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Abstract—This paper discusses an algorithm for estimating
the safe maneuvering envelope of damaged aircraft. The al-
gorithm performs a robust reachability analysis through an
optimal control formulation while making use of time scale
separation and taking into account uncertainties in the aerody-
namic derivatives. Starting with an optimal control formulation,
the optimization problem can be rewritten as a Hamilton-
Jacobi-Bellman equation. This equation can be solved by level
set methods. This approach has been applied on an aircraft
example involving structural airframe damage. Monte Carlo
validation tests have confirmed that this approach is successful
in estimating the safe maneuvering envelope for damaged
aircraft.

I. INTRODUCTION

All transportation systems need to focus on safety, but
this applies especially to civil aviation. Therefore, in civil
aviation, many developments focus on improving safety
levels and reducing the risks that critical failures occur. In a
recent study by CAST/ICAO, it can be observed that “loss
of control in flight” (LOC-I) is the most frequent primary
accident cause. This study is based on a statistical analysis
of aircraft accidents between 2002 and 2011, and indicates
that this category accounts for as much as 23% of all fatal
aircraft accidents and involves most fatalities[1]. Benefit can
be gained by developing technology which prevents these
LOC-I accidents. From a flight dynamics point of view,
with the technology and computing power available on this
moment, it might have been possible to recover some of
the aircraft in the accident category described above on
the condition that non-conventional control strategies would
have been applied. These non-conventional control strategies
involve the so-called concept of fault tolerant flight control
(FTFC), where the control system is capable of detecting and
adapting to changes in the aircraft behaviour.
One FTFC strategy option is using a model based control

routine. Previous research focused on a physical model
approach[2]. In this setup, experiments have shown that not
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only a reconfiguring controller is needed, but also some form
of flight envelope protection, which prevents the airplane
from leaving the safe flight envelope and losing control in
flight[2]. The main challenge in this context is determining
the new bounds of the safe flight envelope after failure, which
are then used by the envelope protection algorithm[3].
Alternative and complementary research approaches for

the purpose of loss of control prevention and prediction
are among others passive adaptive control[4], data-based
predictive control[5] and real-time optimal envelope limit
estimation[6].
Determination of the flight envelope has been done in

the literature through various methods. The most straight-
forward methods include wind tunnel testing, flight test
experiments and high-fidelity model-based computation of
attainable equilibrium sets or achievable trim points[7], [8],
[9]. More complex methods include formulating flight enve-
lope estimation as a reachability problem and solving this
with level set methods and Hamilton-Jacobi equations [10],
[11], [13], [14], [15], possibly with time scale separation [16]
or semi-Lagrangian level sets [18]. Alternative methods rely
on linearization and region of attraction analysis [19], deter-
mining controllability/maneuverability limits in a quaternion-
based control architecture[20] or robustness analysis for
determination of reliable flight regimes [21]. An approach
suggested by Boeing, as part of the NASA program Dy-
namic Flight Envelope Assessment and Prediction (DFEAP),
uses Control-Centric Modeling, dynamic flexible structure
and load models [22]. In the frequency domain, stability
margins can be estimated in real time via nonparametric
system identification [23]. More focused techniques inspired
by flight dynamics exist as well, such as determining the
minimum lateral control speed[24].
From the perspective of the physical approach, the pre-

ferred interpretation of the safe maneuvering envelope con-
siders reachability from the trim envelope. The stable and
controllable trim envelope is considered an a-priori safe set.
The backwards reachable set is defined as the set of states
from where the trim envelope can be reached. The forwards
reachable set is the set of states which can be reached from
the trim envelope. Then the safe maneuvering flight envelope
is the cross section of the forwards and backwards reachable
sets. This interpretation is illustrated in Fig. 1. In addition,
the backwards reachable set is the survivable flight envelope.
After an upset due to damage, turbulence, a wake encounter
etc., one can bring the aircraft back to a safe trim condition
if the current flight condition is situated inside the backwards
reachable set.
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Fig. 1. Safe maneuvering envelope as intersection between forwards and
backwards reachability, modified from source: van Oort[18]

The aim is to perform a combined forward and backward
reachability analysis from the trim envelope as efficiently
as possible, for on-line implementations. Based on previous
research[6], level set methods are an excellent candidate.
Two of the major challenges are the computational load and
how to cope with nonlinear systems with higher dimensions.
In general, an increase in technology readiness level (TRL)
is envisaged.
Nonlinear systems with higher dimensions can be simpli-

fied by considering the principle of time scale separation[16].
The structure of time scale separation is analogous as applied
for the fault tolerant control algorithm developed earlier[2].
The overview can be found in Fig. 2, which illustrates that
a nine dimensional nonlinear problem is decoupled in three
consecutive three dimensional optimization problems.

Fig. 2. Separation of dynamics over high bandwidth, middle range and
low bandwidth. FAX and FAZ are defined in Eq. (9) and (10).

II. OPTIMAL CONTROL FORMULATION
It has been shown in the literature that maneuvering

envelope estimation through reachability can be reformulated
in the optimal control framework[10]. Consider a continuous
time control system:

ẋ= f(x,u,Δ) (1)

with x∈R
n, u∈U ⊆R

m, Δ∈D⊆R
k, f(·, ·) :Rn×U→R

n,
a function:

l (·) : Rn → R (2)

and an arbitrary time horizon T ≥ 0. Let U [t,t ′] denote the
set of Lebesgue and bounded measurable functions from the

interval [t, t ′] to the set of admissible input values U . Define
φ (τ , t,x,u(·) ,Δ) as the state trajectory. Δ are defined as
parameter uncertainties inside the predefined set of expected
uncertainty values D. Given a set of states K ⊆ R

n, the
reachability question can be naturally formulated regarding
the relation between the set K and the state trajectories φ
of Eq. (1) over the horizon T . Problem of interest is the
following:

Robust reachability: Does there exist a u∈U [0,T ] and a
t ∈ [0,T ] such that the trajectory φ of the state x satisfies
x ∈ K, irrespective of Δ?

The optimization problem can be formulated as a pursuit
evasion game over the horizon T ≥ 0 with target set K ⊆R

n

[17]. It is assumed that u is trying to bring or keep the
state in the set K, whereas Δ is trying to drive it out of
K. To ensure the game is well-posed, u is restricted to
play non-anticipative strategies with respect to the unknown
uncertainties Δ.
For the types of safety problems considered here, a set of

initial states has to be established such that u can win the
game, in other words the set R can be characterized:

RΔ (t,K) =
{
x ∈ R

n|∀Δ ∈ D,∃u ∈ U[t,T ] ,

∃τ ∈ [t,T ] ,φ (τ , t,x,u(·) ,Δ) ∈ K}

As done elsewhere in the literature[10], the characteriza-
tion of this set can be done according to the principle of
duality:

R (t,K) = (I (t,Kc))c (3)

where •c stands for the complement of •. Through this
principle, it can be characterized as an INFMIN problem[10].
The crux is to include the Δ’s as disturbances in the optimiza-
tion function, they oppose the optimization over u. Consider
a closed set K, that can be written as the level set of a
continuous function l :Rn→R, i.e. K = {x ∈ Rn| l (x)� 0}.
As a consequence, the Invariance optimization formulation
becomes[16]:

I (t,K) = {x ∈ R
n|V1 (x, t)� 0} (4)

with:

V1 (x, t) = inf
u(·)∈U[t,T ]

sup
Δ∈D

min
τ∈[t,T ]

l (φ (τ , t,x,u(·) ,Δ)) (5)

This can be reformulated into an Hamilton-Jacobi-Bellmann
Partial Differential Equation (HJB PDE)[10], [17]:

∂V1
∂ t

(x, t)+ min
τ∈[t,T ]

{
inf

u(·)∈U[t,T ]
sup
Δ∈D

∂V1
∂x

(x, t) f(x,u,Δ)

}
= 0

(6)
where V1 (x,T ) = l (x) holds for backward integration and
V1 (x, t) = l (x) applies to forward integration. These HJB
PDE’s can be solved by level sets, for which a toolbox is
available in Matlab R©[11].



III. APPROACH
The approach to calculate the safe maneuvering envelope

after damage is based on the following steps:
• Identify the updated aircraft parameters after damage
(not discussed here, see [12]). This concerns primarily
estimating new post-damage values for the aerodynamic
derivatives such as CL0 , CLα , CD0 , CDα , CDα2

and CYβ
together with their uncertainty bounds.

• Calculate the post-damage trim envelope based on the
updated aircraft parameters (not discussed here, see
[12]).

• Based on the previous step, define reference trim bound-
aries for airspeed V , flight path angle γ and bank angle
ϕ as well as grid step size ΔV , Δγ and Δϕ .

• Define an implicit function accordingly over V and γ .
This needs to be done for every value of ϕ in case
speed and flight path angle are bank angle dependent,
i.e. V =V (ϕ) and γ = γ(ϕ).

• The Level sets method toolbox[11] relies on the Hamil-
tonian in Eq. (6) as a gradient to evolve the implicit
function and thus reference boundaries over time

• The cost function V1 becomes a three dimensional
functions, where cross sections reflect the situation for
a specific time instant ta.

• A dissipation function is needed to guarantee numerical
stability during these calculations. As a consequence,
slightly conservative results are obtained for the bound-
aries, but analysis has shown that this dissipation has
a minor effect on the results. In this specific context,
the chosen dissipation function is a Lax Friedrichs
dissipation function[11].

IV. APPLICATION EXAMPLE
To illustrate how the envelope estimating algorithm works,

a nonlinear 3D aircraft example is considered. At this point,
only the slow dynamics as specified in Fig. 2 are considered.
Future work will extend to the faster dynamics. The data used
in this example are based on the RCAM (Research Civil
Aircraft Model) simulation model[25]. The acting forces on
the aircraft are illustrated in Fig. 3 for a symmetric flight
condition.

Fig. 3. Acting forces on the aircraft model, source: Lygeros[10]

For the complete 3D situation, the equations of motion for
V̇ and γ̇ are written as follows[2]:

FAX −W sinγ = mV̇ (7)
FAZ cosϕ +FAY sinϕ +W cosγ = −mV γ̇ (8)

Where the aerodynamic force components can be simplified
assuming small aerodynamic angles α and β 1:

FAX = Tcosβ cosα −D(V,α)≈ T −D(V,α) (9)
FAZ = −T sinα −L(V,α)≈−L(V,α) (10)
FAY = −T sinβ cosα +Yaero (V,β )≈ Yaero (V,β ) (11)

with the following expansions for lift L, drag D and
sideforce Yaero:

D(V,α) = q̄S
(
CD0 +CDα α +CDα2

α2
)

(12)

L(V,α) = q̄S
(
CL0 +CLα α

)
(13)

Yaero (V,β ) = q̄S
(
CYβ β

)
(14)

where the dynamic pressure q̄ = 1/2ρV 2. Currently, these
conventional expansions are used in this approach. However,
for future work, more elaborate expansions can be relied on,
e.g. where drag D also depends on the absolute value of the
sideslip angle |β |.
The corresponding numerical values are: m= 120 ·103kg,

g = 9.81m/s2, W = mg, ρ = 1.225kg/m3 (sea level), S =
260m2, CL0 = 1.0656, CLα = 6.0723, CD0 = 0.1599, CDα =
0.5035, CDα2

= 2.1175, CYβ =−1.6.
In the perspective of reachability from stable and con-

trollable trim conditions, the primary states of interest are
airspeed V and flight path angle γ . Considering time scale
separation as presented in Fig. 2, the virtual inputs for the
slow dynamics are roll angle ϕ , angle of attack α , sideslip
angle β and thrust T . This framework and combining Eqs.
(7)–(14) allows to define the general dynamics f in Eq. (1)
by the following differential equation:

[
V̇
γ̇

]
=

[
− ρS
2mV

2CD0 −gsinγ
− g
V cosγ

]
+

+

[
cosα cosβ

(cosϕ sinα cosβ − sinϕ sinβ ) 1V

]
T
m
+

+

[
− ρS
2mV

2
(
CDα α +CDα2

α2
)

ρS
2mV (CL0 +CLα α)cosϕ

]
+

[
0

− ρS
2mVCYβ β sinϕ

]
(15)

Assuming small aerodynamic angles, as earlier, simplifies
the differential equation:

[
V̇
γ̇

]
=

[
− ρS
2mV

2CD0 −gsinγ
− g
V cosγ

]
+

[ 1
m
0

]
T +

+

[
− ρS
2mV

2
(
CDα α +CDα2

α2
)

ρS
2mV (CL0 +CLα α)cosϕ

]
+

[
0

− ρS
2mVCYβ β sinϕ

]
(16)

1Note that the allowed ranges in this specific example are set at α ∈
[0◦;14.5◦],β ∈ [−5◦;5◦], as defined later. The small angle assumption holds
up to ±30◦.



This results in a Hamiltonian function with decoupled
virtual inputs T , α and β . Roll angle ϕ is not decoupled, but
will be treated as a discretely gridded input. This decoupling
significantly promotes computational efficiency, which is
crucial for on-line applications. The Hamiltonian function
becomes:

H (p,x,u) =
p1
m
T − p1

ρS
2m
V 2CDα2

α2+

+
ρS
2m
V (p2CLα cosϕ − p1VCDα )α +

− p2
ρS
2m
VCYβ sinϕβ (17)

where p are the co-states of the value function: p1 = ∂V1
∂V and

p2 = ∂V1
∂γ . This Hamiltonian is linear in thrust T and sideslip

angle β and quadratic in angle of attack α . This structure al-
lows for an efficient optimization routine over the inputs. The
trim envelope boundaries are: Vmin = 60m/s, Vmax = 100m/s
and γmin/max=±10◦. The allowed ranges of the virtual inputs
are: Tmin = 20546N, Tmax = 410920N, αmin = 0◦, αmax =
14.5◦ (no stall), φmin/max = ±60◦, βmin/max = ±5◦. The
maximizers T̂ , α̂ and β̂ depend on the sign of the costates p1
and p2. Recall that V > 0,CDα > 0,CDα2

> 0,CLα > 0,CYβ <
0. Due to the underlying physics, no sign changes for these
parameters are to be expected in case of structural changes.
Define p̂ = p2CLα cosϕ−p1VCDα

2p1VCDα2
and ᾱ = αmin+αmax

2 . Then the
optimizing control inputs can be defined for invariance:

• If p1 > 0 then T̂ = Tmin and
if p̂> ᾱ then α̂ = αmin
if p̂= ᾱ then α̂ = αmin or αmax
if p̂< ᾱ then α̂ = αmax

• If p1 = 0 then T̂ ∈ [Tmin;Tmax] and
if p2 > 0 then α̂ = αmin
if p2 = 0 then α̂ ∈ [αmin;αmax]
if p2 < 0 then α̂ = αmax

• If p1 < 0 then T̂ = Tmax and
if p̂≤ αmin then α̂ = αmin
if αmin ≤ p̂≤ αmax then α̂ = p̂
if p̂≥ αmax then α̂ = αmax

• if p2 sinϕ > 0 then β̂ = βmin
• if p2 sinϕ = 0 then β̂ ∈ [βmin;βmax]
• if p2 sinϕ < 0 then β̂ = βmax
For the purpose of maximizing the cost function with

respect to the uncertainties Δ, the Hamiltonian from Eq. (17)
can be rewritten, this time including parts independent of the
inputs T , α or β but with some aerodynamic derivative(s):

H (p,x,u) = −p1
ρS
2m
V 2CD0 + p2

ρS
2m
VCL0 cosϕ +

− p1
ρS
2m
V 2

(
CDα α +CDα2

α2
)
+ (18)

+ p2V
ρS
2m
CLα cosϕα − p2

ρS
2m
VCYβ sinϕβ

It can be observed that the aerodynamic derivatives all appear
linearly in an uncoupled way, which allows a similar proce-
dure to solve the optimization as previously. By rewriting the

Hamiltonian as a summation of terms, where each term is
a multiplication of a variable involving a costate, a constant
factor and a derivative, one can determine the sign of this
factor, which consists of the predefined physical parameters:

H (p,x,u) = −p1
ρS
2m
V 2︸ ︷︷ ︸

>0

CD0 + p2
ρS
2m
V cosϕ︸ ︷︷ ︸
>0

CL0 +

− p1
ρS
2m
V 2α2︸ ︷︷ ︸
>0

CDα2
+ p2

ρS
2m
Vα cosϕ︸ ︷︷ ︸
>0

CLα +

− p1
ρS
2m
V 2α︸ ︷︷ ︸
>0

CDα − p2 sinϕβ
ρS
2m
V︸ ︷︷ ︸

>0

CYβ (19)

where it should be noted that ϕ ∈ [−60◦;60◦] ,α ∈
[0◦;14.5◦],β ∈ [−5◦;5◦]. Furthermore airspeed V > 0 and for
the aerodynamic derivatives, it is known thatCDα > 0,CDα2

>
0,CLα > 0,CYβ < 0. Due to the underlying physics, no sign
changes for these parameters are to be expected in case of
uncertainty or structural changes.
Based on this formulation, optimal control inputs for the

aerodynamic derivatives can be defined as given in Table I
where C• =C•max and C• =C•min .
With this information, it is possible to create an entire

“uncertainty band” around the envelope, however, here focus
will be placed on the “worst-case” minimal size envelope.
Fig. 4 compares the 3D envelopes with and without

uncertainty, where two levels of uncertainty have been con-
sidered here, namely 10% and 20% of uncertainty on all
aerodynamic derivatives. For the purpose of this example,
identical ratios of standard deviations over nominal values
have been defined for all derivatives, but the algorithm is
capable to deal with individual standard deviations which can
vary between the different aerodynamic derivatives. It can be
clearly seen in Fig. 4 that larger degrees of uncertainty result
in more significant shrinking of the envelope, since this is a
“worst-case” minimal size envelope.
Fig. 5 analyzes the V,γ maneuvering envelope for different

values of bank angle ϕ , including robustness for uncertainties
of 10% and 20%. By comparing Fig. 5(a), 5(b) and 5(c),
it can be seen that larger bank angles have an influence
on the climb capability of the aircraft. This is due to
the physical principle that climb capability of lift force is
provided through Lcosϕ , which confirms a smaller decrease
for smaller bank angles (up to ϕ = 25◦ as shown in Fig. 5(b))
but a much more significant change for larger bank angles
as can be seen in Fig. 5(c).

V. VALIDATION OF RESULTS
The aforementioned results have been validated by means

of Monte Carlo analyses. For this purpose, different bang-
bang input signals have been inserted in the system. The
extreme values of these signals correspond with the range
limits. The time instant for the step change and the initial
value for the input (maximum or minimum) vary over the
Monte Carlo analysis. Running a nonlinear simulation of the



TABLE I
OPTIMAL CONTROL INPUTS FOR ROBUSTNESS AGAINST UNCERTAIN AERODYNAMIC DERIVATIVES

sign of costate minimizer maximizer
p1 ≥ 0 ĈD0 =CD0 ,ĈDα =CDα ,ĈDα2

=CDα2
ĈD0 =CD0 ,ĈDα =CDα ,ĈDα2

=CDα2

p1 < 0 ĈD0 =CD0 ,ĈDα =CDα ,ĈDα2
=CDα2

ĈD0 =CD0 ,ĈDα =CDα ,ĈDα2
=CDα2

p2 ≥ 0 ĈL0 =CL0 ,ĈLα =CLα ĈL0 =CL0 ,ĈLα =CLα

p2 < 0 ĈL0 =CL0 ,ĈLα =CLα ĈL0 =CL0 ,ĈLα =CLα
p2 sinϕ ·β ≥ 0 ĈYβ =CYβ ĈYβ =CYβ
p2 sinϕ ·β < 0 ĈYβ =CYβ

ĈYβ =CYβ

(a) ϕ = 0◦ (b) ϕ = 25◦ (c) ϕ = 60◦

Fig. 5. V,γ maneuvering envelope of RCAM model for time horizon T = 2s for different bank angles and different uncertainty levels (0%, 10% and 20%
uncertainty). Smaller envelope areas correspond to larger uncertainty bounds.

Fig. 4. Comparison of 3D envelopes with and without uncertainty: nominal
(green), 10% uncertainty (blue), 20% uncertainty (yellow)

aircraft model for the same time span as the time horizon
T = 2s in the reachability analysis and plotting the traces
in the envelopes, results in Fig. 6. For initial conditions
x0 within the backwards reachable set R (T = 2s,K), it is
always possible to find at least one admissible input u(·)
which will bring part of the state trajectory φ (τ , t,x,u,Δ)
towards the end point at T = 2s inside the trim envelope K.
On the other hand, from outside the backwards reachability
set R (T = 2s,K), it is impossible for the state trajectory
φ (τ , t,x,u,Δ) to reach the reference envelope K within T =
2s, independent from which input u is applied. Many more
Monte Carlo validations have been performed for different
initial conditions x0, which all confirm the accuracy of the
envelope in a similar way as shown here. Moreover, these
Monte Carlo analyses have been based on the non-simplified
aircraft model. As such, it has been demonstrated that the
simplifying assumption made in Eq. (16) is acceptable and
does not significantly perturb the results.

VI. CONCLUSIONS
In this paper, a computationally efficient algorithm for

estimating the safe maneuvering envelope of damaged air-
craft has been discussed. The algorithm performs a robust
reachability analysis through an optimal control formulation
while making use of time scale separation and taking into
account uncertainties in the aerodynamic derivatives. The
safe maneuvering envelope is defined as the cross section
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Fig. 6. Backwards reachability for RCAM model for time horizon T = 2s,
including Monte Carlo Analysis

between the forwards reachable and backwards reachable
sets, which have been calculated starting from the stable
trim envelope. Moreover, the backwards reachable set can
be considered as the survivable maneuvering envelope, from
where it is possible to bring the aircraft back to a safe trim
condition after an upset due to damage, turbulence, a wake
encounter etc. Results were found to be consistent with the
underlying physical principles. This approach differs from
others since it is physically inspired. This more transparent
approach allows interpreting data in each step, and it is
assumed that the physics based approach will therefore
facilitate certification for future real life applications.
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