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The advanced inspection system is an autonomous control and analysis system that 
improves the inspection and remediation operations for ground and surface systems.  It uses 
optical imaging technology with intelligent computer vision algorithms to analyze physical 
features of the real-world environment to make decisions and learn from experience. The 
advanced inspection system plans to control a robotic manipulator arm, an unmanned 
ground vehicle and cameras remotely, automatically and autonomously.  There are many 
computer vision, image processing and machine learning techniques available as open source 
for using vision as a sensory feedback in decision-making and autonomous robotic 
movement.  My responsibilities for the advanced inspection system are to create a software 
architecture that integrates and provides a framework for all the different subsystem 
components; identify open-source algorithms and techniques; and integrate robot hardware. 

Nomenclature 
AIS = advanced inspection system 
HMI = human machine interface 
UGV = unmanned ground vehicle 
VMSS = video management server system 
IHM = integrated health management 
ROS = robot operating system 
OS = operating system 
API = application programing interface 
RPC = remote procedure call 
VMS = video management software 
SDK = software development kit 
GUI = graphical user interface 
AIROS = advanced inspection and repair operating system 
SDF = simulation description format 
USRA = Universities Space Research Association 
KSC = Kennedy Space Center 

I. Introduction
he Advanced Inspection System (AIS) is a project that will investigate and develop hardware and software to 
automate the inspection and repair tasks for ground systems such as cryogenic fueling systems.  AIS will 

accomplish this by automating data collection, image processing, archiving, decision-making, and the execution of 
inspection and repair activities.  AIS will develop intelligent computer vision algorithms to analyze physical features 
of the real-world environment to produce decision-making information for autonomous planning and control of an 
unmanned ground vehicle and a robotic manipulator arm.  Computer vision, machine vision, image processing, 
artificial intelligence, machine learning and robotics are some of the many different fields in computer science that 
AIS will investigate to accomplish autonomous control.  Writing and applying computer vision algorithms for 
performing autonomous robotic control is a challenging effort but before an algorithm can be written a framework 
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for communication and interconnectivity is needed. Defining a software architecture that is flexible, reliable and 
extensible supporting an autonomous control system will require integrating aspects from these fields of computer 
science to support real-time processing of sensor data for making enhanced decisions and autonomously controlling 
the entire system. 

My project is to develop a robust, innovative, efficient and flexible software architecture that is extensible and 
capable of achieving the goal of autonomous operations.  AIS will use many different software technologies over 
varying hardware platforms including sensors, cameras and robots.  The major components of the AIS are a high-
speed wired and wireless data network, a distributed and autonomic computing system, visible and spectral band 
cameras, contact and non-contact sensors, unmanned vehicles, robotic manipulators, highly-interactive human-
machine-interfaces (HMIs), vision and artificial intelligence algorithms, and reliable high-capacity data storage.  It is 
my goal in designing the software architecture to create a common interface for integrating all the different 
components to facilitate autonomous field inspections, repairs, decision-making, automated data collection, and 
image processing and analysis. 

The software architecture will be the framework for the development of the computer vision and system 
intelligence algorithms.  The AIS autonomous control and decision software will need to be tested before it is 
deployed on physical hardware.  Using simulation software to model the hardware and environment will allow for 
refinement of the autonomous software systems before deployment on actual hardware.  The unmanned ground 
vehicle (UGV) is currently modeled in the physics simulator, but the robotic manipulator that is attached to the UGV 
is not. I will begin the project of adding the robotic manipulator arm into the model for use in the physics simulation.   

II. Software Architecture 

Figure 1. AIS System Architecture. 

The software architecture for an autonomous robotic system requires asynchronous fault tolerant 
communications, distributed parallel processing and extensibility.  To accomplish these goals, AIS is divided into 
three subsystems the UGV, the Video Management Server System (VMSS) and the AIS Server.  The UGV 
subsystem is our autonomous robot equipped with multiple sensors, a robotic manipulator arm and a camera. The 
VMSS performs all video capture and distribution. The AIS Server provides system intelligence and interfaces to the 
rest of the Integrated Health Management (IHM) services.  

The three subsystems are interdependent on each other for sensor and decision data and control messaging.  A 
challenge to the software architecture is that each subsystem has a different software environment.  AIS will develop 
a common communications framework that each subsystem will use to address this challenge.  Having a common 
communications framework will create a layer of abstractions between the different subsystem software 
environments and provide flexibility for future expansion. 
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Figure 2. AIS Software Architecture. 

A. Unmanned Ground Vehicle (UGV) 
The UGV uses robot operating system (ROS), which is a layer on top of Ubuntu Linux.  ROS provides tools, 

libraries, and services for robot interaction, control, autonomous navigation, and sensor monitoring.  ROS itself is 
not a full operating system, but it is commonly referred to as a meta-operating system. Robotics requires high-level 
features such as concurrency, inter-communication and extensibility. These tasks are difficult to implement using 
only an operating systems (OS) raw application programing interface (API) but ROS extends the traditional OS and 
provides hierarchical abstraction and management of running programs; communication between programs; and a 
collection of powerful programs and code libraries as extension.   

ROS provides a communications platform that follows a publish/subscribe paradigm. The basic units of ROS are 
nodes, topics and services.  Nodes publish to topics and nodes subscribe to topics.  Nodes provide services and 
access services of other nodes.  A topic is like a mailbox holding information to be retrieved by nodes and receiving 
new information from nodes.  A service provides an implementation of a function that can return a result to the 
calling node. Parameters can be passed to the service, have the service perform a function, and return a result to the 
calling node.  When nodes and topics one way communications are not appropriate, services provide remote 
procedure call (RPC) request/reply functionality. 

B. Video Management Server System (VMSS) 
The VMSS is a Linux server that runs a proprietary video management software (VMS) application to manage, 

distribute, and store imagery data. This software allows users to securely access the VMSS and the data stored on it 
from a client application.  The server includes a scripting language based on LUA script, that allows actions to be 
scripted and triggered based on events within the server.  

Although the VMS is closed source there is a Windows-based ActiveX Software Development Kit (SDK). The 
SDK enables software developers to interface and access certain features of the server-based VMS for custom 
application integration.  Since the VMS application is proprietary, the AIS project will use the SDK on the AIS 
Server to extend certain functions of the VMS and develop custom AIS computer vision algorithms.  

C. Advanced Inspection System (AIS) Server 
The AIS Server provides three components: a graphical user interface (GUI), the advanced inspection and repair 

operating system (AIROS) and the IHM interface for communication between AIS and external IHM services.  The 
GUI will be implemented as a web application and provide the maintenance and administration portal for all AIS 
subsystems.  AIROS is a custom operating system that will handle communication between all AIS subsystems, 
communication to the IHM interface and provide system intelligence. The IHM Interface is the component that will 
serve as a communications proxy between AIS and IHM converting messages between formats. 

The AIS Server GUI is written in ASP.NET/C# and will communicate to AIROS over the AIROOS 
communications layer. The GUI will provide an administration interface for all the AIS subsystems.  There are 
many benefits to this design including portability between platforms; flexibility in GUI design and application 



NASA KSC – Internship Final Report 

Kennedy Space Center 5 April 9, 2014 

implementation; and reusability of image processing and computer vision functions.  The GUI is also used to 
administer the AIROS Core services available to the IHM Interface. 

AIROS is composed of two application services the AIROS Core and the AIROS Interface.  The AIROS Core 
software is composed of four libraries that provide the system functionality and intelligent algorithms.  The AIROS 
Interfaces are composed of two libraries that provide a common interface for external components to communicate 
with AIROS.  

The IHM Interface component will allow messages to be received and published by the AIROS Core to/from 
other IHM services. The IHM interface will take IHM messages and create AIROS message packages. Having an 
abstraction between the IHM message structure and the AIROS message structure is advantageous because when 
IHM messages change, AIROS will not be impacted. 

III. Integrating Robotics Hardware 
Creating a sustainable software architecture is one aspect of AIS, robotic hardware integration is another. To 

take advantage of the software architecture AIS will integrate all the custom robotics hardware into ROS.  
Integrating hardware requires many steps such as creating the proper model files, creating the proper ROS nodes and 
topics and creating software plugins to simulate hardware for verification and testing.   

A. Robot Model  
A robot model gives the physical description of the different 

pieces of a robot. Each segment and joint of a robot is described and 
properties such as mass, inertia, static and dynamic friction, 
collision bounds and visual characteristics are defined.  There are 
two different formats for a model file. The model file format used 
by the simulation software GAZEBO is the Simulation Description 
Format (SDF).   

A robot model file will consist of many link and joint elements.  
The link element represents a physical link with inertia, collision, 
and visual properties. The joint element represents the connection 
between two links with kinematic and dynamic properties. 

Figure 3. Robot generated from SDF model. 

  The SDF file is interpreted by GAZEBO and a robot is 
generated for use in the simulation.  

<sdf�version="1.3">�
��<model�name='rosbot'>�
����<link�name="torso">�
������<pose>0.1��0.1�0.4�0�0�0</pose>�
������<inertial>�
��������<mass>1.05</mass>�
��������<pose>�0.01�0�0.04�0�0�0</pose>�
��������<inertia></inertia>�
������</inertial>�
������<collision�name="collision">�
��������<geometry>�
����������<box>�
������������<size>.2�.1�.23</size>�
����������</box>�
��������</geometry>�
������</collision>�
������<visual�name="visual">�
��������<pose>0�0�0�0�0�3</pose>�
��������<material>�
����������<script>�
������������<name>Gazebo/CloudySky</name>�
����������</script>�
��������</material>�
��������<geometry>�
����������<box>�
������������<size>.2�.1�.23</size>�
����������</box>�
��������</geometry>�
������</visual>�
����</link>�
����<joint�type="revolute"�name="neck_pan">�
������<pose>0�0�0.1�0�0�0</pose>�
������<child>torso</child>�
������<parent>head_pan</parent>�
������<axis>�
��������<limit>�
����������<lower>�1.57</lower>�
����������<upper>1.57</upper>�
��������</limit>�
��������<xyz>0�0�1</xyz>�
������</axis>�
����</joint>�
����<plugin�name="ros_based_plugin"��
������������filename="libros_model_plugin.so"/>
��</model>�
</sdf>�

<sdf�version="1.3">�
��<model�name='rosbot'>�
����<link�name="torso">�
������<pose>0.1��0.1�0.4�0�0�0</pose>�
������<inertial>�
��������<mass>1.05</mass>�
��������<pose>�0.01�0�0.04�0�0�0</pose>�
��������<inertia></inertia>�
������</inertial>�
������<collision�name="collision">�
��������<geometry>�
����������<box>�
������������<size>.2�.1�.23</size>�
����������</box>�
��������</geometry>�
������</collision>�
������<visual�name="visual">�
��������<pose>0�0�0�0�0�3</pose>�
��������<material>�
����������<script>�
������������<name>Gazebo/CloudySky</name>�
����������</script>�
��������</material>�
��������<geometry>�
����������<box>�
������������<size>.2�.1�.23</size>�
����������</box>�
��������</geometry>�
������</visual>�
����</link>�
����<joint�type="revolute"�name="neck_pan">�
������<pose>0�0�0.1�0�0�0</pose>�
������<child>torso</child>�
������<parent>head_pan</parent>�
������<axis>�
��������<limit>�
����������<lower>�1.57</lower>�
����������<upper>1.57</upper>�
��������</limit>�
��������<xyz>0�0�1</xyz>�
������</axis>�
����</joint>�
����<plugin�name="ros_based_plugin"��
������������filename="libros_model_plugin.so"/>
��</model>�
</sdf>�

Code Block 1. Example SDF model file.�
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B. GAZEBO Plugin Integration 
The physics simulator 

GAZEBO is a useful tool that 
allows you to test and verify your 
ROS node and topic design in a 
simulation environment.  This tool 
will allow you to implement and 
test control features in a simulated 
physics environment before 
deploying on physical hardware. 
Creating a plugin allows your 
GAZEBO models to publish and 
subscribe to ROS topics.  I created 
a generic set of classes that the AIS 
development team can use and 
extend for simulating a three-axis 
motor.  

The motor encoder class holds 
information about the current 
location, position and angle, and 
the time parameter. The motor uses 
the encoder to simulate movement 
based on the desired speed or 
position coordinates that are 
applied. The motor controller class 
provides the high level interface to 
the GAZEBO plugin. The 
controller takes the different joints 
and then uses these to create the 
underlying motors that are used for 
rotation. The motor controller will 
accept a speed to apply in a specific 
rotation axis and then 
communicates this to the motors. 
The motors then communicate to 
the encoders and determine the 
amount of movement that will 
occur during the update. This 
information is given back to the 
controller that then moves the joint 
in the GAZEBO simulation.  

#include�<boost/bind.hpp>�
#include�<gazebo.hh>�
#include�<physics/physics.hh>�
#include�<common/common.hh>�
#include�<stdio.h>�
#include�"ros/ros.h"�
#include�"sensor_msgs/Joy.h"�
�
namespace�gazebo�
{��
��class�MotorEncoder�
��{�
����public:�
������float�Pose,�Angle;�
������long�Clock;�
�
����public:�MotorEncoder();�
��};�
�
��class�Motor�
��{�
����private:��
������MotorEncoder�Encoder;�
�
����public:�
������float�Pose,�Angle,�Speed,�MaxAngle,�MaxSpeed,�MinAngle,�MinSpeed;�
�
����public:�Motor();�
����public:�bool�UpdateEncoder(float�_pose,�float�_angle,�long�_clock);�
����public:�bool�OnUpdate();�
��};�
�
��class�YawPitchRollMotorController�
��{�
����public:�
������double�Torque,�YawSpeed,�PitchSpeed,�RollSpeed;�
�
����private:��
������physics::JointPtr�yawJoint,�pitchJoint,�rollJoint;�
������Motor�YawMotor,�PitchMotor,�RollMotor;�
�
����public:�YawPitchRollMotorController();�
�
����public:�bool�Load(physics::JointPtr�_yawJoint,�physics::JointPtr�_pitchJoint,�
����������������������physics::JointPtr�_rollJoint)�
����public:�bool�Init();�
����public:�bool�OnUpdate();�
����public:�bool�Move(double�yawFactor,�double�pitchFactor,�double�rollFactor);�
��};�
�
��class�ROSModelPlugin�:�public�ModelPlugin�
��{�
����public:�ROSModelPlugin()�{�ros::init(0,�NULL,�name);�}�
����public:�~ROSModelPlugin()�{�delete�this�>node;�}�
����public:�void�Load(physics::ModelPtr�_model,�sdf::ElementPtr�_sdf)�
����{�
������motorController.Load(_model�>GetJoint("neck_pan"),��
��������������������������_model�>GetJoint("neck_tilt"),�NULL);�
����}�
�
����public:�void�Init�()�{�motorController.Init();�}�
����public:�void�OnUpdate()�{�ros::spinOnce();�}�
����void�ROSCallback(const�sensor_msgs::Joy::ConstPtr&�joy)�
����{�
������motorController.OnUpdate();�
������motorController.Move(p_scale*joy�>axes[angular_],��
���������������������������t_scale*joy�>axes[linear_],�0);�
����}�
����private:�YawPitchRollMotorController�motorController;�
����private:�ros::NodeHandle*�node;�
��};�
�
��GZ_REGISTER_MODEL_PLUGIN(ROSModelPlugin)�
}�

Code Block 2. Example GAZEBO Plugin.�
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IV. Conclusion
The work presented here is ongoing.  AIS will explore this current proposed architecture and begin 

implementation.   
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