempering. This scheme mimics the physical process
of annealing, whereby a metal is heated and cooled in order to
obtain a more crystalline and therefore lower energy structure.
By analogy, simulated tempering uses a set of discrete values of
a temperature parameter T to label and describe flatter versions
of the original posterior distributions. The value T = 1 is
reserved for the original posterior distribution. Higher values
of T correspond to flatter distributions. In simulated tempering,
the distribution is “warmed up” by increasing T. In these flatter
versions, it is easier for the sampler to jump out of local minima
and explore the full posterior to find the global minimum.
Inferences are drawn from the T = 1 sampler.

As above, let p(H |D, I) be the target posterior distribution
we want to sample; by Bayes’ theorem

p(H |D, I) ∝ p(H |I) × p(D|H, I) (A1)

where we have dropped the normalization factor 1/p(D|I).
Other posterior distributions at different annealing temperatures
β ≡ 1/T are constructed as

π (H |D, I, β) = p(H |I)p(D|H, I)β (A2)

= p(H |I) exp (β log [p(D|H, I)]) (A3)

where 0 < β � 1. The parameter β varies from 0 to 1; β = 1
corresponds to the original, target distribution, with lower values
corresponding to flatter (higher temperature) versions of the
target distribution.
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Figure 11. Q–Q plots for the Bayesian/MCMC samples of the 2005 January 19 model spectrum parameter values. All parameters are approximately normally
distributed in the range −2, +2 quantiles about the estimated mean. The tails of the distributions show deviations away from a true normal distribution. Curvature of

the sample distribution at negative quantiles indicates that the tail is thinner than that expected from the sample normal distribution N (θ̂i , σ̂
2
θi

). Similarly, curvature of

the sample distribution at large positive quantiles indicates that the tail is fatter than that expected from the sample normal distribution N (θ̂i , σ̂
2
θi

).

In parallel tempering, multiple MCMC chains are run in
parallel at nT temperatures {1, β0, β1, . . . , βnT

} for nT > 1.
At intervals, proposals are made to swap the parameter states at
adjacent but randomly selected temperatures. For example, at
iteration t, suppose that the sampler at βi has a parameter Ht,i ,
and βi+1 has a parameter state Ht,i+1. These are the candidate
parameter states for swapping. The swap is accepted with
probability

r = min

{
π

(
Ht,i+1|D, βi, I

)
π (Ht,i |D, βi+1, I)

π (Ht,i |D, βi, I)π (Ht,i+1|D, βi+1, I)

}
. (A4)

The swap is accepted if U1 ≈ Uniform[0, 1] � r , that is, if a
number U1 drawn from a uniform random distribution between
zero and 1 is less than or equal to r. If the swap is accepted,

then the parameter states are swapped: the chain indexed i now
has parameter state Ht,i+1, and the chain indexed i + 1 now has
parameter state Ht,i . This swapping process propagates infor-
mation across the parallel simulations. At higher temperatures,
the algorithm can explore very different locations in the pos-
terior parameter space. At lower temperatures, the algorithm
can improve local knowledge of the space around minima.
Swapping allows highly probable parameter states to propa-
gate down to lower temperatures where they can be explored
locally. The swap itself need not be proposed at every iteration.
Gregory (2005) implements an example parallel tempering al-
gorithm by allowing a swap on average once every ns iterations:
the swap is only performed if the value of U2, drawn from a
uniform distribution between zero and 1, is less than or equal
to 1/ns .
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Figure 12. Q–Q plots for the Bayesian/MCMC samples of the 2002 July 23 model spectrum parameter values. The two thermal parameters of the model EM and kT

appear to be approximately normally distributed; the remaining non-thermal parameters (A, δ1, Eb, δ2, and Ec) are clearly not normally distributed.

Each of the MCMC chains uses the Metropolis–Hastings al-
gorithm (Gregory 2005) to explore each π (H |D, I, β). Normal
distributions were used as the proposal distributions for the
Metropolis–Hastings algorithm. Widths for each proposal dis-
tribution were found after making several shorter exploratory
runs of the β = 1 chain with an adaptive algorithm that varied
the proposal distribution to generate an acceptance ratio in the
range 0.16 → 0.30 (Gelman et al. 2003). For each variable
θ in each spectral model, a uniform prior is assumed, that is,
p(θ ) = 1/(θ1 − θ0) for θ0 � θ � θ1 and p(θ ) = 0 otherwise.
The lower (θ0) and upper (θ1) values are constants. The limits
θ0 and θ1 and the proposal distribution step-size are given in
Table 4.

As is described in the main text, the parallel tempering
MCMC algorithm produces marginal distributions of Ec for
the 2002 July 23 flare consistent with expectations. The parallel
tempering MCMC algorithm described here was used in the
analysis of both the 2005 January 19 and 2002 July 23 flares.

APPENDIX B

IMPLEMENTATION OF THE PARALLEL TEMPERING
MARKOV CHAIN MONTE CARLO ALGORITHM

The results described in the paper arise from im-
plementing the parallel tempering algorithm described in
Appendix A. Five temperatures in the algorithm are used:
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β = 1, 0.75, 0.5, 0.25, 0.01. Each simulation takes 50,000 sam-
ples (five times as many samples as the Monte Carlo approach
of Section 3.1.3). The simulation is run ten times with a dif-
ferent starting point chosen uniformly randomly in the volume
θ0 − 5s, θ0 + 5s, where s is the size of the proposal distribution
step size. The proposal distribution step size is the square root of
the diagonal elements of the covariance matrix of a least-squares
fit calculated at θ0. The last half of the samples are considered
post burn-in, and are retained. Convergence between and within
the 10 simulation runs is assessed using the R-measurement
from Gelman et al. (2003). In all cases, the R-measurement
was below approximately 1.1, which may be taken as indicating
convergence (Gelman et al. 2003; van Dyk et al. 2001).

APPENDIX C

NORMALITY OF THE MARGINAL DISTRIBUTIONS

The normality of the univariate marginal distributions was as-
sessed using Q–Q (quantile–quantile) plots (Figures 11 and 12).
A Q–Q plot is a graphical method of comparing two differ-
ent distributions, and is constructed as follows. The cumulative
distribution function of a random variable X is defined as

FX(x) = P (X � x) (C1)

that is, the probability that the random variable X takes on a value
less than or equal to x. The function FX(x) is monotonically
increasing in the range zero to one. The inverse of FX is called
the quantile function, Q, and is defined as

QX(r) = x if FX(x) = r. (C2)

If FX is a one-to-one function, the inverse Q is uniquely
determined. If the function FX is not one-to-one the inverse Q
can be defined as the weighted average of all relevant points. The
definition of the quantile function applies to random variables or
sample distributions. The Q–Q plots shown in Figures 11 and 12
show a set of open circles and a straight line. A circle is plotted
at the point where the abscissa and the ordinate are the values of
quantile functions for the standard normal distribution N (0, 1)
and the marginal distribution, for a given value of probability
r. A straight line is drawn through the points defined by the
quantile functions for the standard normal distribution and a

normal distribution N (θ̂i , σ̂
2
θi

), where

θ̂i = 1

NS

NS∑
j=1

[θi]j

and

σ̂ 2
θi

= 1

NS − 1

NS∑
j=1

{[θi]j − θ̂i}2

are estimated from the NS samples of the parameter θi , 1 � i �
Nθ . The straight line enables an assessment of how closely the
marginal distribution follows a normal distribution, and where
any deviations occur. The quantile function for the standard
normal distribution function is called the probit function and is
defined as

probit(r) =
√

2 erf−1 (2r − 1), r ∈ (0, 1) (C3)

where erf−1(x) is the inverse error function. The probit function
gives the value of a N (0, 1) random variable associated with
specified cumulative probability r, for example:

probit(0.025)  −1.96  −probit(0.975). (C4)

Therefore, and conveniently, the abscissa in the Q–Q plots can
be understood as multiples of the standard deviation away from
the mean. The Q–Q plots were implemented using the “R”
statistical computing environment, available from the R Project
for Statistical Computing (R Core Team 2013).
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