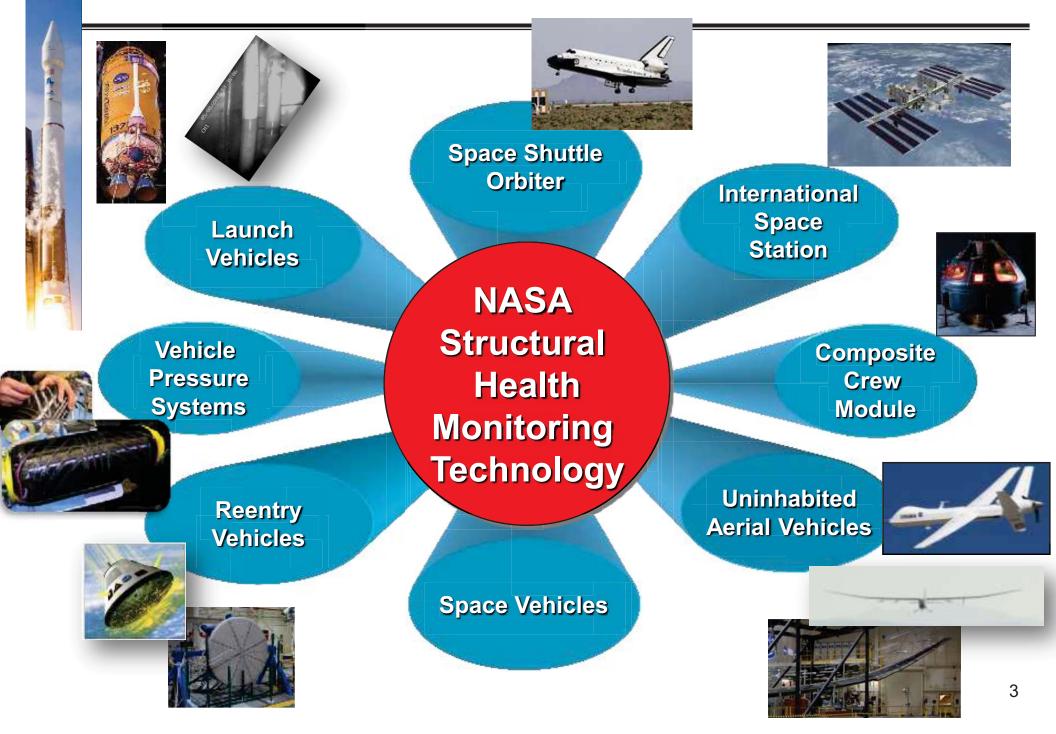

NASA Applications of Structural Health Monitoring Technology

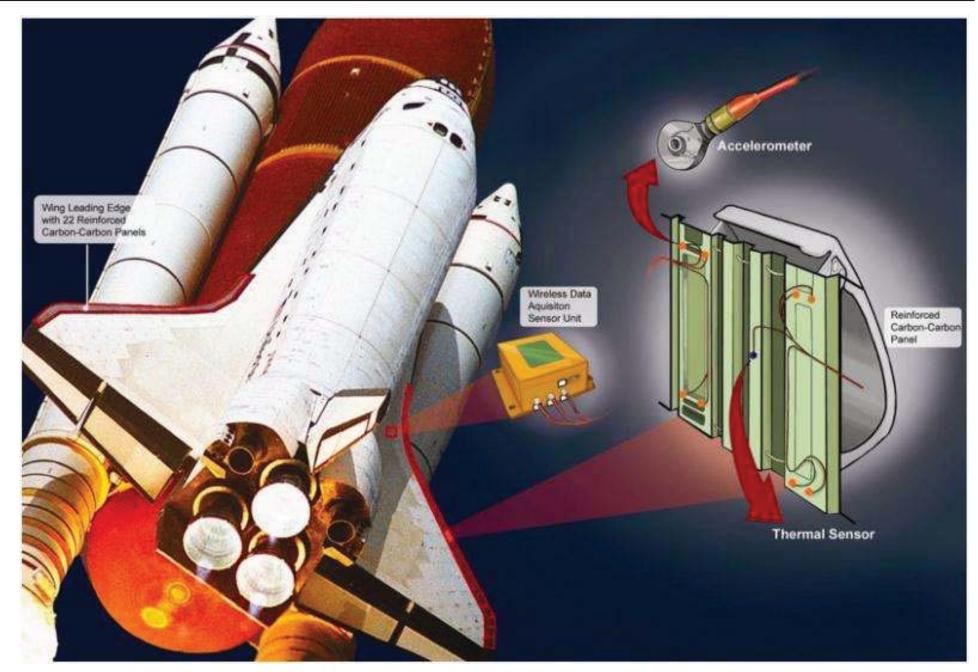
W. Lance Richards¹, Eric Madaras², William H. Prosser³, and George Studor ³

NASA Dryden Flight Research Center, Edwards, California NASA Langley Research Center, Hampton, Virginia NASA Engineering and Safety Center, Hampton, Virginia NASA Johnson Space Center, Houston, Texas

September 2013

NASA Focused Structural Health Monitoring

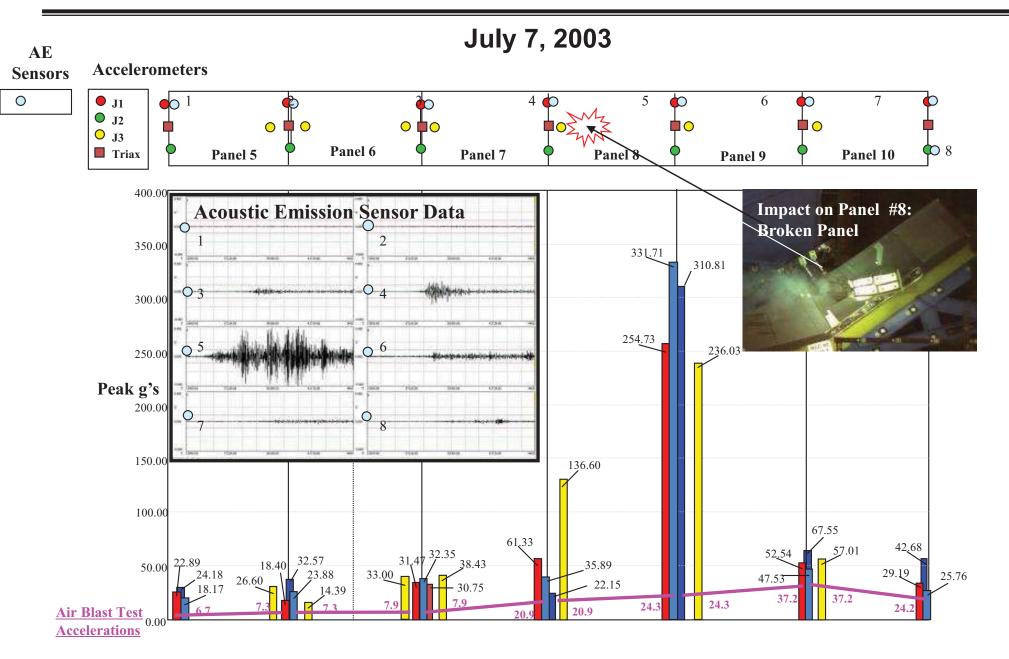



SHM Aerospace Vehicle Applications

Topics

- Structural Health Monitoring
 - Definition
 - SHM vs NDE
- Agency Overview of SHM Activities
 - Accel & Acoustic-based SHM on STS (Prosser, NESC)
 - Wireless-based SHM on ISS / STS (Studor, JSC)
 - Piezo-based SHM on ISS (Madaras, LaRC)
 - Fiber-optic-based SHM on Aerospace Vehicles (Richards, DFRC)
 - Uninhabited Aerial Vehicles
 - Composite Crew Module
 - Reentry Vehicles
 - Space Vehicles
 - Vehicle Pressure Systems
 - Expendable Launch Vehicles

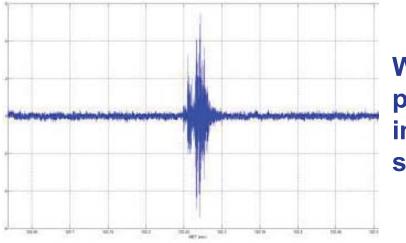
Space Shuttle Orbiter Wing Leading Edge Impact Detection System (WLEIDS)



Wing Leading Edge Impact Detection System (WLEIDS) Development

- Columbia accident investigation testing
 - Recovery of DFI sensor data on MADS focused impact testing on RCC
- Additional impact testing
 - Ascent impacts
 - MMOD impacts
- Vehicle testing
- System development and implementation
- Flight results

Columbia Accident Investigation Catastrophic Impact Damage Test on RCC Panel 8



WLEIDS Operations

- Installed on all Shuttles
- Successfully flown on all flights since Columbia
- Detected small impacts during ascent
 - Small amplitude, nondamaging
 - Likely popcorn foam
- Detected several small
 MMOD impacts

Sensors and Data Recorder in Wing

WLEIDS probable impact signal

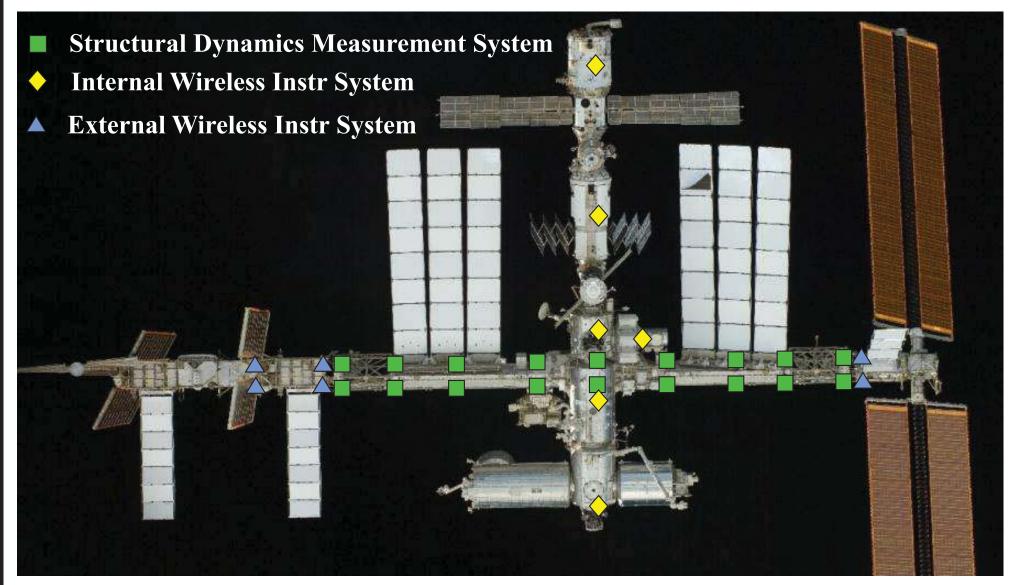
Topics

- Structural Health Monitoring
 - Definition
 - SHM vs NDE
- Agency Overview of SHM Activities
 - Accel & Acoustic-based SHM on STS (Prosser, NESC)
 - Wireless-based SHM on ISS / STS (Studor, JSC)
 - Piezo-based SHM on ISS (Madaras, LaRC)
 - Fiber-optic-based SHM on Aerospace Vehicles (Richards, DFRC)
 - Sensor Development
 - Strain-based Parameter Development
 - Shape, Loads, Liquid Level, Magnetic Field
 - Sensor Attachment / Characterization
 - System Development
 - Ground / Flight Applications

Space Shuttle / ISS Evolution of Micro-WIS Systems

ISS assembly			Columbia	Shuttle fleet	DIDS	
				Ser.		00000
System	MicroWIS (SBIR)	Extended Life MicroWIS	MicroSGU / MicroTAU	Wideband MicroTAU	Enhanced WB MicroTAU	Ultra-sonic WIS (new Ph2 SBIR)
Date Certified	1997	2001	2000/2001	2002	2005	2007
Purpose	IVHM	Thermal Models	Cargo Loads Cert Life Extension	MPS Feedline Dynamics	Wing Leading Edge Impacts	ISS Impact/Leak Monitoring
Dimensions	1.7" dia. x 0.5"	2.7"x2.2"x1.2"	2.7"x 2.2" x 1.2"	3.0"x 2.5" x 1.5"	3.25"x2.75"x1.5	3.4" x2.5"x 1.1"
Sample Rate	Up to 1Hz	Up to 1Hz	Up to 500Hz (3 channels)	Up to 20KHz (3 channels)	Up to 20KHz (3 channels)	Up to 100KHz (10 channels)
Data Storage	None	2Mbytes	1Mbyte	256Mbytes	256Mbytes	1Gbyte
Battery Life	9 months	10+ years	2-3 missions	1 mission	1 mission	3 years
Sensor Types	Temperature (Flight Cert) and Resistive sensors: Strain, Accelerometer, Pressure	Temperature (Flight Cert) and Resistive sensors: Strain, Accelerometer, Pressure	Acceleration & Strain (Flight Cert) or Resistive sensors. Includes Pressure as Trigger Channel.	Accelerometer & Temperature (Flight Cert) or Piezoelectric and Resistive Sensors	Accelerometer & Temperature (Flight Cert) or Piezoelectric and Resistive Sensors	Ultrasonic Microphone and Acoustic Emission

Wireless Instrumentation Systems Unique Solutions To Real Shuttle Problems

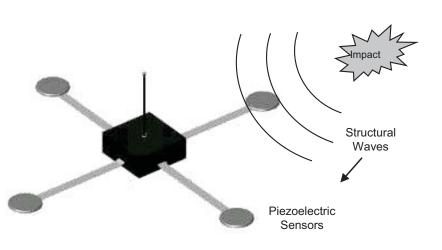

• Temperature Monitoring

- Validation of thermal models for design modifications and operations
- Micro-WIS (first flown in non-RF configuration)

Structural Loads and Dynamics

- SSME support strain data needed for certification life predictions
- Cargo to orbiter trunion dynamics and loads
- Micro Strain Gauge Unit (Micro-SGU) and Micro Tri-Axial Accelerometer Units (Micro-TAU)
- SSME Feed-Line Crack Investigation
 - Main propulsion system flow-liner dynamics
 - Wide-Band Micro-TAU
- Wing Leading Edge Impact Detection
 - Sense impact of ascent debris and MMOD on-orbit
 - Enhanced Wide-Band Micro-TAU (EWBMTAU)
- SRMS On-Orbit Loads
 - Increases needed to support contingency crew EVA repairs at end of boom
 - Wireless Strain Gauge Instrumentation System (WSGIS) and EWBMTAU
 - Also used for monitoring Shuttle Forward Nose dynamics during roll-out

ISS Structural Dynamics Accelerometers

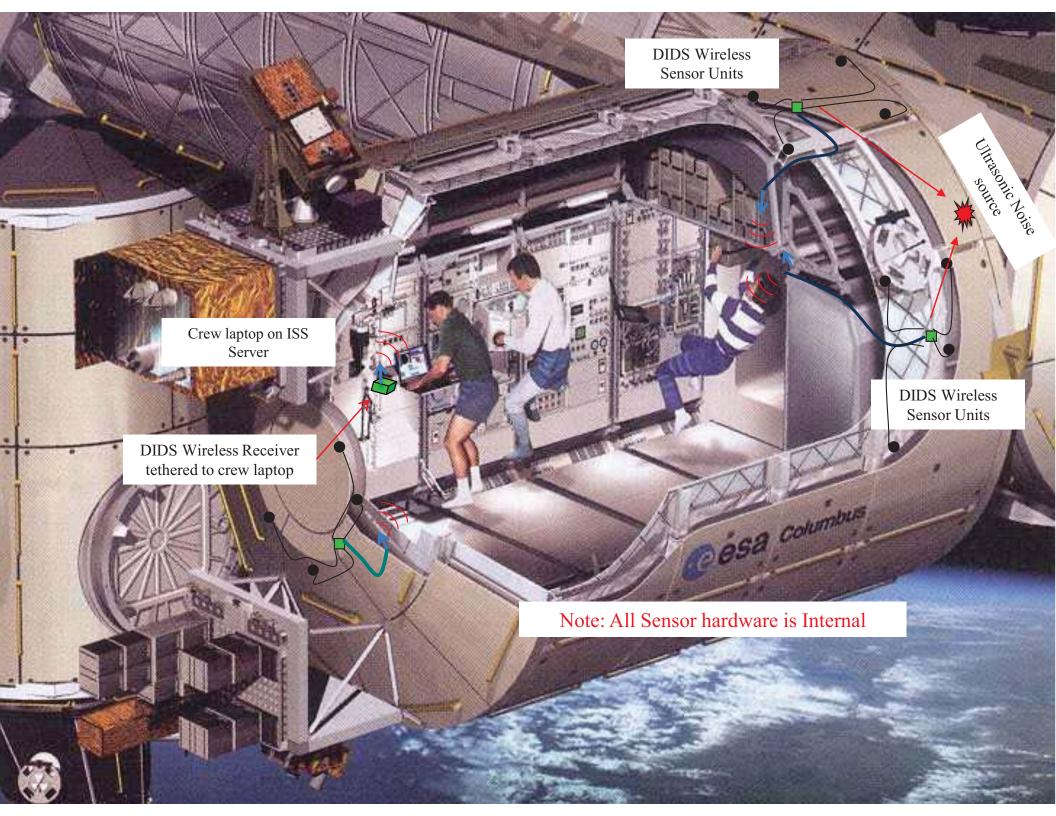

Current accelerometer count on ISS is 81 (SDMS: 33 EWIS: 30 IWIS: 18).

Topics

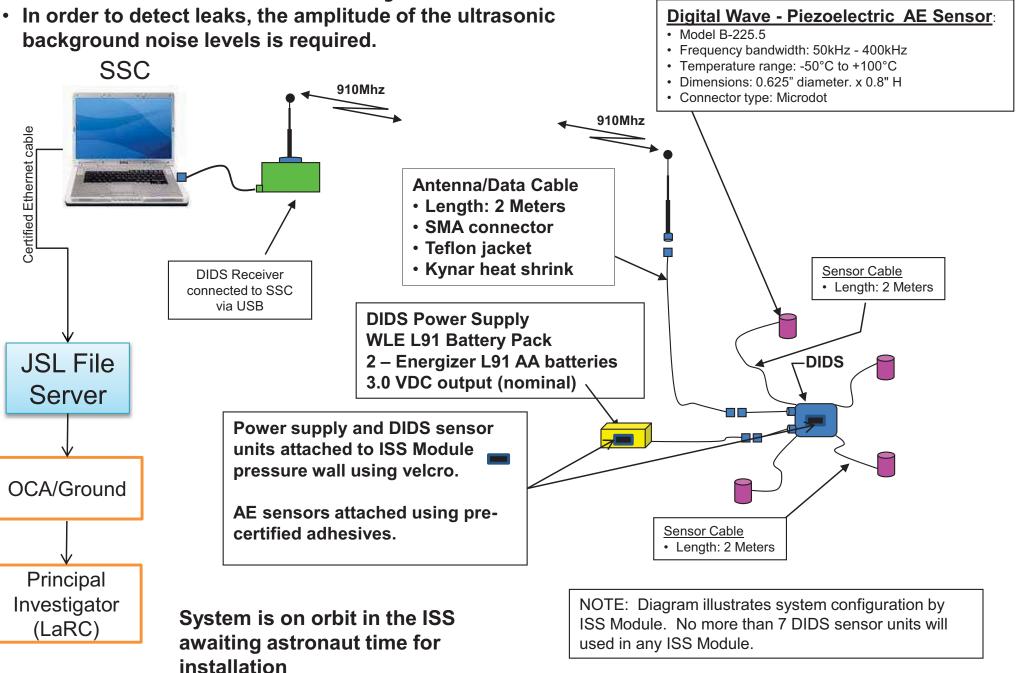
- Structural Health Monitoring
 - Definition
 - SHM vs NDE
- Agency Overview of SHM Activities
 - Wireless-based SHM on ISS / STS (Studor, JSC)
 - Accel & Acoustic-based SHM on STS (Prosser, NESC)
 - Piezo-based SHM on ISS (Madaras, LaRC)
 - Fiber-optic-based SHM on Aerospace Vehicles (Richards, DFRC)
 - Sensor Development
 - Strain-based Parameter Development
 - Shape, Loads, Liquid Level, Magnetic Field
 - Sensor Attachment / Characterization
 - System Development
 - Ground / Flight Applications

Distributed Impact Detection System Concept

Original DIDS concept is to detect and locate impacts via a wireless sensors system.

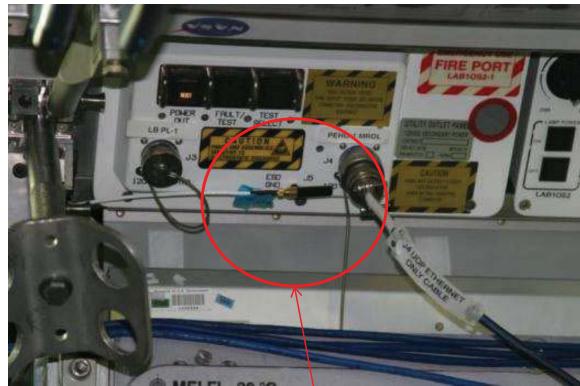


DIDS System Concept


Module is asleep until event signal threshold is crossed. Sensor module can record four signals at 1MHz rate. Sensors can record and transmit ~6000 events. Batteries can last up to 5 years. Laptop computer can control multiple units.

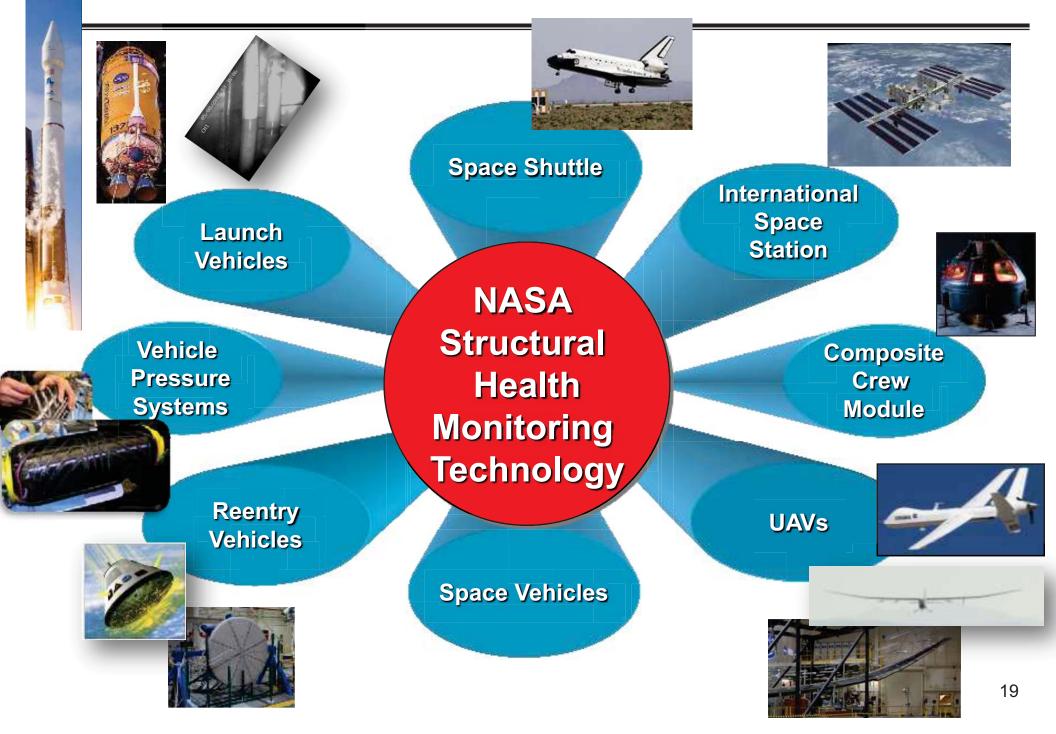
 Current DIDS system concept is to detect leak locations on space vehicles.

MMOD strike example


ISS Ultrasonic Background Noise Test (UBNT) System Overview

Example of installation behind ISS equipment ramp (Fit Check in B9 US Lab Mockup)

DIDS unit installed in open rack in mockup

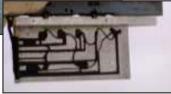


UBNT Extended Antenna in ISS hallway

Topics

- **Structural Health Monitoring**
 - Definition
 - SHM vs NDE
- Agency Overview of SHM Activities
 - Accel & Acoustic-based SHM on STS (Prosser, NESC)
 - Wireless-based SHM on ISS / STS (Studor, JSC)
 - Piezo-based SHM on ISS (Madaras, LaRC)
 - Fiber-optic-based SHM on Aerospace Vehicles (Richards, DFRC)
 - Uninhabited Aerial Vehicles
 - Composite Crew Module
 - Reentry Vehicles
 - Space Vehicles
 - Vehicle Pressure Systems
 - Expendable Launch Vehicles

SHM Aerospace Vehicle Applications


Fiber Optic Sensing System (FOSS) Background

- Dryden initiated fiber-optic instrumentation development effort in the mid-90's
 - Dryden effort focused on atmospheric flight applications of Langley patented OFDR demodulation technique
- Dryden focused on developing system suitable for flight applications
 - Previous system was limited due to laser technology
 - System limited to 1 sample every 90 seconds
- Dryden initiated a program to develop a more robust / higher sample rate fiber optic system suitable for monitoring aircraft structures in flight
- Partnering with Kennedy Space Center, Launch Services Program, Dryden has developed a comprehensive portfolio of intellectual property that is now ready to be commercialized by the private sector.

X-33 IVHM Risk Reduction Experiment

Fiber Optic Sensing System (FOSS) Operation Overview

Fiber Optic Sensing with Fiber Bragg Gratings Grating region Laser tuning Multiplex 1000s of sensors onto one "hair-like" optical fiber All gratings are written at the same wavelength Tuning Uses a narrowband wavelength swept laser • direction source to interrogate sensors start λ stop In addition to measuring strain and temperature, these sensors can be used to determine a variety of other engineering parameters $I_{R} = \sum_{i} R_{i} Cos(k2nL_{i}) \qquad k = \frac{2\pi}{\lambda} \quad \frac{\Delta\lambda}{\lambda} \to \mu\varepsilon$ Reflector Laser light Loss light **Reflected light** L1 (I_R) L2 R_i – spectrum of ith grating L3 n – effective index L – path difference k – wavenumber

Dryden's FOSS *Current Capabilities*

Current system specifications

		-
٠	Fiber count	8
٠	Max sensing length / fiber	40 ft
•	Max sensors / fiber	2000
•	Total sensors / system	16000
•	Max sample rate (flight)	100 sps
•	Max sample rate (ground)	60 sps
٠	Power (flight)	28VDC @ 4.5 Amps
٠	Power (ground)	110 VAC
٠	User Interface	Ethernet
٠	Weight (flight, non-optimized) 27 lbs
٠	Weight (ground, non-optimize	ed) 20 lbs
٠	Size (flight, non-optimized)	7.5 x 13 x 13 in
٠	Size (ground, non-optimized)	7 x 12 x 11 in

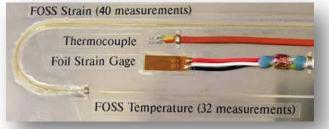
Environmental qualification specifications for flight system

- Shock
- Vibration
- Altitude
- Temperature

8g

1.1 g-peak sinusoidal curve 60kft at -56C for 60 min -56 < T < 40C

Flight System


Ground System

Fiber Bragg Grating – Optical Frequency Domain Reflectometry

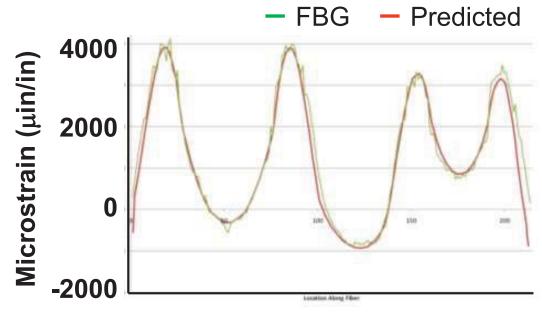
FBG-OFDR can dramatically improve structural and system efficiency for space vehicle applications by improving both affordability and capability by ...

- Providing >100x the number measurements at 1/100 the total sensor weight
- Providing validated structural design data that enables future launch systems to be lighter and more structurally efficient
- Reducing data system integration time and cost by utilizing a single small system for space / launch vehicles
- Increasing capability of measuring multiple parameters in real time (strain, temperature, liquid level, shape, applied loads, stress, mode shapes, natural frequencies, buckling modes, etc.
- Providing an unprecedented understanding about system/structural performance throughout space craft and mission life cycle

Centaur Coupon shown at PPBE review

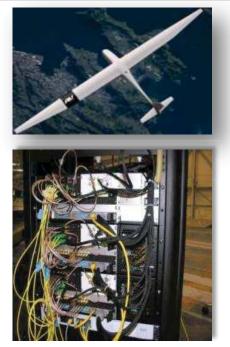
Pressure monitoring

Liquid level sensing


ISS COPV strain & temp monitoring Shape sensing for vehicle control

Composite Crew Module NASA NESC - Strain Sensing

- Four fibers were installed around the module's three windows and one hatch
- 3300 real-time strain measurements were collected at 30Hz as the module underwent 200%DLL pressurization testing
- Measured strains were compared and matched well to predicted model results
- Project concluded:
 - "Fiber optics real-time monitoring of test results against analytical predictions was essential in the success of the full-scale test program."
 - "In areas of high strain gradients these techniques were invaluable."

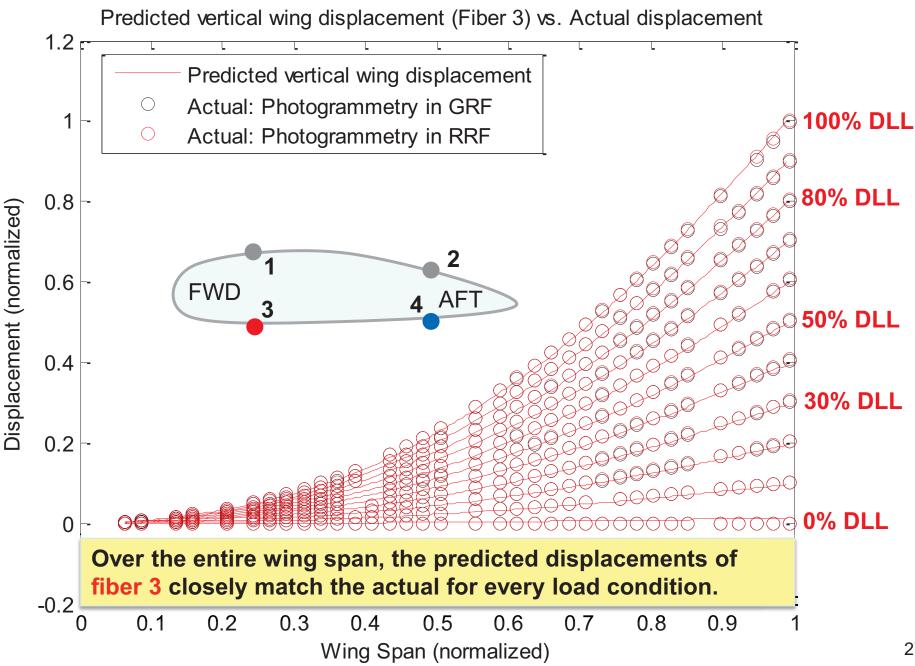


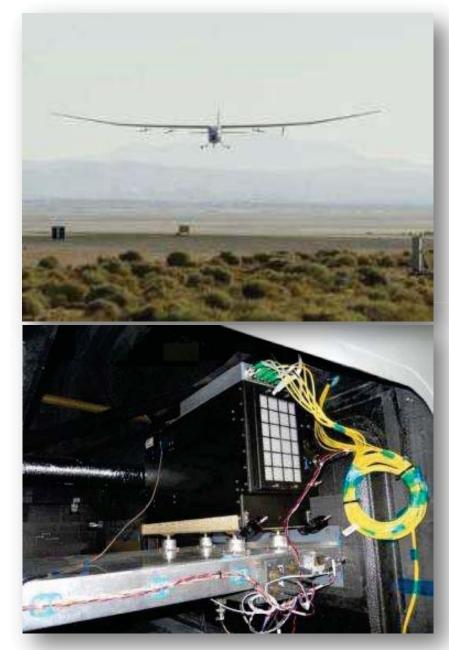
Inner Hatch FBG Strains, Max Pressure

Uninhabited Aerial Vehicles <u>Global Observer UAS - Aerovironment</u>

- Validate strain predictions along the wingspan
- Measured strain distribution along the centerline top and bottom as well as along the trailing edge top and bottom.
- FO Strain distribution measurements are being used to interpret shape using Dryden's 2D shape algorithm
- A 24-fiber system was designed of which 18, 40ft fibers (~17,200 gratings) were used to instrument both left and right wings

Uninhabited Aerial Vehicles Global Observer UAS - Aerovironment

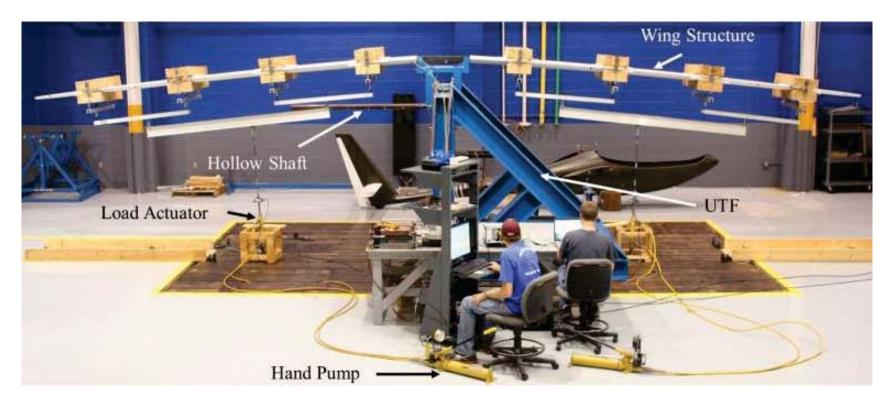

Proof-load testing of components and large-scale structures



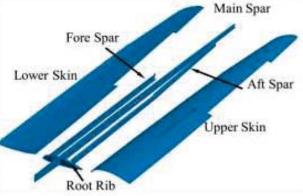
Uninhabited Aerial Vehicles Global Observer (AV) - 2D Shape Sensing Results

UAVs - Global Observer UAS (AV) Flight Testing of Strain and 2D Shape Sensing

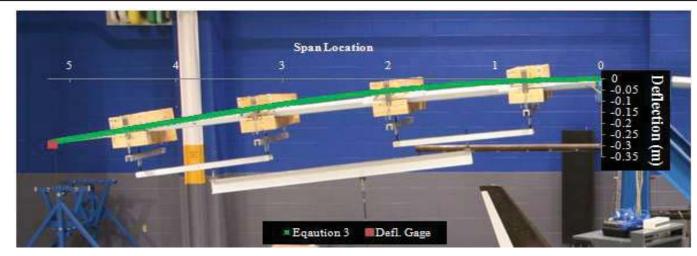
- Validate strain predictions along the left wing in flight using 8, 40ft fibers (~8000 strain sensors)
- An aft fuselage surface fiber was installed to monitor fuselage and tail movement
- Strain distribution were measured along the left wing centerline top and bottom as well as along the trailing edge top and bottom.
- 8 of the 9 total fibers are attached to the system at any give time
- The system performed well and rendered good results


Predator-B UAS - Flight Testing Strain and 2D Shape Sensing

- 18 flights tests conducted; 36 flight-hours logged
- Conducted first flight validation testing April 28, 2008
- Believed to be the first flight validation test of FBG strain and wing shape sensing
- Multiple flight maneuvers performed
- Total of 6 fibers (~3000 strain sensors) installed on left and right wings
- Fiber optic and conventional strain gages show excellent agreement
- FBG system performed well throughout entire flight program


Video clip of flight data superimposed on Ikhana photograph

Full-Scale Composite Wings Strain, Applied Loads, and 2D Shape - Mississippi State



ENGINEERING PROPERTIES OF COMPOSITE MATERIALS.

Material	Woven fabric	Unidirectional	Foam core DIAB	
Properties	Toray-T700G	fabric	Divinycell HT 50	
		Toray-T700S		
E ₁₁ , GPa	$5.54 \ge 10^{1}$	1.19 x 10 ²	8.50 x 10 ⁻²	
E ₂₂ , GPa	$5.54 \ge 10^{1}$	9.31 x 10 ⁰		
G ₁₂ , GPa	4.21 x 10 ⁰	4.21 x 10 ⁰		<
v_{12}	3.00 x 10 ⁻²	3.10 x 10 ⁻¹	3.20 x 10 ⁻¹	
ρ , kg/m ³	$1.49 \ge 10^3$	$1.52 \ge 10^3$	4.95 x 10 ⁻¹	i.

Full-Scale Composite Wings Strain, Applied Loads, and 2D Shape - Mississippi State

MEASURE	D AND CALCULATE	ED WING TIP DEI	ELECTIONS
<u>F, N</u>	Measured δ_1 , m	<u>Calculated δ_1, m</u>	Error, %
1373	<u>-0.184</u>	<u>-0.178</u>	<u>3.02</u>
<u>1592</u>	-0.209	<u>-0.205</u>	<u>2.29</u>
<u>1837</u>	-0.241	<u>-0.231</u>	<u>4.08</u>
<u>2036</u>	-0.265	-0.257	<u>3.23</u>
2269	<u>-0.295</u>	<u>-0.284</u>	<u>3.75</u>

Test Procedure for displacement

- Collect FBG strain data
- Use displacement Eq. and Strain data to calculate deflection

OUT-OF-PLANE APPLHED LOAD

Applied Load, N	Calculated Load, N	<u>Error, %</u>	Difference, N
<u>-185.5</u>	<u>-178.8</u>	<u>3.60</u>	<u>6.7</u>
<u>-194.4</u>	<u>-210.0</u>	<u>7.98</u>	<u>15.5</u>
<u>-241.5</u>	-252.0	<u>4.35</u>	<u>10.5</u>
<u>-288.5</u>	-291.5	<u>1.05</u>	<u>3.0</u>
-333.3	-332.9	<u>0.12</u>	0.4
<u>-378.1</u>	<u>-381.1</u>	<u>0.80</u>	<u>3.0</u>
-422.9	-435.9	<u>3.07</u>	<u>13.0</u>
<u>-472.2</u>	-486.4	<u>3.01</u>	<u>14.2</u>
Average EI=98728.	2-N*m ²		

Test procedure for out-of-plane loads

- Determine EI for the wing
- Determine moment acting on wing
- Determine Load applied

Next Generation Structural Health Monitoring on Reentry Vehicles

Personal Observations

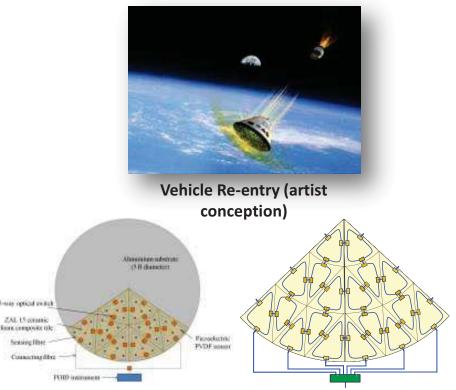
- The Shuttle never returned in the same condition as when it launched
- Flight operations always reveals the unexpected and make known the unknowns
- NASAs SHM fiber optic sensors are much lighter than conventional strain gage sensors
- FOSS-OFDR provides massive amounts of quantitative structural performance information in real time and for post test analysis
- This quantitative information can overcome some of the unknown unknowns that may allow you to fly another day

Post-flight Inspection

Dream Chaser Re-entry (artist conception)

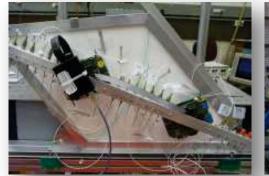
Monitoring of MMOD Impact Damage to TPS NASA Dryden / CSIRO Australia collaboration

Objective


 Detect & evaluate Micrometeoroid and Orbital Debris (MMOD) impact damage to Thermal Protection Systems (TPS) using embedded acoustic and thermal sensor networks

Principles

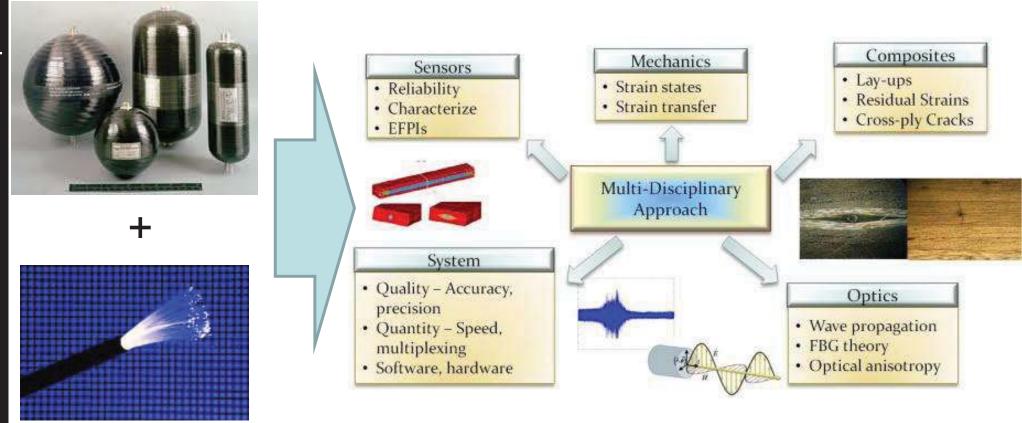
- Detect and locate impacts using acoustic emission sensor networks
- Evaluate severity of damage with optical fiber thermal sensor network
- Utilize centralised or self-organising operation with local network architecture on modular tiled structure


Novel aspects

- Development of switched optical fiber sensor network to enhance robustness
- Capable of central control or autonomous self-organising operation.
- Functional damage evaluation monitor effect on thermal properties.

Heat shield with TPS

TPS health monitoring system

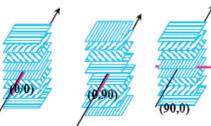


Two TPS modules

Heat shield Test Setup at Dryden 33

Vehicle Pressure Systems Embedded Strain - The Multidisciplinary Challenge

- Fiber Optic Sensors embedded within Composite
 Overwrapped Pressure Vessels
- Goal is to understand embedded FBG sensor response
 - Requires comprehensive, multi-disciplinary approach


Vehicle Pressure Systems Composite Overwrapped Pressure Vessels (COPVs)

- Perform real-time in-situ structural monitoring of COPVs with embedded fiber Bragg grating sensor arrays
- Develop analytical and experimental methods to reliably interpret embedded strain sensor measurements
- Develop a robust "early-warning" indicator of COPV catastrophic failure
- Provide finite-element-like experimental strains in real time for:
 - Health Monitoring on International Space Station
 - Model validation to improve future designs

Approach

- Develop and evaluate surface-attachment techniques
- Install surface fiber optic sensors
- Conduct test to 80% of burst pressure
- Overwrap surface FBGs with composite layers
- Install new surface FBGs over "embedded" FBGs
- Conduct burst test
- Develop data analysis and visualization techniques to reliably predict COPV failure

NASA Dryden and WSTF test team $_{\rm 35}$

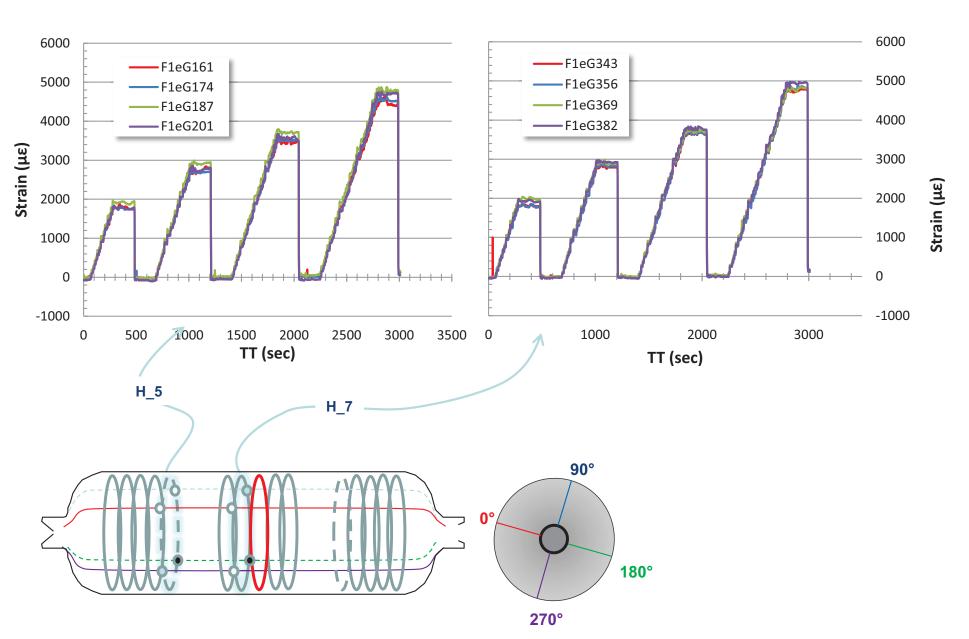
Composite Overwrapped Pressure Vessels Installation Methods

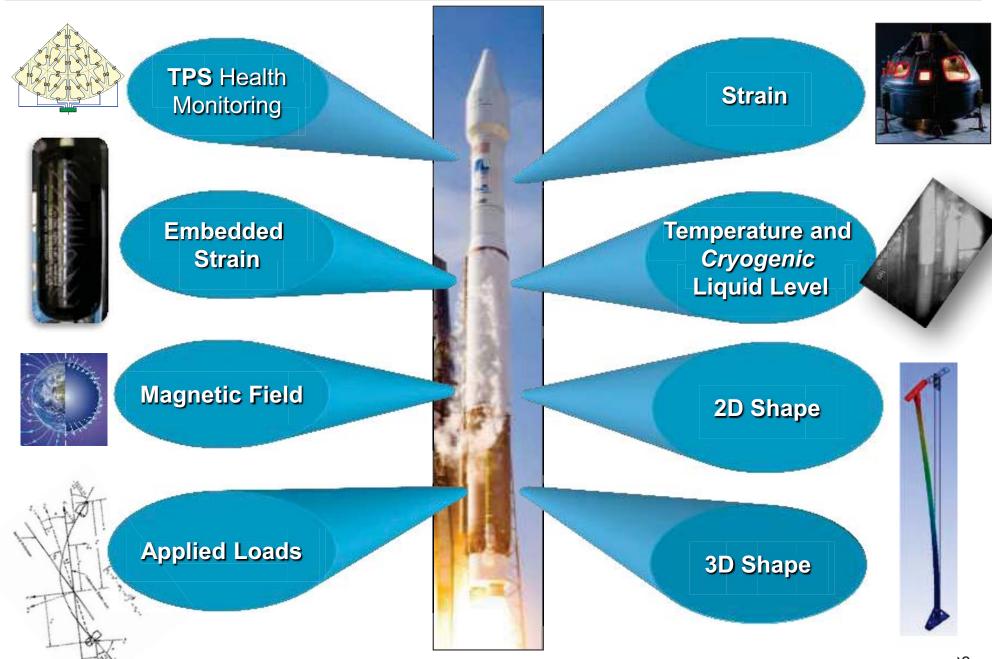
Installation methods developed

• Transfer pattern to bottle surface

Mask and fill basecoat paths

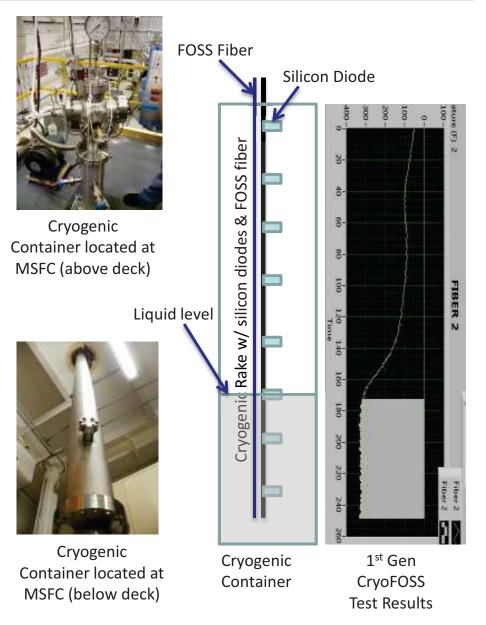
Sand down close to surface layer




Route and attach FBGs

Embedded Fiber to 5000 psi Hoop Direction

FOSS Current and Future Work Flight Demonstration on a Launch Vehicle (KSC-Launch Services)


Cryogenic Liquid Level-Sensing

The Challenge

- The transitional phase between liquid and gas of cryogenics is difficult to discriminate while making liquid level measurements
- Using discrete cryogenic temperature diodes spaced along a rake yields course spatial resolution of liquid level along with high wire count

FOSS Approach

- While using a uniquely developed fiber optic structure (CryoFOSS), the transitional phase can be mapped more accurately
- Using a single continuous grating fiber, a high degree of spatial resolution can be achieved, as low as 1/16"

LH₂ Testing of CryoFOSS at MSFC

Cryo-FOSS

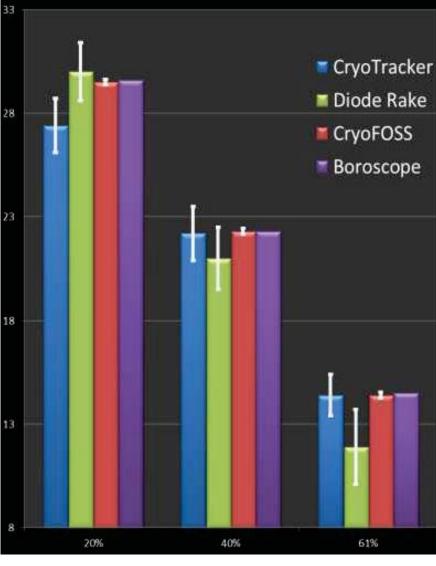
Objective

 Experimentally validate CryoFOSS using Dryden's FOSS technology

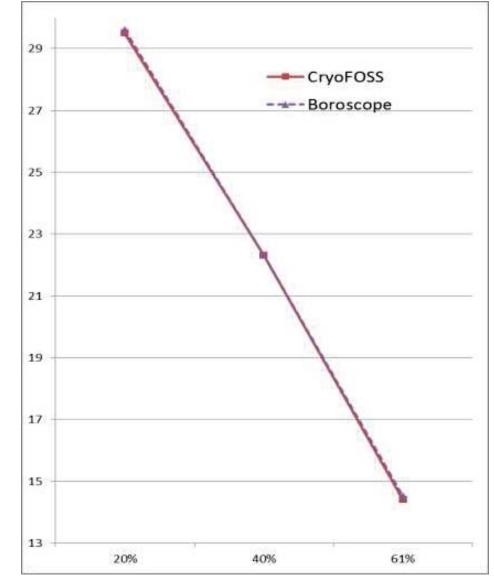
Test Details

- Dewar dimensions: 13-in ID x 37.25-in
- Fill levels of 20%, 43%, and 60% were performed
- Instrumentation systems
 - Video boroscope with a ruler (validating standard)
 - Cyrotracker (ribbon of 1-in spaced silicon diodes)
 - MSFC Silicon diode rake
 - Fiber optic LH₂ liquid level sensor(CryoFOSS)

Results


- CryoFOSS sensor discerned LH₂ level to ¼" in every case
- Excellent agreement achieved between CryoFOSS, boroscope, and silicon diode Cryotracker

Bottom line


 Validated concept for a lightweight, accurate, spatially precise, and practical solution to a very challenging problem for ground and in-flight cryogenic fluid management systems

LH₂ Liquid Level Results

Combined Results

CryoFOSS compared to Boroscope

Magnetic Field Sensing NASA Dryden / UCLA collaboration

Objective

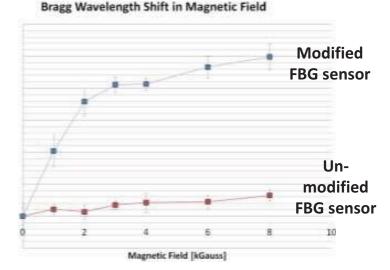
 To utilize the same magnetically sensitive particles that birds use, for example, to sense Earth's magnetic field for migratory purposes

Application

- Installing distributed magnetic sensors on a structure could help with navigation
- Identifying disturbances in Earth's magnetic field could indicate the presence of another vehicle or a missile

Approach

- Fabricate new fiber optic sensor with greater sensitivity to magnetic field (H)
- Apply magnetic field to sensors
- Measure wavelength shifts (Δλ_B)
- Behavior of λ_B should follow magnetization behavior of modified sensor


Results

- Experimental results corroborate the theory
- Currently developing new methods for increasing sensitivity of detecting magnetic fields

Lohmann, Nature, V.464 (2010)

