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Abstract

Chemistry–climate models predict an acceleration of the upwelling branch of the
Brewer–Dobson circulation as a consequence of increasing global surface tempera-
tures, resulting from elevated levels of atmospheric greenhouse gases. The observed
decrease of ozone in the tropical lower stratosphere during the last decades of the 20th5

century is consistent with the anticipated acceleration of upwelling. However, more re-
cent satellite observations of ozone reveal that this decrease has unexpectedly stopped
in the first decade of the 21st century, challenging the implicit assumption of a continu-
ous acceleration of tropical upwelling. In this study we use three decades of chemistry-
transport-model simulations (1980–2013) to investigate this phenomenon and resolve10

this apparent contradiction. Our model reproduces the observed tropical lower strato-
sphere ozone record, showing a significant decrease in the early period followed by
a statistically robust trend-change after 2002. We demonstrate that this trend-change
is correlated with corresponding changes in the vertical transport and conclude that
a hiatus in the acceleration of tropical upwelling occurred during the last decade.15

1 Introduction

The issue of whether the large-scale Brewer–Dobson Circulation (BDC) has strength-
ened in the recent past, as a result of anthropogenic activity, has been raised (Oman
et al., 2009; Butchart et al., 2010; Randel and Jensen, 2013). Recent chemistry-climate
model (CCM) simulations predict an increase of resolved wave activity and orographic20

gravity wave drag resulting from increasing sea surface temperatures (Garcia and Ran-
del, 2008; Oman et al., 2009; Waugh et al., 2009; Butchart et al., 2010; Garny et al.,
2011). This strengthens the upwelling branch of the BDC, commonly referred to as the
tropical upwelling. In comparison, the behaviour of the observations is ambiguous. The
long-term cooling of the tropical lower stratosphere (LS, about 17–21 km; Thompson25

and Solomon, 2005; Young et al., 2012) and the observed weakening of the strato-
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spheric quasi-biennial oscillation (QBO; Kawatani and Hamilton, 2013) are consistent
with the predicted increase of upwelling. On the other hand, the mean residence time
of air parcels in the stratosphere (age of air) inferred from sulfur hexafluoride (SF6)
measurements is inconsistent with an overall acceleration of the BDC (Engel et al.,
2009; Stiller et al., 2012). They indicate no significant changes or even deceleration of5

the vertical transport in the middle stratosphere. To reconcile the observed discrepan-
cies it has been argued that the individual branches of the BDC are evolving differently,
i.e. an increase in tropical upwelling does not necessarily imply an acceleration of the
overall circulation (Bönisch et al., 2011; Diallo et al., 2012; Lin and Fu, 2013).

Ozone (O3) is a sensitive proxy for vertical transport in the tropical LS (Randel et al.,10

2006; Waugh et al., 2009; Randel and Thompson, 2011; Polvani and Solomon, 2012).
Its local mixing ratio is considered to result from a stationary state involving production
by oxygen (O2) photo-dissociation and a steady influx of O3-poor tropospheric air from
below (Avallone and Prather, 1996; Waugh et al., 2009; Meul et al., 2014). Meridional
mixing from higher latitudes is a secondary effect that contributes to the seasonality in15

the O3 mixing ratios (Ploeger et al., 2012). Several studies have reported a negative
trend of O3 in the tropical LS in the range of −(3–6) % per decade, consistent with
the CCM predicted increase of tropical upwelling (Randel and Thompson, 2011; Sioris
et al., 2014; Bourassa et al., 2014). In contrast, more recent O3 observations from
various satellite instruments indicate no statistically significant decrease of LS O3 since20

the beginning of the 21st century (Kyrölä et al., 2013; Eckert et al., 2014; Gebhardt
et al., 2014).

Stimulated by the need to explain the unusual linear trends revealed from the vertical
profile of O3 retrieved from SCIAMACHY1 we use three decades of O3 observations
and simulations to investigate this phenomenon. Section 2 describes the observations,25

model and regression analysis used in this study. The results are discussed in Sect. 3.

1First reported at the Quadrennial Ozone Symposium 2012 Toronto, 27–31 August 2012
and published in Gebhardt et al. (2014).
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2 Data and analysis

2.1 Observations

For a quantitative analysis of tropical upwelling, we use combined O3 observations
from satellite instruments and sondes. The earlier decades (1985–2005) are covered
by the ERBS/SAGE II instrument (McCormick et al., 1989), providing O3 profiles based5

on solar occultation measurements. Due to its viewing geometry, the vertical resolu-
tion of the profiles is high (1 km, range 15–50 km), although the horizontal sampling
is relatively sparse (global coverage in 1 month). Here we use version 7.0 of the data
(Damadeo et al., 2013), screened for cloud and aerosol contaminated profiles as sug-
gested by Wang et al. (2002). Two years of data after June 1991 has been omitted due10

to contamination by the eruption of Mt. Pinatubo. For the last decade (2002–2012),
we use O3 observations from ENVISAT/SCIAMACHY (Burrows et al., 1995) based on
limb geometry (retrieval version 2.9; Sonkaew et al., 2009). The vertical resolution is
about 3–4 km over an altitude range of 10–75 km; global coverage is achieved every 6
days. Data from both instruments has been binned into monthly samples on a uniform15

horizontal and vertical grid (15◦ lon.×5◦ lat.×1 km). To minimise sampling issues and
taking into account the differences in horizontal and vertical resolution of the instru-
ments, any further analysis is based on partial columns of O3 between 17–21 km and
20◦ N–20◦ S, similar to the approach of Randel and Thompson (2011).

The satellite data is augmented by an ensemble of tropical sonde measurements20

from the Southern Hemisphere Additional Ozonesondes network (SHADOZ; 1998–
2013; Thompson et al., 2003, 2012). We use 10 sites located in the tropics with long
and continuous records. The selected stations along with their temporal coverage and
mean value are listed in Table 1. Typically there are 2–4 observations per month for
each SHADOZ station, which provide O3 profiles in a considerable higher vertical res-25

olution (50–100 m) compared to the satellite instruments. As there is a high degree of
longitudinal symmetry in the stratospheric ozone profiles (Thompson et al., 2003), we
average the individual records to obtain a representative mean for the tropics.
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2.2 Model

To obtain a consistent timeseries of LS O3 of the last decades for direct compar-
ison with observations, we conducted a 33-year simulation with the Bremen three-
dimensional chemistry-transport-model (B3DCTM; Sinnhuber et al., 2003; Aschmann
et al., 2009; Aschmann and Sinnhuber, 2013). The current version of the model has5

a horizontal resolution of 3.75◦ lon.×2.5◦ lat. and covers the vertical domain from the
surface up to approximately 55 km using a hybrid σ −θ coordinate system (e.g., Chip-
perfield, 2006). The vertical resolution in the tropical LS is about 600 m. The model
is driven by 6-hourly input of European Centre for Medium-range Weather Forecast
(ECMWF) Era-Interim (EI; Dee et al., 2011) reanalysis data. Vertical transport in the10

purely isentropic domain (above ≈ 16 km in the tropics) is prescribed by EI all-sky heat-
ing rates. The B3DCTM incorporates a comprehensive chemistry scheme originally
based on the chemistry part of the SLIMCAT model (Chipperfield, 1999), covering all
relevant photochemical reactions for stratospheric O3 chemistry. Reaction rates and
absorption cross sections are taken from the Jet Propulsion Laboratory recommenda-15

tions (Sander et al., 2011). To avoid initialisation artefacts, the model has been run with
replicated input data to reach steady state before starting the actual integration from
January 1979 to October 2013.

2.3 Regression

The multivariate regression analysis used throughout this study is based on Reinsel20

et al. (2002) with Yt as the monthly mean variable to be fitted:

Yt =μ+St +ω1X1t +ω2X2t +QBOt +ENSOt

+SCt +Nt (1)

Here, μ is the baseline constant, St a seasonal component, ω1,2 are the trend coef-25

ficients with X1,2t as linear trend functions and Nt represents the unexplained noise.
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Note that in contrast to previous studies, which examined LS O3 (Randel and Thomp-
son, 2011; Sioris et al., 2014), our regression model assumes two linear components,
which account for a possible change of trend. Here, ω1 is the linear trend up to a spec-
ified inflexion date T0. After T0, the new linear trend ω comprises the sum of the earlier
trend ω1 and the trend-change component ω2. The additional regression terms are5

QBOt for QBO, ENSOt for the El Niño Southern Oscillation (ENSO) and SCt for solar
cycle. The QBO proxy consists of the QBO.U30 and QBO.U50 (zonal wind 30/50 hPa)
from the NOAA Climate Prediction Center2, the ENSO proxy is represented by the
Multivariate ENSO Index (MEI) from the NOAA Earth System Research Laboratory3

(Wolter and Timlin, 2011) lagged by two months and the solar cycle by the Bremen10

composite Mg II index4 (Snow et al., 2014).
Assuming first order autocorrelation noise (AR(1) model), as commonly used in the

regression of O3 timeseries (e.g., Reinsel et al., 2002; Jones et al., 2009; Sioris et al.,
2014), the corresponding errors for the trend components calculate as

σω1
≈ σN

n3/2

√
1+φ
1−φ

(2)15

σω2
≈σN

2

√
1+φ
1−φ

(
n

n0n1

)3/2

(3)

σω ≈ σN

n3/2
1

√
1+φ
1−φ

√
n0 +4n1

4n
. (4)

2www.cpc.ncep.noaa.gov/data/indices/
3www.esrl.noaa.gov/psd/enso/mei/
4www.iup.uni-bremen.de/gome/solar/MgII_composite.dat
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Here, σN is the standard error of the fit residuals, n0, n1 are the numbers of years of
data before and after the trend-change, respectively, with n = n0+n1. φ represents the
autocorrelation of the residuals with a time lag of 1 month.

The choice of the inflexion year T0 is essentially a free parameter in the regression
analysis. Figure 1 illustrates the impact of the choice of T0 on the regression of mod-5

elled LS O3 columns and EI upward mass flux (as discussed below in Sect. 3). A 2σ-
significant trend-change (ω2) is obtained for a wide range of possible inflexion years
(marked by red circles). Therefore we use a χ2 test based on the fit residuals, similar to
the approach described by Jones et al. (2009), to identify the most probable inflexion
year. We find a clear minimum in the χ2 values close to 2002 and consequently select10

this year as the turning point in the trend analysis.

3 Results and discussion

3.1 Lower stratosphere ozone column

Figure 2 presents tropical LS O3 column anomalies (20◦ N–20◦ S, 17–21 km) from mea-
surements and the simulation. The agreement between model and observations is15

good, except for a small high-bias relative to the earlier SAGE II data (1985–1990) of
approximately 1 DU: correlation coefficients are 0.65 between modelled and observed
datasets.

A decline of O3 is evident in the tropical LS during the first two decades (1980–2002),
both in the observed and modelled timeseries. This is consistent with an increase of20

tropical upwelling during this period. However, this trend vanishes in the third decade
(2002–2013). Figure 3a and b illustrates the results from the regression analysis of the
modelled timeseries showing the fit function and the corresponding residuals, respec-
tively. The linear trend amounts to −8.1±0.9 % per decade (ω1) in the pre-2002 period
and 0.1±3.3 % per decade (ω) for the remaining years. The resulting trend-change of25
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8.2 % per decade (ω2) is statistically significant within the 95 % confidence interval (i.e.
ω2 > 2σω).

To apply our analysis to the observational data we merge the available datasets
(SAGE II–SCIAMACHY; SAGE II–SHADOZ). In either case, the correlation between
LS O3 partial columns exceeds 0.8 in the overlap period and the bias is generally lower5

than 2 %. Considering the good agreement between the observations it is reasonable
to combine them into a continuous timeseries. We adopt the method described in Ran-
del and Thompson (2011) and simply join the two individual timeseries and average the
overlap period. When we apply the regression to the combined SAGE II–SCIAMACHY
timeseries, we calculate a trend of −3.9±0.5 % per decade (ω1) for the pre-2002 pe-10

riod, consistent with the range of −(3–6) % per decade given by earlier studies (Fig. 3c
and d; Randel and Thompson, 2011; Sioris et al., 2014; Bourassa et al., 2014). The
discrepancy between model and observations for the pre-2002 trend is likely caused
by the O3 high-bias between 1985–1990, mentioned above, and the possibly overes-
timated vertical transport velocity in the EI dataset (Ploeger et al., 2012; Diallo et al.,15

2012), which is discussed below in more detail. After 2002 the trend is 0.5±1.5 %
per decade (ω), yielding a statistically significant trend-change of 4.4 % per decade
(ω2). We obtain similar values (−3.6±0.5, 0.4±1.4 % per decade for ω1, ω) if we use
the SHADOZ data instead of SCIAMACHY in the combined dataset. Consequently,
both observational and model data show that the decrease of LS O3 has effectively20

stopped since about 2002. This is in qualitative agreement with those studies, which
focus solely on the most recent observational record of O3, although the differences
in utilised regression models and timeseries length make a direct comparison difficult.
Gebhardt et al. (2014) compared several satellite instruments and report consistently
positive trends of tropical O3 between 17–21 km, ranging from about 2 (OSIRIS), 425

(SCIAMACHY) up to 14 % per decade (MLS), covering the years 2004–2012. Eckert
et al. (2014) find a slightly positive trend of 0–1 % per decade in the same region in
MIPAS observations (2002–2012).
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Local chemical effects can be largely ruled out as explanation for the detected trend-
change of LS O3. As stated above, O3 abundance in the tropical LS is mainly de-
termined by vertical transport and O2 photolysis (Avallone and Prather, 1996; Waugh
et al., 2009; Meul et al., 2014). O3-destroying catalytic species are scarce in the tropical
LS, therefore the phase-out of ozone-depleting substances (ODS), and the associated5

recovery (e.g., World Meteorological Organization, 2011), has no direct impact on O3
concentrations in this region. However, some studies point out a possible indirect re-
lationship between ODS-related polar O3 depletion and tropical LS O3 by dynamical
coupling (Waugh et al., 2009; Oman et al., 2009). Meul et al. (2014) predict an in-
crease of photolytic O3 production as a result from long-term changes in the overhead10

O3 column. Furthermore, an increase in odd nitrogen (NOx) might lead to additional O3
production. However, neither process is sufficient to explain a short-term trend-change.
Overall the most probable explanation of the observed behaviour is that changes in dy-
namics must be involved.

3.2 Tropical upwelling15

Some studies point out that the increase of tropical upwelling may be compensated by
an, as yet, unexplained weakening or shifting of tropical mixing barriers (Stiller et al.,
2012; Eckert et al., 2014). However, it is also possible that the increase of tropical up-
welling itself has ceased. To investigate this hypothesis, we analyse tropical upwelling
in the EI reanalysis that drives our model. A typical representative quantity for the trop-20

ical upwelling is the upward mass flux at 70 hPa (≈ 18.5 km in the tropics; Butchart
et al., 2010; Seviour et al., 2012). A recent study assessing the upward mass flux in
EI found a negative trend of −5 % per decade for the years 1989–2009, based on EI
kinematic vertical winds (Seviour et al., 2012). This is in contradiction with the results
of current CCM, which predict an increase of upwelling of about 2.0 % per decade (en-25

semble mean; Butchart et al., 2010). The quality of stratospheric vertical transport in EI
improves considerably, when diabatic heating rates are used instead of the kinematic
wind. Although tending to overestimate the tropical ascent (Ploeger et al., 2012), the
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diabatic representation of vertical transport yields more realistic estimates of strato-
spheric age of air in comparison to the kinematic approach (Diallo et al., 2012) and is
also less dispersive (Ploeger et al., 2011).

Figure 4 shows the tropical LS EI all-sky heating rates (20◦ N–20◦ S, 17–21 km; panel
a), which are used to drive the vertical transport in our isentropic model, and the corre-5

sponding EI upward mass flux at 70 hPa (panel c). The upward mass flux is the integral
of the residual vertical velocity w∗ between turnaround latitudes as described in Seviour
et al. (2012). In turn, w∗ is calculated from the EI heating rates using the iterative algo-
rithm described by Solomon et al. (1986). Applying the regression analysis to the up-
ward mass flux yields a positive trend of 3.3±0.7 % per decade for the pre-2002 period10

(Fig. 4d). This value is consistent with the CCM results (2.0 % per decade) although
somewhat high-biased, reflecting the overestimation of vertical transport mentioned
above. After 2002, however, there is a statistically significant trend-change around 2002
leading to a negative trend of −2.3±2.5 % per decade mirroring the trend-change in the
LS O3 timeseries. We find significant anti-correlation between LS O3 anomalies with ei-15

ther heating rates (−0.83), or upward mass flux anomalies (−0.55). Taking into account
the known sensitivity of LS O3 to vertical transport, we conclude that the observed
trend-change in O3 is primarily a consequence of the simultaneous trend-change in
tropical upwelling.

4 Conclusions20

In summary, we find a negative trend of tropical LS O3 in observations and model be-
fore 2002, associated with a positive trend in tropical upwelling from the EI dataset
based upon diabatic heating calculation. This finding is consistent with earlier studies
(Butchart et al., 2010; Randel and Thompson, 2011). We also find an unexpected hia-
tus of the negative trend in LS O3 during the last decade. We explain this behaviour25

by the change of tropical upwelling evident in the EI dataset. This change may be
a consequence of the unexpected La-Niña-like cooling of the equatorial Eastern Pa-
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cific since the beginning of the 21st century (Meehl et al., 2011). The latter has a sig-
nificant impact on global surface temperatures (Kosaka and Xie, 2013) and ultimately,
by dynamical coupling, on tropical upwelling (Oman et al., 2009; Butchart et al., 2010;
Garny et al., 2011). Recent studies describe the associated circulation changes (Eng-
land et al., 2014) and their impact on tropospheric O3 (Lin et al., 2014). In contrast to5

current unconstrained CCM, which generally do not predict this exceptional heat up-
take by the equatorial Eastern Pacific (Kosaka and Xie, 2013; England et al., 2014), this
feature can be clearly observed in the data-assimilated EI dataset (Fig. 5). In conclu-
sion the accuracy of our predictions of future BDC development and its consequences
for stratospheric O3 critically depends on our understanding of the ocean-atmosphere10

interaction.
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Table 1. Geolocation, temporal coverage and average LS O3 column of utilised SHADOZ sites.

Name Location Coverage Average [DU]

Ascension Is. 14.4◦ W 8.0◦ S Jan 1998–Aug 2010 28.76
Costa Rica 84.0◦ W 9.9◦ N Jul 2005–Dec 2012 30.66
Hilo 155.0◦ W 19.4◦ N Jan 1998–Feb 2013 36.97
Watukosek-Java 112.6◦ E 7.5◦ S Jan 1998–Jun 2013 27.06
Kuala Lumpur 101.7◦ E 2.7◦ N Jan 1998–Dec 2011 30.26
Nairobi 36.8◦ E 1.3◦ S Jan 1998–Jun 2013 30.66
Natal 35.3◦ W 5.5◦ S Jan 1998–May 2011 29.74
Paramaribo 55.2◦ W 5.8◦ N Sep 1999–Dec 2011 31.53
Samoa 170.6◦ W 14.2◦ S Jan 1998–Dec 2012 30.91
San Cristobal 89.6◦ W 0.9◦ S Mar 1998–Oct 2008 29.26
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Fig. 1. The dependence of the linear fit parameters ω1, ω2 and ω (ω1 +ω2) on the inflexion
year T0 is shown for the regression of modelled tropical LS O3 column (a) and EI upward mass
flux at 70 hPa (b). Red circles denote the years where the trend-change (ω2) exceeds the 95 %
confidence threshold. The black lines are the normalised χ2 values of the fit residuals.
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Fig. 2. Observed and simulated tropical (20◦ N–20◦ S) LS O3 partial columns (17–21 km).
Anomalies are deviations from the modelled 1980–2013 averages.
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Fig. 3. Regression analysis of observed and simulated O3 partial columns. Model and com-
bined SAGE II/SCIAMACHY LS O3 with regression function (a, c). Corresponding fit residuals
excluding the linear terms (b, d). The dashed red lines depict the resulting linear trends before
and after 2002.
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Fig. 4. Regression analysis of EI LS heating rate (17–21 km; a, b) and upwelling mass flux
(70 hPa; c, d). Setup identical to Fig. 3 otherwise.
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Fig. 5. Linear trends of EI surface temperature from 2002–2013. Stippling indicates where the
trend exceeds the 95 % confidence threshold. Setup adapted from Kosaka and Xie (2013).
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