View metadata, citation and similar papers at core.ac.uk

R=20140010397 2019-08-31T19:56:04+00:00Z

- Develop/optimize technology capable of removing PCBs from contaminated sediments
- · Develop design for functional GPRSS unit
- Produce and prove functionality of prototype units in a laboratory setting
- Produce fully-functional GPRSS units for testing at a demonstration site in Altavista, VA
- Evaluate efficacy of GPRSS technology for the remediation of PCB-contaminated sediments

Overview of Previous Results

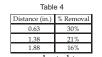
• Various polymers tested for ability to remove PCBs from contaminated sediments (Table 1)

Table	e 1						
	% PCB Removal						
Sample ID	3 Weeks	7 Weeks	17 Weeks		т.	able 2	
Black Norprene Tubing	5.73%	7.96%	10.63%		lè	able z	
White Norprene Tubing	2.15%	4.54%	4.60%	% 0		loved by Ethanol-fil	led
Latex Glove	0.93%	3.14%	4.14%	Polyethylene (1 month Study)			
Thick Nitrile Glove	0.95%	0.31%	1.59%		Interior	Within Polymer	Total
Abrasion Resistant Gum Rubber (5/8*)	1.03%	3.43%	1.86%	Pipet 1	35.4	14.0	49.3
Natural Gum Foam	3.04%	14.17%	20.26%	Pipet 2	31.7	11.0	42.7
Abrasian Resistant Gum Rubber (1/16*)	3.02%	5.42%	8.27%	Pipet 3	35.9	12.0	48.0
Weather Resistant Butyl Rubber	3.44%	7.14%	18.46%	Pipet 4	41.9	17.6	59.6
Weather Resistant Butyl Rubber	3.85%	9.02%	9.87%				
Viton Mat	4.22%	7.30%	6.03%				
Black Viton Tubing	1.89%	0.94%	2.76%				
White Viton Tubing	0.99%	0.63%	0.91%				
Butyl Rubber (glove)	3.99%	3.48%	4.10%				
100							

- Butyl Rubber, Norprene, Gum Rubber/Foam showed highest removal capacities
- Interior solvent studies showed marked increase in PCB removal capacity when combined with polymers (Table 2)
- · Polymer blanket designed for feasibility studies
- Small-scale demonstration unit produced for testing and physical optimization studies (Figure 1)

Comparison of	Sediment
Remediation Te	chnologies
Table 3	

	<u>GPRSS</u>	<u>Monitored</u> <u>Natural Recovery</u> (<u>MNR)</u>	Dredging/ Removal	Sediment Capping
Environmentally	0	0	8	0
Friendly?	~	×	✓	<u> </u>
Destroys PCBs?	٢	8	8	8
Source Treatment?	0	8	8	8
Reusable?	٢	9	8	8
Low Cost?	٢	0	8	e


Initial Field Deployment Results of Green PCB Removal from Sediment Systems (GPRSS)

Robert DeVor¹, James Captain¹, Kyle Weis¹, Phillip Maloney², Greg Booth³ Jacqueline Quinn⁴ ¹QinetiQ North America, ²NASA Postdoctoral Program

³Toxicological and Environmental Associates, Inc., ⁴National Aeronautics and Space Administration

Current Research Results (FY13/FY14)

- Current work focused on optimizing GPRSS technology for use in real-world applications.
 - Creation of functional design; production of prototype test units using results from previous studie
 Commercial vendor produced "spikes" of different polymers (LDPE, HDPE, PP) to allow for testing and evaluation. Figure 2 shows an HDPE spike
 - Testing was performed to determine the "sphere of influence" each individual spike would
 - have. The original prototypes had a 2" spacing between spikes
 - The results of this study (Table 4) showed that a 3" spacing would suffice

X

X

х

Figure 3

Cross-section of HDPE spil

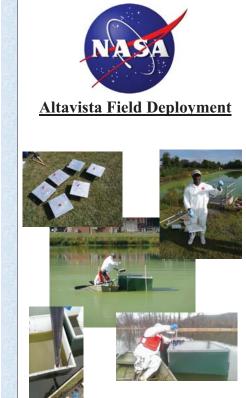
• Concurrent testing of the mass-produced spikes was conducted to determine the transport rate of the PCBs through the various polymers

 Impletion
 Diffusion Rate (ug/in?/week)

 HDPE
 12.48

 LDPE
 13.42

 PP
 8.20


Table 5

 Results (Table 5) showed that LDPE had the highest transport capabilit PCBs, however physical characteristics of the polymer proved to be unsuitable for real-world use
 HDPE spikes had nearly as high a diffusion rate as LDPE, and ware right

 HDPE spikes had nearly as high a diffusion rate as LDPE, and were rig enough for insertion into sediments

- Field deployment was undertaken in a contaminated pond in Altavista, VA in September 2013
 - Two 9ft² treatment zones were cordoned off; pre-treatment concentrations were obtained
 - Each treatment zone was divided into 9 zones which were treated with an individual GPRSS unit. Pre- and post-concentration samples were taken from the locations marked in Figure 3
 - All samples were split for analysis both at KSC and by an independent certified 3rd party laboratory.
 - First samples were taken in early February (~19 weeks), and the ethanol was replaced and the blankets were re-installed for a second treatment. The results of the 3rd party testing are given in Table 6/7. KSC analysis showed even higher removal rates.

Table 7 – Box 2			Table 6 – Box 1			
	Conc. (ppm)		Conc. (ppm)		
Sample ID	9/24/2013	2/4/2014	Sample ID	9/24/2013	2/4/2014	
NW	74.2	26.8	NW	74.2	26.8	
NE	92.1	26.2	NE	92.1	26.2	
С	85.1	66.9	С	85.1	66.9	
SW	151	28.3	SW	151	28.3	
SE	144	21.4	SE	144	21.4	
Overlying			Overlying			
water	N/A	2.4 (ppb)	water	N/A	2.4 (ppb)	

Summary

- Developed and optimized design for GPRSS technology
- Laboratory-scale tests proved functionality of GPRSS
 design
- Final down-select of polymers were chosen based upon laboratory results
- Produced multiple units for field demonstration at Altavista, VA
- Preliminary results (certified 3rd party lab) show that 70% of sites sampled have been reduced to below EPA action limits for PCBs

Future Directions

- Analyze 2nd sample set (~32 weeks) from Altavista, VA field demonstration
- Analyze GPRSS blankets from Altavista, VA field demonstration to attempt mass-balance of PCBs
- Evaluate re-usability of both blanket and interior solvent
 - Test effectiveness of removal capability of PCBs over multiple removal cycles
 - · Test extraction efficiency from polymer blanket
- Evaluate capability of combining polymer blanket with AMTS technology for degradation of PCBs removed /extracted from contaminated sediments

Prototype Unit

brought to you by

CORE

х

х