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Photochemical processes driven by high-energy ultraviolet radiation (UVR) in inshore, estuarine, and coastal
waters play an important role in global biogeochemical cycles and biological systems. A key to modeling photo-
chemical processes in these optically complex waters is an accurate description of the vertical distribution of UVR
in the water column which can be obtained using the diffuse attenuation coefficients of downwelling irradiance
(Kd(λ)). The SeaUV/SeaUVc algorithms (Fichot et al., 2008) can accurately retrieve Kd (λ = 320, 340, 380, 412,
443 and 490 nm) in oceanic and coastal waters using multispectral remote sensing reflectances (Rrs(λ), SeaWiFS
bands). However, SeaUV/SeaUVc algorithms are currently not optimized for use in optically complex, inshore
waters, where they tend to severely underestimate Kd(λ). Here, a new training data set of optical properties collect-
ed in optically complex, inshorewaterswasused to re-parameterize the original SeaUV/SeaUVc algorithms, resulting
in improved Kd(λ) retrievals for turbid, estuarine waters. Although the updated SeaUV/SeaUVc algorithms perform
best in optically complex waters, the original SeaUV/SeaUVcmodels still perform well in most coastal and oceanic
waters. Therefore, we propose a composite set of SeaUV/SeaUVc algorithms, optimized for Kd(λ) retrieval in almost
all marine systems, ranging from oceanic to inshorewaters. The composite algorithm set can retrieve Kd from ocean
colorwith good accuracy across thiswide range ofwater types (e.g.,within amean relative error of 13% forKd(340)).
A validation step using three independent, in situ data sets indicates that the composite SeaUV/SeaUVc can generate
accurate Kd(λ) values at λ = 320–490 nm from ocean color on a global scale. Taking advantage of the inherent
benefits of our statistical methods, we pooled the validation datawith the training set, obtaining an optimized com-
positemodel for estimatingKd(λ) inUVwavelengths for almost allmarinewaters. This “optimized composite” set of
SeaUV/SeaUVc algorithmswill provide the optical community with improved ability to quantify the role of solar UV
radiation in photochemical and photobiological processes in the ocean.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Solar ultraviolet radiation (UVR; 280–400 nm) is a critical factor in
regulating the biogeochemical cycles in the ocean (Whitehead, de Mora,
& Demers, 2000). High-energy UVR is the driving factor for the photoox-
idation of colored dissolved organic matter (CDOM), the dominant UVR-
absorbing component within the larger pool of dissolved organic carbon
(DOC), especially in coastal areas and estuaries (Mopper & Kieber,
2000). The photochemical degradation and mineralization of CDOM
can therefore have an important effect on biogeochemical carbon cycling
in the ocean. UVR also impacts bacterial and photosynthetic activity
through DNA damage and repair processes in natural waters (Sinha &
Häder, 2002; Tedetti & Sempéré, 2006).

Quantitative assessment of in situ photochemical and photobiologi-
cal processes can benefit from knowledge of the vertical distribution
of UV and visible radiation in natural waters (Fichot & Miller, 2010).

The diffuse attenuation coefficient, Kd(λ), is defined as the fractional
rate of decay of downwelling spectral irradiance with depth and can
be used to calculate vertical profiles of irradiance in the water column
from measurements of surface irradiance (Kirk, 1994). The diffuse
attenuation coefficient depends not only on the optically active
water constituents, but also on the distribution of the ambient
light field (solar zenith angle, surface and sky conditions, etc.) (Lee,
Du, Arnone, Liew, & Penta, 2005). Kd spans several orders of magnitude
between the clearest oceanic waters (e.g., surface subtropical gyres)
and the darkest inshore waters (e.g., dark oligotrophic lakes) (Booth
& Morrow, 1997; Kjeldstad et al., 2003). Satellite imagery could
therefore facilitate the quantification of Kd over large temporal and
spatial scales.

The determination of Kd is amenable to the remote sensing of ocean
color. Austin and Petzold (1981) first proposed an empirical relationship
between Kd and a blue-green ratio of water-leaving radiance (Lw(443)/
Lw(555)) in order to facilitate the retrieval of Kd(490) from ocean-color
remote sensing. Previous efforts of Kd retrieval for Case 1 and Case 2
waters generally included only visible bands, and were based on either
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empirical or semi-analytical methods (Jamet, Loisel, & Dessailly, 2012;
Johannessen, Miller, & Cullen, 2003; Kuhn, Browman, McArthur, &
St-Pierre, 1999; Mueller, 2000). However, few studies have focused on
the retrieval of Kd in the UV domain, especially in turbid estuaries.
Fichot, Sathyendranath, & Miller (2008) recently developed the SeaUV
and SeaUVc algorithms for the retrieval of Kd(λ) (λ = 320–490 nm)
from multispectral remote-sensing reflectances (λ = 412–670 nm) in
the ocean. These algorithms were developed and validated for coastal
and open ocean waters. However, these algorithms can severely under-
estimate Kd retrievals in the UV when applied to inshore waters (as
shown later in Section 3.1). This clearly calls for a refined approach and
tuning of the original model for improved accuracy of Kd(λ) retrievals
in optically complex inshore waters.

In this study, in situmeasurements of optical properties collected in
turbid, CDOM-rich coastal and inshore areas are used to enhance the ap-
plicability of SeaUV and SeaUVc algorithms in optically complex waters.
This new data set is used along with the original training data set of
Fichot et al. (2008) to develop and validate a “composite SeaUV and
SeaUVc” algorithm set optimized for water types ranging from blue oce-
anic to highly productive, turbid inshore waters (see Table 1). This new
algorithm set will enhance our capability to monitor the in situ attenu-
ation of solar radiation (UV–visible) and quantify photochemical and
photobiological processes in most natural waters.

2. Data and approach

2.1. Background of current SeaUV algorithms

The SeaUV/SeaUVc algorithms can be used to retrieve Kd(λ) at λ =
320, 340, 380, 412, 443 and 490 nm from spectral remote-sensing re-
flectance (Rrs(λ)) in the visible range. The basic approach uses a princi-
pal component analysis (PCA) to collapse Rrs(λ) spectra (λ= 412, 443,
490, 510, 555 and 670 nm) into four principal components (PCs).Multi-
linear regressions were then parameterized between measured in situ
Kd(λ) and the four PCs, resulting in a model named SeaUV. In SeaUVc,
a cluster analysiswas applied to thefirst two PC scores in order to divide
the ocean color data set into distinct ocean color domains based on the
Rrs(λ) spectral characteristics. This classification allowed the derivation
of ocean color domain-specific multi-linear parameters. The use of PCs
in SeaUV and SeaUVc resulted in amore complete utilization of themul-
tispectral information contained in Rrs(λ) spectra, and provided more
accurate Kd(λ) retrievals compared to traditional band-ratio methods
that only use Rrs at two wavelengths (Fichot et al., 2008). In the rest of
this manuscript, the Fichot et al. (2008) algorithms are referred to as
the “original” SeaUV/SeaUVcmodel.

2.2. Study area and data collection

Sampling was conducted in three distinct estuarine systems along
the Southeastern coast of the U.S. (Altamaha, Doboy and Sapelo sounds
in Georgia) (Fig. 1). A total set of 74 in situ, simultaneousmeasurements
of Rrs(λ) and Kd(λ) were collected in June 2006, February 2007, August
2009, July 2010, March 2011, and June 2011. The three sampled estua-
rine systems had distinct hydrological settings. The Altamaha Sound is
a river-dominated site and receives freshwater inputs and large
amounts of suspended particles from the Altamaha River. It is generally

Table 1
Sampling information for the data used in this study (N = 438).

Location Date No. of samples

UCSB/Dalhousie dataset 1996–2002 333
South Atlantic Bight (SAB) May 2006 15
SOLAS Autumn Cruise (SABINA) 2003 4
Mid-Atlantic Bight (MAB)/Gulf of Maine July 2002 12
Georgia coast 2006–2011 74
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Fig. 1.Map of optically complex inshore waters sampled along coastal Georgia during 2006–2011. The coastline data was downloaded from the NOAA National Geophysical Data Center
(http://www.ngdc.noaa.gov/mgg/shorelines/shorelines.html).
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characterized by high loadings (~30 mg/l) of total suspend solids (TSS)
(Witte et al., 1982). The optical properties of the Altamaha Sound are
further complicated by the organic matter accumulation promoted by
freshwater input from the Altamaha River (Craft, 2007). Doboy Sound
is located to the north of Altamaha Sound and is a tidal marsh-
dominated site. It can receive significant riverine input from theAltama-
ha River during high flow seasons (usually February to April). Sapelo
Sound is the northernmost site sampled and is a coastal, marine-
dominated site, comparativelymore saline and experiencing less hydro-
logical variation than its neighboring estuaries to the south (Richardson
& LeDrew, 2006). The study area spanning the three estuarine systems
is characterized as a CDOM-rich (aCDOM(300) up to 13m−1) and highly
dynamic system with periodic heavy loads of suspended particles.

Two optical instruments were deployed at each sampling station
and all measurements were takenwithin 2 h of solar noon (solar zenith
angle (SZA) varied in the range of 15° ~ 35°) in order to preserve the
quasi-inherent property of the diffuse attenuation coefficient (Gordon,
1989). A Satlantic® multispectral profiling radiometer (MicroPRO,
with wavebands centered at λ = 305, 325, 340, 380, 412, 443, 490,
555 nm) was deployed three or more times at each station to measure
profiles of spectral downwelling irradiance (Ed(λ, z), μW cm−2 nm−1).
TheMicroPROwas either lowered slowly by hand on the sunny side of a
small vessel or floated away and used in free-fall mode depending on
data density and orientation requirements. Data with instrument tilt
greater than 5° was removed before algorithm development. The opti-
cal depth, ζ(λ, z), was calculated as in Eq. (1):

ζ λ; zð Þ ¼ − ln Ed λ; zð Þ=Ed λ;0−ð Þð Þ ð1Þ

where Ed(λ,0−) ≈ Ed(λ,0+)/1.04, (Austin, 1974; Kirk, 1994).
The diffuse attenuation coefficient, Kd(λ), was calculated as in

Eq. (2):

Kd λð Þ ¼ ζ λ; zð Þ=z ð2Þ

where z is the water depth at which the detection limit of the instru-
ment is reached. Typical z values were b0.5 m for Kd (340) and no opti-
cal stratification was noted over this depth.

Paired Satlantic® multispectral OCR507 radiometers mounted on a
buoy were used to measure above-surface remote-sensing reflectance
(Rrs(λ,0+), sr−1) at λ = 305, 325, 340, 380, 412, 443, 490, 510, 555,
670, and 683 nm. The OCR system was deployed on the sunny side of

the boat, and at the same time as theMicroPRO in order to obtain simul-
taneous measurements of Kd(λ) and Rrs(λ). The OCR systemmeasured
simultaneously above-surface downwelling irradiance (Ed(λ,0+),
μWcm−2 nm−1) and just-below-surface (~2–3 cm) upwelling radiance
(Lu(λ, 0−), μW cm−2 nm−1 sr−1). Water-leaving radiance, Lw(λ), was
then derived from Lu(λ, 0−) using the approximation LW(λ) ≈ 0.54 *
Lu(λ,0−) of Austin (1974). The Rrs(λ,0+) was then calculated as the
ratio of Lw(λ) over Ed(λ,0+) for the following wavelengths: λ = 412,
443, 490, 510, 555 and 670 nm. Due to high levels of CDOM and turbid-
ity, bottom effects on the determination on Rrs can be neglected and the
study area is considered to be optically deep. The MicroPRO and OCR
were re-calibrated annually by Satlantic, Inc. Uncertainties (such as
sun elevation, surface extrapolations, etc.) associated with Rrs and Kd

measurements are detailed in Fichot et al. (2008).

2.3. Optimization of original SeaUV algorithms for optically complex,
inshore waters

In a first attempt to optimize the algorithms, the inshore-water data
set collected in this study (N= 74) was pooled into the original training
data set of Fichot et al. (2008), and the models were re-parameterized
using the exact same approach as the one used in Fichot et al. (2008).
However, simple re-parameterization using this updated data set (N =
438) did not achieve better overall performance (see Supplementary
material). To better estimate Kd in inshore waters and maintain the
good performance of original algorithms of Kd retrieval in open ocean
waters as well, the original approach used by Fichot et al. (2008) was
therefore modified to optimize the performance of the algorithms from
open ocean waters to optically complex inshore waters.

2.3.1. Determination of the cutoff point for inshore waters
The new approach to improve the performance of the original

SeaUV/SeaUVc algorithms for inshore waters was developed by re-
parameterizing the multi-linear equations with a re-defined, inshore
water training data set split from the complete data set. In the rest of
this manuscript, the models developed with this new approach are re-
ferred to as “inshore-water optimized” SeaUV/SeaUVc. A cutoff value
based on Kd(490) was defined to distinguish inshore waters for which
SeaUV/SeaUVc should be optimized. Kd(490) was chosen to distinguish
inshore waters from other water types for two reasons. First, Kd(490)
gave the least accurate retrieval when the original SeaUV/SeaUVc was
applied to our new inshore water data (as shown later in Section 3.2).
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Fig. 2.Determination of the cutoff point for the inshorewater optimized SeaUV/SeaUVc algorithms. (a) Performance of the latest NASA Kd(490) product on the complete training data set.
Filled red circlesmarkKd collected along coastal Georgia and gray circles represent Kd published by Fichot et al. (2008). (b) Smoothed results from the five-pointmoving-average function
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Second, Kd(490) is a standard NASA product from SeaWiFS data that
allows a determination of water type with AOP's external to the
SeaUV/SeaUVc implementation. This eliminates potential internal bias
when applying our new approach to remotely sensed ocean color.

To determine the cutoff point, we first sorted the measured in situ
Kd(490) in ascending order and then applied a five-point moving-
average smoothing function to both the measured in situ Kd(490) and
estimated Kd(490) values retrieved from the latest NASA Kd(490) prod-
uct (Werdell, 2009). Fig. 2(a) displays the performance of the Kd(490)
product on our complete data set. The cutoff point was chosen to be at
the point where the measured Kd(490) began to diverge from the esti-
mated values in the Kd(490) product. By examining the smoothed
curve in Fig. 2(b), the cutoff point was determined to be 0.32 m−1 for
Kd(490). Any measured Kd(490) values in the combined data set
which was greater than 0.32 m−1 was considered as optically complex
inshore water, giving a total of 119 points to be included in the inshore
water training data used to derive the new parameters for the inshore-
water optimized SeaUV algorithms.

2.3.2. Optimization of SeaUV/SeaUVc algorithms for inshore waters
The inshore water training data set (N = 119) was first log-

transformed and then re-standardized following Eq. (2) in Fichot et al.
(2008). To optimize the SeaUV algorithms for inshore waters, the re-
standardized Rrs(λ) data of the inshore water training data set (N =
119) were combined into four principal components, and regression
coefficients were generated by fitting a multi-linear relationship be-
tween the four PC scores and the measured Kd values. A fuzzy c-means
cluster analysis (FCM) was then applied to the two-dimensional (2-D)
data set spanned by the first two PC scores generated in the inshore-
water optimized SeaUV. We used the c-means function in the R software
package (http://www.r-project.org/) to carry out the cluster analysis.
The algorithms are based on minimizing the objective function defined
as follows in Eq. (3):

Jm ¼
XN

i¼1

XC
j¼1

μm
ij xi−c j
���

���
2 ð3Þ

wherem is the weighting component; xi is the ith observation in the 2D
dataset spanned by the first two PCs; cj defines the cluster centers in
the 2D dataset; μij is the degree of membership of xi to the cluster j,

and ‖xi − cj‖ is the Euclidean norm which represents the similarity be-
tween the measured data and the cluster centers (Moore, Campbell, &
Dowell, 2009). Evaluated bymultiple fuzzy cluster indexes (e.g. partition
coefficient, partition entropy, etc.), four representative dark water ocean
color domains (DWDs)were defined and the cluster centers were deter-
mined when the optimization criteria were satisfied (Moore, Campbell,
& Feng, 2001). This use of FCM (also known as the soft K-means cluster-
ingmethod) is the only difference between the current approach and the
original Fichot et al. (2008) method, which applied a hard K-means
clustering method. Through the membership assignment of every data
point to different clusters, FCM provides more robust estimation of clus-
ter centers than the hard K-means method, where cluster centers must
be optimized through many trails. Another advantage of applying FCM
over the conventional hard K-means method is that the number of clus-
ters can be optimized and validated through multiple validity indexes, a
more objective and convincing method than the pre-specified cluster
numbers from hard K-means method. Fig. 3 shows the Rrs(λ) spectra
for the four dark water domains. The numbers of samples assigned to
each of the four DWDs are 20, 31, 31 and 37, respectively.

2.4. Development of composite SeaUV/SeaUVc algorithms

The original SeaUV algorithms still performed best in open ocean
and coastal waters, where Kd(490) b 0.32 m−1. In order to optimize
the overall performance of the algorithms in the full range of natural
water types, we assembled and tested a composite version of the algo-
rithms. This composite algorithm uses the original SeaUV/SeaUVc for
open ocean and coastal waters (where Kd(490) b 0.32 m−1), and the
inshore-water optimized SeaUV/SeaUVc for optically complex waters
(where Kd(490) ≥ 0.32 m−1).

2.5. Accuracy assessment

Themean relative error (MRE(λ))was calculated in order to evaluate
the accuracy of Kd(λ) retrievals and the overall performance of the orig-
inal, inshore-water optimized, and composite SeaUV/SeaUVc algorithms.
The MRE(λ) is defined in Eqs. (4a) and (4b) as follows:

MRE εj j;λð Þ ¼ 1
N

XN
i¼1

εij j λð Þ ð4aÞ
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where

εi ¼ 100 � Kd λð Þestimated−Kd λð Þmeasured

Kd λð Þmeasured
ð4bÞ

and where i is the index number, and N is the number of observations.
Note that Kd(λ) values measured at λ=325 and λ= 340 nmwere lin-
early extrapolated to calculate the Kd(λ) value at λ = 320 nm to allow
direct accuracy comparison to the original SeaUV/SeaUVc results.
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3. Results and discussion

3.1. Evaluation of original SeaUV algorithms for inshore waters

The original SeaUV algorithms were first implemented using the
complete data set of Rrs(λ) spectra that includes our new inshore-

water stations. As shown in Figs. 4, 5 and 6, the Kd(λ) values derived
in inshore waters using the original SeaUV algorithms are under-
estimated relative to the measured in situ Kd(λ). The bias increases as
values for Kd(λ) increase and the underestimation is more distinct
when the original SeaUVc was applied to the inshore water data
set alone. For example, in Fig. 6, the original SeaUVc generates higher
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Fig. 5. Comparisons of measured in situ Kd with calculated Kd derived from original SeaUVc and composite SeaUVc algorithms at λ = 340, 380 and 412 nm.
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biases and performs more poorly for Kd(320) than SeaUV. The accuracy
of Kd(490) estimated in inshorewaters using the original SeaUVc shows
slightly better performance than SeaUV, but remains low. The severe
underestimation of estimated Kd values in inshore waters reflects the
fact that the original SeaUV/SeaUVc algorithms were parameterized for
coastal and open ocean water. In optically complex inshore waters, Kd

values are higher (e.g. at Altamaha Sound, with Kd(340) ~ 18.7 m−1)
and extend out of the range for which the model was originally devel-
oped, most likely contributing to its inability to accurately predict Kd

in the new inshore water data set.

3.2. Performance assessment of inshore-water optimized SeaUV/SeaUVc
algorithms

Instead of simply re-parameterizing the original model with an ex-
panded data set that included an extended Kd range, our cutoff point
(Kd(490)= 0.32m−1) was applied for the inshore-water optimized al-
gorithms to distinguish optically complex inshorewaters from the other
water types. Data with Kd(490) values above the cutoff point were

classified as optically complex (N = 119) and were used as a separate
training data set for parameterizing the inshore-water optimized
algorithms. MRE values derived from the inshore-water optimized
algorithms are significantly reduced compared to those derived using
the original SeaUV algorithms (e.g. for Kd(380), MRE = 17.6% from
inshore-water optimized algorithms, compared to MRE = 42.9% from
original SeaUV, error distribution and fitting parameters as shown in
the Supplementary material).

While Kd in inshorewaters is generally retrievedwith good accuracy
at most wavelengths after optimization, retrieval of Kd(320) using the
inshore-water optimized SeaUV algorithms yields higher errors com-
pared to the Kd estimates at longer wavelengths (MRE for Kd(320) =
21.4%, compared to MRE = 15% for Kd(412)). This higher error for
Kd(320) could be related to the difficulty of measuring Kd at UV wave-
lengths in highly colored waters. Since most of the apparent optical
properties (AOPs) in the optically complex water training data set
used to parameterize the inshore-water optimized SeaUV algorithms
were collected in coastal Georgia waters (high CDOM and particulate
load), measurements of downward UV irradiance generally rapidly

Fig. 6.Box andwhisker plots of relative error distribution ofKd derived from theoriginal and composite SeaUV/SeaUVc algorithms atλ=320, 340, 380, 412, 443 and490 nmfor the inshore
data set collected in this study (N = 74) and complete training data set (N = 438). The circle plus symbol in each boxplot represents the mean relative error (MRE, εj j).
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falls below the detection limits of the instrument during profiling. The
measured in situ Kd(320) data likely contained more inaccuracy than
longerwavelengthswhen parameterizing of the algorithms. In addition,
the strong attenuation of UV radiation in dark water requires Kd

measurements to be made very close to the water surface where
wave-induced fluctuationsmay contribute larger variations to the spec-
tral irradiance measurement (Laurion, Vincent, & Lean, 1997; Markager
& Vincent, 2000; Tedetti et al., 2007). These challenges of Kd measure-
ments at shorter UV wavelengths in optically complex waters could
explain the increasing uncertainty of Kd values observed at shorter
wavelengths.

3.3. Evaluation of composite SeaUV algorithms

The composite SeaUV algorithms improved the accuracy of retrieved
Kd in inshore waters. Figs. 4, 5 and 6 display the Kd retrievals with their
relative error distributions that result from use of the composite
SeaUV/SeaUVc algorithms applied to the entire training data set (N =
438). The good agreement between measured and retrieved Kd values
demonstrates the improved overall performance of the composite
SeaUV/SeaUVc algorithms (e.g. for Kd(380), MRE= 16% from composite
SeaUV, compared with MRE = 21% from original SeaUV).

The approach used in the composite SeaUV algorithms is similar to
the merged Kd(490) product for Chesapeake Bay developed by Wang,
Son, and Harding (2009), which combines two separate empirical
algorithms forKd(490) retrieval of open ocean and turbid coastalwaters
to derive Kd(490) from satellite measurements. Good results for Kd

retrieval using our composite algorithms result partly from accurate de-
termination of the cutoff point (Kd (490)= 0.32m−1) used to separate
the fitting parameters for the composite algorithms. In the merged
Kd(490) product generated by Wang et al. (2009), using a completely
separate data set, the same cutoff point of Kd(490) = 0.3 m−1 was
proposed to distinguish the open ocean water with turbid coastal
water. The combination of the two individual parts in the composite

algorithms, with each part applicable to different water types, maxi-
mizes our ability to accurately predict Kd through the UV wavelength
range in both open ocean and turbid inshore waters.

3.4. Sensitivity analysis of the cutoff point

By using the latest NASA Kd(490) product to determine the switch
point between different parts in the composite SeaUV/SeaUVc algorithms,
it is possible that the error (~25%) in determiningKd(490) for our training
dataset, particularly for open ocean water (Kd(490) b 0.32 m−1), could
translate to increased error in our ability to choose the Kd(490) value
thatwill prompt a switch between algorithms.We investigated the sensi-
tivity of our retrieval accuracy using the composite SeaUV algorithms, by
varying the cutoff point over the ranging between 0.16 and 0.36 m−1 for
Kd(490), corresponding to the ±25% error limits of the cutoff point de-
rived from the Kd(490) product. The estimated Kd (λ, λ = 320, 340,
380, 412, 443 and 490 nm) for our training dataset obtained by varying
the cutoff point ±25% showed no statistically significant differences
from the calculated Kd(λ) values obtained with the cutoff point value
set at Kd(490) = 0.32 m−1 (t-tests, with p-value N 0. 05 for Kd(λ) at
each wavelength, N= 438). Hence, the use of our Kd(490) = 0.32 m−1

switch point between clear and dark algorithms is not sensitive to the
error associated implicitly with retrieval of the Kd(490) product.

3.5. Validation of the composite SeaUV algorithms

Three independent sets of in situ AOPs were used to test the applica-
bility of the composite SeaUV/SeaUVc algorithms. Paired measurements
of Rrs(λ) and Kd(λ) were collected seasonally in the northern Gulf of
Mexico (GulfCarbon cruises, 2009–2010), around the Mackenzie River
outflow (MALINA cruise, August 2009), and the Gulf of Maine in 2008
(Fig. 7). The measured in situ Kd(λ) in the validation data set cover
different water types and span almost the same wide range as the

Fig. 7. Locations of stations for in situpairedAOPdata used as the validation data set (N= 125): (a)Mackenzie River outflowduring theMALINA cruise, (b)Gulf ofMaine, and (c)Northern
Gulf of Mexico (collected during five GulfCarbon cruises).
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data used to parameterize the composite algorithms (e.g. for Kd(380),
the measured values span from 0.04 m−1 to 11.22 m−1).

The validation procedure for the composite algorithms was carried
out in two steps. First, the original SeaUV/SeaUVc set was implemented
on the Rrs(λ) of samples with in situ Kd(490) b 0.32 m−1. The inshore-

water optimized SeaUV/SeaUVc set was then implemented on the
Rrs(λ) of waters defined as optically complex, that is with in situ
Kd(490) N 0.32 m−1. The Rrs(λ) data were used as input for the compos-
ite SeaUV/SeaUVc algorithms and the calculated Kd values were then
compared with measured Kd values for performance assessment.
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Fig. 8. Comparisons of measured in situ Kd with calculated Kd derived from the composite SeaUV/SeaUVc algorithms at λ=340, 380 and 412 nm for the in situ validation data set (N= 125).
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Fig. 8 shows the results for comparisons between calculated Kd de-
rived from the composite SeaUV/SeaUVc algorithms and measured
in situ Kd at λ = 340, 380 and 412 nm for the validation data set. Fig. 9
shows the error analysis for our Kd retrievals associated with the com-
posite SeaUV/SeaUVc algorithms, indicating good performance at all
wavelengths for the validation data set. For Kd(412), the mean relative
error derived from the composite SeaUVcmodel is 16% for the validation
data set, compared with 16.4% for our complete training data set. The
consistent error distribution between the validation and training data
set further confirms that the inshore-water optimized SeaUV/SeaUVc al-
gorithms were well parameterized for higher Kd retrieval in optically
complex inshore waters. It is important to note that while the
inshore-water optimized SeaUV/SeaUVc model was developed using
AOPs collected along coastal Georgia, these calculations also performed
well for Kd retrieval in other inshore waters from diverse locations. The
results from the independent in situ validation data set demonstrate
that inshore-water optimized SeaUV/SeaUVc may be relatively insensi-
tive to the spatial variation of optical properties. It should also be
noted here that the attenuation values for the validation data fall within
the range used to parameterize the inshore-water optimized SeaUV/
SeaUVc algorithms (e.g. the western branch of the Mackenzie River
and Gulf of Maine, with Kd(340) ~ 17.0 m−1). The good performance
for calculations of optically complex water Kd, together with the fact
that composite algorithms were parameterized based on a complete
training data set that covered an extremely wide range of Kd values, in-
dicate the potential for use of the composite algorithms in Kd retrieval

varying from open ocean waters to optically complex inshore waters
on a global scale.

3.6. Optimized composite SeaUV algorithms

In light of the empirical nature of the composite SeaUV/SeaUVc algo-
rithms, the composite algorithms can always be updated using addi-
tional data in order to further improve the accuracy of Kd retrievals.
Here, the original training and in situ validation data sets used by
Fichot et al. (2008), and the inshore-water and in situ validation data
sets compiled for this study were pooled together and used to parame-
terize a final set of SeaUV/SeaUVc algorithms. This final set of SeaUV
algorithms is referred to here as the “optimized composite SeaUV
algorithms”. The parameters associated with this set of algorithms
were derived from a data set that covers water types ranging from
very oligotrophic open ocean water to optically complex inshore loca-
tions (N= 563). As shown in Figs. 10 and 11, the optimized composite
algorithms performed very well at all wavelengths and performed
even better than the algorithms derived from the smaller training data
set (N = 438). The optimized result obtained by adding the validation
data set to the final pool used to derive the composite algorithms also
eliminated the biases that occurred in the earlier validation step. Thus,
this final optimization of the composite SeaUV/SeaUVc model parame-
ters is the best product we can provide for the optical community
using this approach. A complete scheme of how the optimized compos-
ite algorithms should be implemented is provided in Appendix A.

Fig. 9.Box andwhisker plots of relative error distribution of Kd derived from the composite SeaUV/SeaUVc at λ=320, 340, 380, 412, 443 and 490 nm for the in situ validation data
set (N = 125). Symbols are the same as in Fig. 6.
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3.7. Application to SeaWiFS satellite imagery

The optimized composite SeaUV algorithm was implemented using
SeaWiFS Rrs in order to test its applicability with satellite imagery. The
monthly climatology of SeaWiFS Rrs over the Northern Gulf of Mexico

(nGoM) for April 1998–2010 (Level-3, binned 9 × 9 km spatial resolu-
tion) was acquired from the NASA ocean color project website (http://
oceancolor.gsfc.nasa.gov) and used in this application. The nGoM was
chosen because it encompasses oligotrophic waters as well as turbid,
high CDOM waters influenced by the Mississippi/Atchafalaya River
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Fig. 10. Comparisons ofmeasured in situ Kd with calculated Kd derived from the optimized composite SeaUV/SeaUVc algorithms at λ=340, 380 and 412 nm for the large training data set
(N = 563).
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plumes (Lohrenz et al., 1999), thus making it a suitable area to demon-
strate the overall performance of the optimized composite SeaUV algo-
rithms over a wide range of Kd values. Both the original and final
optimized composite SeaUV algorithms were applied to the SeaWiFS
climatological Rrs data to derive Kd (noted as Kd

original and Kd
composite re-

spectively in the following text). For additional comparison, we applied
the Jamet et al. (2012) neural network inversion algorithms, also tuned
for retrievingKd (Kd

NN) in both open ocean and optically complexwaters,
to the same SeaWiFS Rrs.

Fig. 12 shows the climatology images for comparison. As expected,
Kd derived with the original SeaUV algorithm (Fig. 12(a) & (d)) displays
less variability between the clear offshore Gulf water and waters near
the rivermouth.However, the images derived using the optimized com-
posite SeaUV algorithm (Fig. 12(b) & (e)) show distinct Kd characteris-
tics when applied to different water types, especially in nearshore
areas. For Kd(320), the difference in the images derived using original
and optimized composite SeaUV algorithms can be as large as 100%
(Fig. 12(c)). Because Kd

NN can only be retrieved at visible wavelengths,
we generated images at Kd(412) for Kd

composite and Kd
NN (Fig. 12(f)) for

comparison. Kd
NN(412) showed similar patterns overall, but generated

slightly higher values than Kd
composite(412) for nearshore waters. While

Kd(412) is somewhat useful for examiningwaterswith high CDOMcon-
tent, the distinct advantage of our composite SeaUV algorithms is its
ability to retrieve Kd in the UV directly from Rrs, and in doing so provide
essential data for evaluating photochemical production and photobio-
logical reactions in the surface ocean.

4. Summary and conclusions

This study makes two contributions to the ocean optical community
by providing improved capacity to retrieve Kd from the most oligotro-
phic open ocean waters to dynamic inshore systems. First, it re-
parameterizes the original SeaUV/SeaUVc algorithms by pooling a new
training data set collected in optically complexwaters to achieve greatly
improved accuracy of Kd(λ) retrieval at λ=320, 340, 380, 412, 443 and
490 nm for turbid coastal waters from ocean color (Rrs(λ) at SeaWiFS
bands, with wavebands centered at λ = 412, 443, 490, 510, 555 and
670 nm). Second, it updates the parameters defined and reported in
the original SeaUV/SeaUVc by using an expanded training data set. The
optimization of the original algorithm further enhanced the Kd retrieval
accuracy in almost all oceanic and coastal waters. The utilization of such
a large training data set that includes an extensive range of Kd values, to-
gether with the inherent advantage of the statistical methods employed
in developing these algorithms, results in a final SeaUV/SeaUVc product
(namely, the “optimized composite SeaUV/SeaUVc algorithms”) that is
suitable for retrieval of Kd over large spatial scales, and in almost any
water type.

While good accuracy in retrieving Kd is realized using the new opti-
mized composite SeaUV algorithms, readers applying these algorithms
to ocean color data should remain aware of several assumptions and is-
sues related to this model. First, as discussed in Fichot et al. (2008), PCA
and cluster analysis are purely statistical (empirical) approaches, thus,
they neither categorize water types a priori nor exclude samples

Fig. 11. Box andwhisker plots of relative error distribution ofKd derived from the optimized composite SeaUV/SeaUVc atλ=320, 340, 380, 412, 443 and 490 nm for the large training data
set (N = 563). Symbols are the same as in Fig. 6.
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collected under specific optical situations (i.e. bottom reflectance, tur-
bidity, algal blooms, etc.). SeaUV/SeaUVc is designed primarily to re-
trieve Kd in the UV wavelengths based on PCA and cluster analysis.
Neither of these statistical approaches requires or, in fact allows under-
lying assumptions on the spectral data used for the analysis.
Interpreting the resulting PC curves or optical domains beyond the de-
sign of themodel requires speculation that we do not always have aux-
iliary data to support. The final training data set (N = 563) used to
derive the algorithm parameters in this paper incorporate an extreme
range of marine Kd values, but does not include all water types. For ex-
ample, including data such as that from the Biogeochemistry and Optics
South Pacific Experiment (BIOSOPE) form the clearest oceanic water in
the South Pacific subtropical gyre (Morel, Claustre, Antoine, & Gentili,
2007; Morel, Gentili, et al., 2007), may improve model performance
for this specific area.

Second, while the optimized PCs defined here best describe the orig-
inal data when applied together, each individual PCmay not necessarily
be linearly correlated to any specific inherent optical property (IOP), as
pointed out by Toole and Siegel (2001). In the framework of linear alge-
bra, PCA per se, only retains the linearity in the training data set, and
may not rigorously describe the physical relationship between Rrs and
IOPs (Morel, 1998; Mueller, 1976). Because the primary purpose of
SeaUV/SeaUVc is to provide the most accurate UV radiation field possi-
ble from remotely sensed visible wavelengths, this is not a critical con-
cern. It does, however, remain unknown as to how well the SeaUV/
SeaUVc algorithms predict specific non-linearities between ocean
color and IOPs. Third, readers should also be reminded that Kd is an
AOP and varies with sun elevation. Most of the data in the training
data set were collected with SZA between 0° and 45°, with a few cases
occurredwith SZA greater than 60°, and any variationwas captured im-
plicitly by PCA. SeaUV/SeaUVc should, however, be used with caution
when SZA falls beyond this range.

With the advent of new remote-sensing technologies and the focus
on coastal ocean processes, the composite SeaUV/SeaUVc algorithms
will find applicability for the retrieval of Kd in turbid coastal waters
using instruments such as the Hyperspectral Imager for the Coastal
Ocean (HICO) (Gitelson, Gao, Li, Berdnikov, & Saprygin, 2011; Lucke
et al., 2011), the Visible Infrared Imager Radiometer Suite (VIIRS), or
the Portable Remote Image Spectrometer (PRISM). Accurate Kd esti-
mates from ocean color can provide better UV data for calculation of
photochemical fluxes in coastal waters and address the role of estuarine
and coastal waters in photochemical and biogeochemical processes. In
addition, spectral UV distribution in the water column can also be
modeled using accurate values of Kd by assuming an exponential de-
crease of Kd values over increasing wavelengths if surface downwelling
irradiance is known (Kjeldstad et al., 2003; Markager & Vincent, 2000).
These depth profiles are important for quantitative evaluation of UVR
inhibition of photosynthesis, bacterial production (Ogbebo & Ochs,
2008) and viral growth (Fuhrman & Noble, 1995) in ecological studies.
These algorithms can help to clarify and assess possible effects of UVR
in different trophic levels (Yuan, Yin, Harrison, & Zhang, 2011) and in
important biogeochemical processes occurring in optically complex
waters.
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Appendix A. Implementation schemes for composite SeaUV/SeaUVc
algorithms

A.1. Required inputs

The remote-sensing reflectance, Rrs (λ,0+), measured at λ = 412,
443, 490, 510, 555 and 670nm(SeaWiFSwavebands) is required for ini-
tial input to the algorithms. Normalized water-leaving radiance nLw(λ)
can be converted into Rrs (λ,0+) as follows: Rrs λ;0þ� � ¼ nLW λð Þ=FO λð Þ
where the values for themean extraterrestrial solar flux, FO λð Þ, are pro-
vided in Thuillier et al. (2003).

A.2. Retrieving Kd(490) using the NASA Kd(490) algorithm

The measured remote-sensing reflectance Rrs (λ,0+) data are first
processed through the NASA Kd(490) algorithm (Werdell, 2009) to de-
termine the appropriate set of composite algorithms for use. If the calcu-
lated Kd(490) value is lower than 0.32 m−1, the water is classified as
“clear” and the first part in the new composite set of SeaUV algorithms
is used for Kd(λ) retrieval. If the calculated Kd(490) is greater than or
equal to 0.32 m−1, the water is classified as optically complex inshore
water and the inshore-water optimized SeaUV (i.e. the second part in
the new composite set of SeaUV algorithms) is applied for Kd(λ)
retrieval.

A.3. Retrieving Kd(λ) using original SeaUV

For “clear” water, the original SeaUV/SeaUVc model is implemented
on the Rrs (λ,0+) values using the same procedure as described in Ap-
pendix C.1. and C. 2. in Fichot et al. (2008). As stated in the text, we
have taken advantage of the empirical nature of the SeaUV algorithms
and updated all parameters used in the original SeaUV algorithm with
the exception of the cluster centers coordinates, which proved robust,
with relocation giving no significant improvement to the statistical fit
for the training data. The values of R λð Þ and σR(λ) calculated for stan-
dardization from our largest training data set (N = 563) are given in
Table A.1. The resulting standardized log-linearized remote-sensing re-
flectances, X(λ), can then be used in linear combinations to calculate the
scores of the first four principal components. The eigenvectors derived
from our large training data set through PCA are used as the correlation
coefficients for the multi-linear combinations. The PC scores are up-
dated (Table A.2.) and calculated as in Eq. (1) in Fichot et al. (2008)
(e.g. PC score on the first principal component is computed as

PC1½ �i ¼ e11Xi 412ð Þ þ e12Xi 443ð Þ þ e13Xi 490ð Þ þ e14Xi 510ð Þ
þ e15Xi 555ð Þ þ e16Xi 670ð ÞÞ;

where e11 =−0.3976, e12 =−0.4237, e13 =−0.4521, e14 =−0.4540,
e15=−0.4159, e16=−0.2809. Scores on PC2, PC3 and PC4 are calculat-
ed similarly and are then used as the independent variables in the multi-
linear regressions to predict Kd. The correlation coefficients (parameters
α, β, γ, δ, ε) have been updated and are provided in Table A.3. For the
clear water SeaUVcmodel, the cluster centers in the updated SeaUVc are
the same as published in Fichot et al. (2008). The observations are
assigned to their optical domains using the first two PC scores and log-
linearized Kd(λ) is calculated by using Eq. (4) in Fichot et al. (2008)
with the updated parameters corresponding to the identified optical do-
mains provided in here Tables A.4, A.5 and A.6.
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A.4. Retrieving Kd(λ) using inshore-water optimized SeaUV/SeaUVc

If the calculated Kd(490) is greater than or equal to 0.32m−1 and the
water is classified as optically complex, inshore water, the new inshore-
water optimized SeaUV/SeaUVc model provides a much more accurate
retrieval of Kd(λ). The inshore-water optimized SeaUV model is then
used with similar logic to that used for implementation of the original
SeaUV (as described in Fichot et al. (2008)). Theparameters for standard-
ization, calculation of PC scores andmulti-linear coefficients are provided
in Tables A.7, A.8 and A.9. For the inshore-water optimized SeaUVc algo-
rithms, four dark water domains (DWDs) are defined for retrieving
Kd(λ). The coordinates of the four cluster centers in inshore-water opti-
mized SeaUVc are provided in Table A.10. Each observation is assigned to
the appropriate DWD by using the first two PC scores, allowing the log-
linearizedKd(λ) value to be calculated using Eq. (4) in Fichot et al. (2008)
using the updated parameters for use in corresponding to the darkwater
domain provided here in Tables A.11, A.12 and A.13.

Table A.3
Updated parameters for retrieval of ln(Kd(λ)) from the PC scores in the original SeaUV
algorithms.

α β γ δ ε

ln(Kd(320)) −0.7327 0.0980 −0.5928 −0.5230 −1.1130
ln(Kd(340)) −1.0625 0.0855 −0.6301 −0.4996 −0.8653
ln(Kd(380)) −1.6508 0.0485 −0.6565 −0.4154 −0.4186
ln(Kd(412)) −1.9638 0.0240 −0.6550 −0.3240 0.1644
ln(Kd(443)) −2.1846 0.0088 −0.6256 −0.2368 0.6171
ln(Kd(490)) −2.4894 −0.0025 −0.5574 −0.0733 0.6902

Table A.5
Updated parameters for retrieval of ln[Kd(λ)] (λ=380 and 412 nm) from the PC scores in
the original SeaUVc algorithms.

α β γ δ ε

ln[Kd(380)]
OCD1 −1.6649 0.0356 −0.6626 −0.1942 −0.2820
OCD2 −1.6453 0.0542 −0.6710 −0.3232 −0.5304
OCD3 −1.2807 0.1287 −0.5558 −0.2712 −1.9238
OCD4 −1.8815 0.0860 −0.7529 −0.4659 0.4369
OCD5 −1.5699 0.0055 −0.5469 −0.6102 −0.7134
OCD6 −1.7408 0.0601 −0.5786 −0.6292 −0.2607
OCD7 −1.7133 0.0770 −0.5789 −0.6661 −0.2665

ln[Kd(412)]
OCD1 −2.066 −0.0117 −0.5788 −0.0081 0.1561
OCD2 −1.9402 0.0273 −0.6691 −0.1097 −0.0423
OCD3 −1.5982 0.1176 −0.5712 −0.0780 −1.3923
OCD4 −2.1512 0.0492 −0.7311 −0.2785 0.4277
OCD5 −1.9057 −0.0093 −0.5560 −0.6052 −0.1428
OCD6 −2.0421 0.0255 −0.6314 −0.5377 0.4598
OCD7 −2.0247 0.0667 −0.5683 −0.6719 0.0959

Table A.1
Updated mean and standard deviations to center and standardize ln(Rrs (λ,0+)) for the
original SeaUV/SeaUVc algorithms.

λ = 412 λ = 443 λ = 490 λ = 510 λ = 555 λ = 670

R λð Þ −5.3340 −5.2589 −5.0970 −5.2474 −5.5939 −7.9649
σR(λ) 0.8637 0.7808 0.7268 0.7483 0.8208 0.8836

Table A.4
Updated parameters for retrieval of ln[Kd(λ)] (λ=320 and 340 nm) from the PC scores in
the original SeaUVc algorithms.

α β γ δ ε

ln[Kd(320)]
OCD1 −0.7880 0.0555 −0.6148 −0.3852 −0.7067
OCD2 −0.8138 0.1098 −0.6411 −0.6162 −0.9544
OCD3 −0.6073 0.1372 −0.5505 −0.1169 −1.7478
OCD4 −0.7821 0.1357 −0.5775 −0.4700 −0.5023
OCD5 −0.4816 −0.0044 −0.5721 −0.6300 −1.1761
OCD6 −0.8359 0.1386 −0.4460 −0.6736 −0.9057
OCD7 −0.7764 0.1411 −0.5378 −0.6900 −0.8205

ln[Kd(340)]
OCD1 −1.0733 0.0588 −0.6328 −0.3243 −0.6286
OCD2 −1.1055 0.0981 −0.6514 −0.5232 −0.7947
OCD3 −0.8734 0.1260 −0.5453 −0.1725 −1.7031
OCD4 −1.1280 0.1202 −0.6284 −0.5058 −0.4116
OCD5 −0.9525 0.0376 −0.6103 −0.5717 −1.0074
OCD6 −1.1507 0.1015 −0.5148 −0.5969 −0.6982
OCD7 −1.0968 0.1140 −0.5800 −0.7075 −0.6110

Table A.2
Updatedfirst four eigenvectors for use in calculating the PC scores for the “original” SeaUV/
SeaUVc algorithms.

λ = 412 λ = 443 λ = 490 λ = 510 λ = 555 λ = 670

e1 −0.3976 −0.4237 −0.4521 −0.4540 −0.4159 −0.2809
e2 0.4481 0.3497 0.1303 −0.0670 −0.3652 −0.7226
e3 0.3990 0.2370 −0.1326 −0.3724 −0.4920 0.6215
e4 0.5829 −0.2240 −0.5733 −0.1354 0.5045 −0.0928

Table A.6
Updated parameters for retrieval of ln[Kd(λ)] (λ=443 and 490 nm) from the PC scores in
the original SeaUVc algorithms.

α β γ δ ε

ln[Kd(443)]
OCD1 −2.4117 −0.0551 −0.5317 0.0673 0.6669
OCD2 −2.1752 0.0009 −0.6672 0.0970 0.2309
OCD3 −1.7932 0.1273 −0.5862 0.0473 −1.0485
OCD4 −2.4883 0.1158 −0.6174 −0.3085 0.9051
OCD5 −2.1744 −0.0030 −0.5205 −0.5934 0.4998
OCD6 −2.2708 −0.0002 −0.6345 −0.4557 1.0245
OCD7 −2.2943 0.0654 −0.4923 −0.6039 0.4254

ln[Kd(490)]
OCD1 −3.0337 −0.1438 −0.5119 0.0357 1.7743
OCD2 −2.5423 −0.0575 −0.6011 0.3010 0.3775
OCD3 −2.1348 0.1232 −0.5911 0.2175 −1.0509
OCD4 −2.6192 0.0104 −0.5910 −0.3303 0.8374
OCD5 −2.5163 0.0150 −0.3711 −0.4385 0.8056
OCD6 −2.5759 −0.0115 −0.6348 −0.2714 1.0642
OCD7 −2.6486 0.0952 −0.3854 −0.4047 0.5484

Table A.7
Updated mean and standard deviations to center and standardize ln(Rrs (λ,0+)) for the
inshore-water optimized SeaUV/SeaUVc algorithms.

λ = 412 λ = 443 λ = 490 λ = 510 λ = 555 λ = 670

R λð Þ −6.8156 −6.3098 −5.6367 −5.4596 −5.0692 −5.9379
σR(λ) 1.0703 0.9956 0.8839 0.8599 0.7490 0.7485

Table A.8
Updated first four eigenvectors for use in calculating the PC scores for the inshore-water
optimized SeaUV/SeaUVc algorithms.

λ = 412 λ = 443 λ = 490 λ = 510 λ = 555 λ = 670

e1 −0.4019 −0.4224 −0.4295 −0.4297 −0.4240 −0.3333
e2 −0.4536 −0.2541 −0.0825 −0.0403 0.1504 0.8358
e3 0.5303 0.2160 −0.1431 −0.3003 −0.6103 0.4347
e4 −0.4941 0.2907 0.4526 0.3252 −0.6005 −0.0113
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Appendix B. Supplementary data

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.rse.2014.01.003.
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