
NASA KSC – Internship Final Report

Kennedy Space Center 1 April 9, 2014

Vision based autonomous robotic control for advanced
inspection and repair

Walter S. Wehner Jr.
KENNEDY SPACE CENTER
Major: M.S. Computer Science

KSC FO Spring Session
Date: 09 04 2014

https://ntrs.nasa.gov/search.jsp?R=20140010507 2019-08-31T20:13:04+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42727752?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

NASA KSC – Internship Final Report

Kennedy Space Center 2 April 9, 2014

Vision based autonomous robotic control for advanced
inspection and repair

Walter S. Wehner1

New Jersey Institute of Technology, Newark, NJ, 07103

The advanced inspection system is an autonomous control and analysis system that
improves the inspection and remediation operations for ground and surface systems. It uses
optical imaging technology with intelligent computer vision algorithms to analyze physical
features of the real-world environment to make decisions and learn from experience. The
advanced inspection system plans to control a robotic manipulator arm, an unmanned
ground vehicle and cameras remotely, automatically and autonomously. There are many
computer vision, image processing and machine learning techniques available as open source
for using vision as a sensory feedback in decision-making and autonomous robotic
movement. My responsibilities for the advanced inspection system are to create a software
architecture that integrates and provides a framework for all the different subsystem
components; identify open-source algorithms and techniques; and integrate robot hardware.

Nomenclature
AIS = advanced inspection system
HMI = human machine interface
UGV = unmanned ground vehicle
VMSS = video management server system
IHM = integrated health management
ROS = robot operating system
OS = operating system
API = application programing interface
RPC = remote procedure call
VMS = video management software
SDK = software development kit
GUI = graphical user interface
AIROS = advanced inspection and repair operating system
SDF = simulation description format
USRA = Universities Space Research Association
KSC = Kennedy Space Center

I. Introduction
he Advanced Inspection System (AIS) is a project that will investigate and develop hardware and software to
automate the inspection and repair tasks for ground systems such as cryogenic fueling systems. AIS will

accomplish this by automating data collection, image processing, archiving, decision-making, and the execution of
inspection and repair activities. AIS will develop intelligent computer vision algorithms to analyze physical features
of the real-world environment to produce decision-making information for autonomous planning and control of an
unmanned ground vehicle and a robotic manipulator arm. Computer vision, machine vision, image processing,
artificial intelligence, machine learning and robotics are some of the many different fields in computer science that
AIS will investigate to accomplish autonomous control. Writing and applying computer vision algorithms for
performing autonomous robotic control is a challenging effort but before an algorithm can be written a framework

1 KSC NASA Intern, NE, Kennedy Space Center, New Jersey Institute of Technology.

T

NASA KSC – Internship Final Report

Kennedy Space Center 3 April 9, 2014

for communication and interconnectivity is needed. Defining a software architecture that is flexible, reliable and
extensible supporting an autonomous control system will require integrating aspects from these fields of computer
science to support real-time processing of sensor data for making enhanced decisions and autonomously controlling
the entire system.

My project is to develop a robust, innovative, efficient and flexible software architecture that is extensible and
capable of achieving the goal of autonomous operations. AIS will use many different software technologies over
varying hardware platforms including sensors, cameras and robots. The major components of the AIS are a high-
speed wired and wireless data network, a distributed and autonomic computing system, visible and spectral band
cameras, contact and non-contact sensors, unmanned vehicles, robotic manipulators, highly-interactive human-
machine-interfaces (HMIs), vision and artificial intelligence algorithms, and reliable high-capacity data storage. It is
my goal in designing the software architecture to create a common interface for integrating all the different
components to facilitate autonomous field inspections, repairs, decision-making, automated data collection, and
image processing and analysis.

The software architecture will be the framework for the development of the computer vision and system
intelligence algorithms. The AIS autonomous control and decision software will need to be tested before it is
deployed on physical hardware. Using simulation software to model the hardware and environment will allow for
refinement of the autonomous software systems before deployment on actual hardware. The unmanned ground
vehicle (UGV) is currently modeled in the physics simulator, but the robotic manipulator that is attached to the UGV
is not. I will begin the project of adding the robotic manipulator arm into the model for use in the physics simulation.

II. Software Architecture

Figure 1. AIS System Architecture.

The software architecture for an autonomous robotic system requires asynchronous fault tolerant
communications, distributed parallel processing and extensibility. To accomplish these goals, AIS is divided into
three subsystems the UGV, the Video Management Server System (VMSS) and the AIS Server. The UGV
subsystem is our autonomous robot equipped with multiple sensors, a robotic manipulator arm and a camera. The
VMSS performs all video capture and distribution. The AIS Server provides system intelligence and interfaces to the
rest of the Integrated Health Management (IHM) services.

The three subsystems are interdependent on each other for sensor and decision data and control messaging. A
challenge to the software architecture is that each subsystem has a different software environment. AIS will develop
a common communications framework that each subsystem will use to address this challenge. Having a common
communications framework will create a layer of abstractions between the different subsystem software
environments and provide flexibility for future expansion.

NASA KSC – Internship Final Report

Kennedy Space Center 4 April 9, 2014

Figure 2. AIS Software Architecture.

A. Unmanned Ground Vehicle (UGV)
The UGV uses robot operating system (ROS), which is a layer on top of Ubuntu Linux. ROS provides tools,

libraries, and services for robot interaction, control, autonomous navigation, and sensor monitoring. ROS itself is
not a full operating system, but it is commonly referred to as a meta-operating system. Robotics requires high-level
features such as concurrency, inter-communication and extensibility. These tasks are difficult to implement using
only an operating systems (OS) raw application programing interface (API) but ROS extends the traditional OS and
provides hierarchical abstraction and management of running programs; communication between programs; and a
collection of powerful programs and code libraries as extension.

ROS provides a communications platform that follows a publish/subscribe paradigm. The basic units of ROS are
nodes, topics and services. Nodes publish to topics and nodes subscribe to topics. Nodes provide services and
access services of other nodes. A topic is like a mailbox holding information to be retrieved by nodes and receiving
new information from nodes. A service provides an implementation of a function that can return a result to the
calling node. Parameters can be passed to the service, have the service perform a function, and return a result to the
calling node. When nodes and topics one way communications are not appropriate, services provide remote
procedure call (RPC) request/reply functionality.

B. Video Management Server System (VMSS)
The VMSS is a Linux server that runs a proprietary video management software (VMS) application to manage,

distribute, and store imagery data. This software allows users to securely access the VMSS and the data stored on it
from a client application. The server includes a scripting language based on LUA script, that allows actions to be
scripted and triggered based on events within the server.

Although the VMS is closed source there is a Windows-based ActiveX Software Development Kit (SDK). The
SDK enables software developers to interface and access certain features of the server-based VMS for custom
application integration. Since the VMS application is proprietary, the AIS project will use the SDK on the AIS
Server to extend certain functions of the VMS and develop custom AIS computer vision algorithms.

C. Advanced Inspection System (AIS) Server
The AIS Server provides three components: a graphical user interface (GUI), the advanced inspection and repair

operating system (AIROS) and the IHM interface for communication between AIS and external IHM services. The
GUI will be implemented as a web application and provide the maintenance and administration portal for all AIS
subsystems. AIROS is a custom operating system that will handle communication between all AIS subsystems,
communication to the IHM interface and provide system intelligence. The IHM Interface is the component that will
serve as a communications proxy between AIS and IHM converting messages between formats.

The AIS Server GUI is written in ASP.NET/C# and will communicate to AIROS over the AIROOS
communications layer. The GUI will provide an administration interface for all the AIS subsystems. There are
many benefits to this design including portability between platforms; flexibility in GUI design and application

NASA KSC – Internship Final Report

Kennedy Space Center 5 April 9, 2014

implementation; and reusability of image processing and computer vision functions. The GUI is also used to
administer the AIROS Core services available to the IHM Interface.

AIROS is composed of two application services the AIROS Core and the AIROS Interface. The AIROS Core
software is composed of four libraries that provide the system functionality and intelligent algorithms. The AIROS
Interfaces are composed of two libraries that provide a common interface for external components to communicate
with AIROS.

The IHM Interface component will allow messages to be received and published by the AIROS Core to/from
other IHM services. The IHM interface will take IHM messages and create AIROS message packages. Having an
abstraction between the IHM message structure and the AIROS message structure is advantageous because when
IHM messages change, AIROS will not be impacted.

III. Integrating Robotics Hardware
Creating a sustainable software architecture is one aspect of AIS, robotic hardware integration is another. To

take advantage of the software architecture AIS will integrate all the custom robotics hardware into ROS.
Integrating hardware requires many steps such as creating the proper model files, creating the proper ROS nodes and
topics and creating software plugins to simulate hardware for verification and testing.

A. Robot Model
A robot model gives the physical description of the different

pieces of a robot. Each segment and joint of a robot is described and
properties such as mass, inertia, static and dynamic friction,
collision bounds and visual characteristics are defined. There are
two different formats for a model file. The model file format used
by the simulation software GAZEBO is the Simulation Description
Format (SDF).

A robot model file will consist of many link and joint elements.
The link element represents a physical link with inertia, collision,
and visual properties. The joint element represents the connection
between two links with kinematic and dynamic properties.

Figure 3. Robot generated from SDF model.

 The SDF file is interpreted by GAZEBO and a robot is
generated for use in the simulation.

<sdf�version="1.3">�
��<model�name='rosbot'>�
����<link�name="torso">�
������<pose>0.1��0.1�0.4�0�0�0</pose>�
������<inertial>�
��������<mass>1.05</mass>�
��������<pose>�0.01�0�0.04�0�0�0</pose>�
��������<inertia></inertia>�
������</inertial>�
������<collision�name="collision">�
��������<geometry>�
����������<box>�
������������<size>.2�.1�.23</size>�
����������</box>�
��������</geometry>�
������</collision>�
������<visual�name="visual">�
��������<pose>0�0�0�0�0�3</pose>�
��������<material>�
����������<script>�
������������<name>Gazebo/CloudySky</name>�
����������</script>�
��������</material>�
��������<geometry>�
����������<box>�
������������<size>.2�.1�.23</size>�
����������</box>�
��������</geometry>�
������</visual>�
����</link>�
����<joint�type="revolute"�name="neck_pan">�
������<pose>0�0�0.1�0�0�0</pose>�
������<child>torso</child>�
������<parent>head_pan</parent>�
������<axis>�
��������<limit>�
����������<lower>�1.57</lower>�
����������<upper>1.57</upper>�
��������</limit>�
��������<xyz>0�0�1</xyz>�
������</axis>�
����</joint>�
����<plugin�name="ros_based_plugin"��
������������filename="libros_model_plugin.so"/>
��</model>�
</sdf>�

<sdf�version="1.3">�
��<model�name='rosbot'>�
����<link�name="torso">�
������<pose>0.1��0.1�0.4�0�0�0</pose>�
������<inertial>�
��������<mass>1.05</mass>�
��������<pose>�0.01�0�0.04�0�0�0</pose>�
��������<inertia></inertia>�
������</inertial>�
������<collision�name="collision">�
��������<geometry>�
����������<box>�
������������<size>.2�.1�.23</size>�
����������</box>�
��������</geometry>�
������</collision>�
������<visual�name="visual">�
��������<pose>0�0�0�0�0�3</pose>�
��������<material>�
����������<script>�
������������<name>Gazebo/CloudySky</name>�
����������</script>�
��������</material>�
��������<geometry>�
����������<box>�
������������<size>.2�.1�.23</size>�
����������</box>�
��������</geometry>�
������</visual>�
����</link>�
����<joint�type="revolute"�name="neck_pan">�
������<pose>0�0�0.1�0�0�0</pose>�
������<child>torso</child>�
������<parent>head_pan</parent>�
������<axis>�
��������<limit>�
����������<lower>�1.57</lower>�
����������<upper>1.57</upper>�
��������</limit>�
��������<xyz>0�0�1</xyz>�
������</axis>�
����</joint>�
����<plugin�name="ros_based_plugin"��
������������filename="libros_model_plugin.so"/>
��</model>�
</sdf>�

Code Block 1. Example SDF model file.�

NASA KSC – Internship Final Report

Kennedy Space Center 6 April 9, 2014

B. GAZEBO Plugin Integration
The physics simulator

GAZEBO is a useful tool that
allows you to test and verify your
ROS node and topic design in a
simulation environment. This tool
will allow you to implement and
test control features in a simulated
physics environment before
deploying on physical hardware.
Creating a plugin allows your
GAZEBO models to publish and
subscribe to ROS topics. I created
a generic set of classes that the AIS
development team can use and
extend for simulating a three-axis
motor.

The motor encoder class holds
information about the current
location, position and angle, and
the time parameter. The motor uses
the encoder to simulate movement
based on the desired speed or
position coordinates that are
applied. The motor controller class
provides the high level interface to
the GAZEBO plugin. The
controller takes the different joints
and then uses these to create the
underlying motors that are used for
rotation. The motor controller will
accept a speed to apply in a specific
rotation axis and then
communicates this to the motors.
The motors then communicate to
the encoders and determine the
amount of movement that will
occur during the update. This
information is given back to the
controller that then moves the joint
in the GAZEBO simulation.

#include�<boost/bind.hpp>�
#include�<gazebo.hh>�
#include�<physics/physics.hh>�
#include�<common/common.hh>�
#include�<stdio.h>�
#include�"ros/ros.h"�
#include�"sensor_msgs/Joy.h"�
�
namespace�gazebo�
{��
��class�MotorEncoder�
��{�
����public:�
������float�Pose,�Angle;�
������long�Clock;�
�
����public:�MotorEncoder();�
��};�
�
��class�Motor�
��{�
����private:��
������MotorEncoder�Encoder;�
�
����public:�
������float�Pose,�Angle,�Speed,�MaxAngle,�MaxSpeed,�MinAngle,�MinSpeed;�
�
����public:�Motor();�
����public:�bool�UpdateEncoder(float�_pose,�float�_angle,�long�_clock);�
����public:�bool�OnUpdate();�
��};�
�
��class�YawPitchRollMotorController�
��{�
����public:�
������double�Torque,�YawSpeed,�PitchSpeed,�RollSpeed;�
�
����private:��
������physics::JointPtr�yawJoint,�pitchJoint,�rollJoint;�
������Motor�YawMotor,�PitchMotor,�RollMotor;�
�
����public:�YawPitchRollMotorController();�
�
����public:�bool�Load(physics::JointPtr�_yawJoint,�physics::JointPtr�_pitchJoint,�
����������������������physics::JointPtr�_rollJoint)�
����public:�bool�Init();�
����public:�bool�OnUpdate();�
����public:�bool�Move(double�yawFactor,�double�pitchFactor,�double�rollFactor);�
��};�
�
��class�ROSModelPlugin�:�public�ModelPlugin�
��{�
����public:�ROSModelPlugin()�{�ros::init(0,�NULL,�name);�}�
����public:�~ROSModelPlugin()�{�delete�this�>node;�}�
����public:�void�Load(physics::ModelPtr�_model,�sdf::ElementPtr�_sdf)�
����{�
������motorController.Load(_model�>GetJoint("neck_pan"),��
��������������������������_model�>GetJoint("neck_tilt"),�NULL);�
����}�
�
����public:�void�Init�()�{�motorController.Init();�}�
����public:�void�OnUpdate()�{�ros::spinOnce();�}�
����void�ROSCallback(const�sensor_msgs::Joy::ConstPtr&�joy)�
����{�
������motorController.OnUpdate();�
������motorController.Move(p_scale*joy�>axes[angular_],��
���������������������������t_scale*joy�>axes[linear_],�0);�
����}�
����private:�YawPitchRollMotorController�motorController;�
����private:�ros::NodeHandle*�node;�
��};�
�
��GZ_REGISTER_MODEL_PLUGIN(ROSModelPlugin)�
}�

Code Block 2. Example GAZEBO Plugin.�

NASA KSC – Internship Final Report

Kennedy Space Center 7 April 9, 2014

IV. Conclusion
The work presented here is ongoing. AIS will explore this current proposed architecture and begin

implementation.

Acknowledgments
I would like to thank Barbara Brown, Jose Perotti and Mark Lewis for selecting me for this great opportunity. I

would like to thank the Ground Systems Development and Operations (GSDO) Program, Advanced Ground
Systems Maintenance (AGSM) Element Integration Team for providing the funding for my opportunity and the NE-
E9 branch for providing me office space. I would like to thank the Universities Space Research Association
(USRA), Rose Austin, Benita Desuza, Grace Johnson, Rob Cannon and everyone in the Kennedy Space Center
(KSC) Education office for all the hard work done in organizing and facilitating the internship experience. Finally, I
would like to give an extra thank you to Felix Soto Toro for being a great mentor.

References
1 Lewis, M. and Wehner, W., “Advanced Inspection System (AIS) Hardware & Software Features – Intelligent Algorithms

for Computer Vision & Image Processing Applications”, KDDMS ACLO Share, Kennedy Space Center, Florida, 2014
(unpublished).

2 Lewis, M., Wehner, W. and Wlodarczyk, S., “Advanced Inspection System (AIS) Software Developers Guide For Robot
Operating System (ROS)”, ACLO Intelligent Devices AIS SharePoint Site, Kennedy Space Center, Florida, 2014 (unpublished).

