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ABSTRACT

In the recent paper of Antiochos (2013), a new concept for the injection of magnetic helic-
ity into the solar corona by small-scale convective motions and its condensation onto polarity
inversion lines has been developed. We investigate this concept through global simulations of
the Sun’s photospheric and coronal magnetic fields and compare the results with the hemi-
spheric pattern of solar filaments. Assuming that the vorticity of the cells is predominately
counter-clockwise/clockwise in the northern/southern hemisphere, the convective motions inject
negative/positive helicity into each hemisphere. The simulations show that: (i) On a north-south
orientated PIL, both differential rotation and convective motions inject the same sign of helicity
which matches that required to reproduce the hemispheric pattern of filaments. (ii) On a high
latitude east-west orientated polar crown or sub-polar crown PIL, the vorticity of the cells has
to be approximately 2-3 times greater than the local differential rotation gradient in order to
overcome the incorrect sign of helicity injection from differential rotation. (iii) In the declining
phase of the cycle, as a bipole interacts with the polar field, in some cases helicity condensa-
tion can reverse the effect of differential rotation along the East-West lead arm, but not in all
cases. The results show that this newly developed concept of magnetic helicity injection and
condensation is a viable method to explain the hemispheric pattern of filaments in conjunction
with the mechanisms used in Yeates et al. (2008). Future observational studies should focus on
determining the vorticity component within convective motions to determine, both its magnitude
and latitudinal variation relative to the differential rotation gradient on the Sun.

Subject headings: magnetic fields - Sun:activity - Sun:corona

1. INTRODUCTION

Solar filaments (a.k.a. prominences) exist across
a wide range of latitudes on the Sun. They form
everywhere from the active latitudes all the way to
the polar crown. As magnetic flux is pushed from
low to high latitudes during the 11-year activity
cycle, solar filaments are seen to “rush” to the
poles (Mouradian & Soru-Escaut 1994; Minarov-
jech et al. 1998). A signature of the reversal of
the Sun’s polar field in each hemisphere is the dis-
appearance of the high-latitude polar crown fil-

aments. While solar filaments may form over a
wide range of latitudes, they always form above
polarity inversion lines (PILs) in the photospheric
magnetic field. However, the existence of a PIL is
not a sufficient condition for the existence of a fila-
ment. There must also be a filament channel at the
height of the chromosphere (Martres et al. 1966;
Gaizauskas 1998). In its simplest terms, a filament
channel is a region of the chromosphere surround-
ing a PIL where there exists a dominant horizon-
tal field which lies nearly parallel to the PIL. A
more formal definition of a filament channel can
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be found in the papers of Foukal (1971a,b) and
Martin (1998). Direct observations of the orien-
tation of magnetic fields within solar prominences
(Rust 1967; Leroy et al. 1983, 1984) show that the
field is oriented mainly along the long axis of the
filament, nearly parallel to the PIL as is the case
in the surrounding filament channel.

A wide variety of models have been developed
over the years to explain the origin of the axial
magnetic field in filaments and filament channels
(for a detailed discussion, see §5.3 of Mackay et
al. 2010). In the majority of models, the pres-
ence of the horizontal magnetic field nearly par-
allel to the PIL indicates that the field is highly
non-potential. Therefore, filaments and filament
channels are indicators of the location and concen-
tration of free magnetic energy in the solar corona,
which in turn is key to explaining many eruptive
phenomena. One surprising feature of the mag-
netic field in solar prominences/filaments is that
the orientation of the dominant axial field exhibits
a large-scale hemispheric chirality pattern (Martin
et al. 1994). Filaments and filament channels of
so-called dextral chirality dominate in the north-
ern hemisphere, while those of sinistral chirality
dominate in the southern hemisphere. A dextral
filament (or filament channel) is one in which the
dominant axial magnetic field points to the right,
as seen from a observer standing on the positive-
polarity side of the PIL and looking towards the
PIL. Correspondingly, from the same reference
point a sinistral filament has an axial magnetic
field that points to the left. In force-free magnetic-
field models of filaments (Aulanier and Démoulin
1998; Mackay, Longbottom & Priest 1999; van
Ballegooijen 2004) this chirality is directly related
to the dominant sign of magnetic helicity that
is contained within the filament and its channel.
Dextral filaments contain predominantly negative
helicity; sinistral filaments have mainly positive
helicity. Due to challenges in determining the ori-
entation of the axial magnetic field in filaments
(Gaizauskas 2002), often the hemispheric pattern
of filaments is determined indirectly through the
orientation of the filament barbs (Pevtsov et al.
2003; Yeates et al. 2007). One noteworthy fea-
ture of the hemispheric pattern of filaments and
channels is that in each hemisphere, exceptions to
the rule do exist. Therefore, any model that aims
to account for the hemispheric pattern must not

only produce the dominant pattern, but also allow
exceptions to occur.

Previous studies have considered the origin of
the hemispheric pattern by modeling the evolution
of either idealised magnetic distributions (Mackay
& van Ballegooijen 2001, 2005) or observed distri-
butions that can be compared directly with subse-
quent measurements (van Ballegooijen et al. 1998;
Mackay et al. 2000). The most detailed study to
date was carried out by Yeates et al. (2007) and
Yeates et al. (2008), who compared the observed
chirality of 109 filaments observed over a six-
month interval with non-potential magnetic fields
deduced from the global evolution model of van
Ballegooijen et al. (2000) and Mackay & van Bal-
legooijen (2006). It was found that if the transport
effects of differential rotation, meridional flow, and
surface diffusion are combined with newly emerg-
ing bipoles in the northern/southern hemisphere
already containing negative/positive helicity, then
a 96% agreement can be obtained between the ob-
served chirality of the filaments and that produced
by the model. The agreement was equally good for
both the dominant and minority chirality in each
hemisphere. This agreement was, however, mainly
for filaments lying below 60◦ latitude. In a fur-
ther study, Yeates & Mackay (2012) simulated the
global corona for the entire length of cycle 23. By
considering the latitudinal distribution of chirality
in both hemispheres, the authors showed that dex-
tral/sinistral skew can dominate at high latitudes
in the northern/southern hemispheres during the
rising phase and rush to the poles. However, they
also found that in the declining phase, on the con-
trary, sinistral skew was dominant at high lati-
tudes in the northern hemisphere and dextral in
the southern hemisphere. Thus far, no detailed ob-
servational studies of filament chirality have been
carried out in the declining phase of the solar cycle
to test these predictions.

Yeates & Mackay (2009a) discussed the mech-
anisms that produce the chirality patterns in
the simulations of Yeates et al. (2008); Yeates
& Mackay (2012). First and foremost is the injec-
tion of helicity by the applied large-scale boundary
motions, in particular solar differential rotation,
which injects both positive and negative helicity
into each hemisphere depending upon the orienta-
tion of the PIL at the surface (e.g., DeVore 2000,
and references therein). At north/south PILs,
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such as those that typically occur within active
regions, the helicity injected is negative in the
northern hemisphere and positive in the southern,
in accord with the dominant pattern of filament
chirality. At east/west PILs, on the other hand,
such as those that sometimes arise between active
regions and routinely occur at the polar crown be-
tween the active-latitude and polar fluxes, the he-
licity injected is positive in the north and negative
in the south, in opposition to the dominant chiral-
ity pattern. Consequently, the applied boundary
motions alone were found to be insufficient to ex-
plain the observations. To recover the hemispheric
patterns, the injection of magnetic helicity asso-
ciated with newly emerging bipolar flux also was
required. The bipoles contained an internal he-
licity that matched the observations of Pevtsov
et al. (1995), negative in the northern hemisphere
and positive in the southern, but also a mutual
helicity of either sign due to the interaction of
the new bipole with the surrounding background
field. This injection of helicity occurred in a spo-
radic manner in localised regions, and then was
transported across the solar surface along with the
PILs. However, once lost due to the ejections of
flux ropes (Yeates & Mackay 2009b), which oc-
cur when a critical amount of shear accumulates
along a section of the PIL, helicity of the correct
sign cannot always be regenerated in situ. The
chirality of the east/west filament channels, in
particular those at the polar crown, then progres-
sively departed ever farther from the dominant
hemispheric pattern as Yeates & Mackay (2012)
found in the declining phase of the cycle.

Recently, Antiochos (2013) has proposed a new
helicity-condensation model for the formation of
filament channels that, in principle, could resolve
the possible outstanding incompatibilities between
flux transport simulations and the observed hemi-
spheric patterns of chirality. In his model, fil-
ament channels form through a three-stage pro-
cess of helicity injection, transfer, and condensa-
tion that acts on the chromospheric and coronal
magnetic fields, as follows. (1) Helicity is injected
by small-scale, vortical motions occurring at the
photosphere into the overlying atmosphere. These
motions are associated with both the granular and
supergranular convection, in general, although the
latter dominates due to the much larger spatial
scale and lifetime of its cells. If the motions are

predominantly counterclockwise in the northern
hemisphere and clockwise in the southern – in con-
currence with the observed sense of the Sun’s dif-
ferential rotation – then the resultant magnetic
twist is left-handed (or dextral) in the north, and
right-handed (or sinistral) in the south. This pat-
tern is fully consistent with the dominant hemi-
spheric patterns of chirality. (2) Within a mag-
netically unipolar region, neighboring flux concen-
trations having the same sense of twist have oppo-
sitely directed horizontal field components where
they come into contact. Therefore, those fields are
favourably disposed to reconnect, which transfers
the twist field encircling two individual flux ele-
ments to the outer perimeter of their combined
flux concentrations. This process occurs across
the entire spectrum of flux concentration sizes, re-
distributing the twist injected at the small scales
of the vortical motion to the largest scale avail-
able – the extent of the unipolar region. (3) At
the boundaries between regions of opposite mag-
netic polarity that have the same sense of twist,
the horizontal field is in the same direction on ei-
ther side of the PIL. Thus, reconnection cannot
occur there, and the twist field component accu-
mulates at the PIL. The result is an increasingly
strong axial field and magnetic helicity that “con-
dense” along the PIL, giving the model its name,
and which are precisely the key characteristics of
observed filament channels on the Sun.

The sign and strength of the axial field and
helicity at the PIL in the helicity-condensation
model depends sensitively upon the associated
sign and strength of the underlying vortical mo-
tions. In addition, the consequences of those mo-
tions may be enhanced or reduced by coopera-
tion or competition, respectively, with the other
flux-transport processes known to influence the
formation of filament channels. The objective of
this paper is to take a first step toward quanti-
fying the impact of helicity condensation on the
formation of solar filament channels, within the
context of global-scale modeling of the coronal
magnetic field. Confirmation of the three-stage
process of helicity injection, transfer, and con-
densation through high-resolution modeling of the
vortical flows, the reconnection between flux ele-
ments, along with the accumulation of twist at the
perimeter of the region of vortical flow is reported
by Zhao et al. (2013). In this investigation, of
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necessity, we employ a large-scale, averaged rep-
resentation of those small-scale dynamics, as de-
scribed below.

The paper is structured as follows. In §2 the
global evolutionary model for the corona is de-
scribed (§2.1), along with the model for the large-
scale consequences of small-scale helicity injection
by vortical cellular motions (§2.2; see also the Ap-
pendix). In §3, some simple test simulations are
carried out to quantify the effect of the helicity in-
jection and to compare it to standard surface flux
transport calculations. Next, in §4 and 5, results
are shown for a variety of magnetic field configu-
rations consistent with those found on the Sun in
both the rising and declining phases of the solar
cycle, in which the helicity injection acts in concert
with the usual flux transport processes. Finally,
in §6, a summary of our results and discussions of
their consequences and of possible future studies
on this topic are given.

2. MODELS

To simulate the evolution of the Sun’s large-
scale magnetic field (Mackay & Yeates 2012) a
combination of magnetic flux transport (Sheeley
2005) and magneto-frictional relaxation (van Bal-
legooijen et al. 2000; Mackay & van Ballegooi-
jen 2006) simulations is applied. In addition,
a new model for the injection of magnetic he-
licity into the large-scale corona, due to small-
scale convective cells, is included. In the com-
bined models the Sun’s large-scale magnetic field,
B(= Br, Bθ, Bφ) = ∇ × A, is evolved by the in-
duction equation, where r is the radial distance
from the Sun’s center, θ is the co-latitude, and φ
is the azimuthal angle.

2.1. GLOBAL EVOLUTION

To describe the evolution of magnetic fields in
the photosphere, the induction equation at r =
R� is prescribed to impose the large-scale flows of
differential rotation (Snodgrass 1983) and merid-
ional flows (Duvall 1979). In addition the mag-
netic field is also subject to diffusion by small-scale
flows such as supergranulation (Leighton 1964),
described as surface diffusion. This surface diffu-
sion leads to the cancellation of opposite polarity
magnetic fields when they encounter one another
at polarity inversion lines (PILs). These effects are

applied as boundary conditions to the time deriva-
tives of the horizontal components of the vector
potential Aθ and Aφ (therefore on Br),

∂Aθ

∂t
= +uφBr −

D

r sin θ

∂Br

∂φ
, (1)

∂Aφ

∂t
= −uθBr +

D

r

∂Br

∂θ
, (2)

where uφ is the azimuthal velocity, uθ the merid-
ional flow velocity, and D the photospheric diffu-
sion constant (D = 450 km2 s−1; see DeVore et
al. 1985), all of which are determined from obser-
vations. The azimuthal velocity is taken to be of
the form

uφ = Ω(θ)r sin θ,

where Ω(θ) is the angular velocity of differential
rotation relative to the Carrington frame which
rotates at 13.20 deg day−1 (Snodgrass 1983),

Ω(θ) = 0.18− 2.30 cos2 θ − 1.62 cos4 θ degday−1.

The poleward meridional flow is chosen such that
uθ = 0 at the latitudinal boundaries (θmin,θmax),

uθ = C cos

[
π(θmax + θmin − 2θ)

2(θmax − θmin)

]
cos θ,

and C is chosen such that the peak velocity at mid
latitudes is 15 m s−1.

Within the coronal volume the magnetic field
evolves in response to these motions through the
ideal induction equation,

∂A

∂t
= v ×B+Hsg, (3)

where v(r, t) is the plasma velocity and Hsg rep-
resents the supergranular helicity injection term
which will be described in detail in §2.2. Since
all the photospheric boundary motions described
above are very slow compared to the coronal
Alfven speed, and the plasma beta is low there,
we expect the coronal magnetic field evolution
to approximate closely a sequence of quasi-steady
force-free states. Furthermore, we are interested
primarily in the long-lived structure of the field,
not in the high-frequency dynamics including all
MHD waves; therefore, we can use the magneto-
frictional method as in Yang et al. (1986) to cap-
ture the essential evolution. We assume that the
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coronal plasma velocity is given by

v =
1

ν

j×B

B2
+ voe

−(2.5R�−r)/rw r̂.

where j = ∇×B. The first term on the right hand
side reflects the fact that in the corona the Lorentz
force is dominant (low beta condition). The ef-
fect of this “frictional” term is that when any field
departs from a force-free state, as a result of for
example boundary driving, the magnetic forces in
the corona act to return the field to a force-free
state (generally, a nonlinear force-free field). The
second term represents a radial outflow velocity
which is imposed to ensure that the field lines re-
main radial at the source surface (r = 2.5R�). In a
crude manner, this outflow velocity simulates the
effect of the solar wind in opening coronal field
lines, with vo = 100 km s−1 its peak value and
rw = 0.1R� its exponential fall-off length from
the outer boundary. Note that once the field lines
become radial, the second term no longer affects
the magnetic field. Also, this term is negligible
low-down in the closed field corona.

To carry out the computations, positions within
the domain are described in terms of new variables
x, y, z such that x = φ, y = − ln[tan(θ/2)], z =
ln(r/R�) with a resolution of δφ (in heliographic
degrees). For each of the cells, hθ = hφ = r sin θδφ
and hr = rδφ in the vertical direction. To ob-
tain second order accuracy for the computations
of B = ∇ ×A and j = ∇ ×B, the vector poten-
tial A, magnetic field B, and current density j are
defined on staggered grids: A and j are defined
on the ribs of the cells while B is defined on the
cell faces. The following boundary conditions are
implemented:

1. The φ boundaries are periodic for all vari-
ables.

2. At latitudinal (θ) boundaries, Bθ=0, so that
the field is tangential to the boundary. The
electric current j is allowed to flow through
the boundary so that the field lines may
move within it.

3. At the outer radial boundary (r = Rs) the
magnetic fieldB is assumed to be radial with
the electric currents horizontal, so that the
magneto-frictional method tends to remove
all currents from open field lines.

Using these boundary conditions, either the entire
sphere of the Sun or a localised volume may be
considered. For the simulations presented here,
the driving of the photospheric field and relax-
ation of the coronal field are carried out simulta-
neously. As a consequence, the coronal field never
strictly satisfies the force-free condition, but it de-
parts from it by only a small amount. With this
procedure, a sequence of coronal quasi-equilibrium
states are produced.

2.2. HELICITY INJECTION

The concept of magnetic helicity injection into
the solar coronal field by small-scale vortical mo-
tions at the photosphere, and its condensation
at the large-scale boundaries of unipolar regions
to form filament channels, has been described by
Antiochos (2013). Detailed MHD simulations of
this process, in which the vortical cells are well-
resolved on the numerical grid and the transfer of
helicity from small to large spatial scales by mag-
netic reconnection have been reported by Zhao et
al. (2013). The simulations confirm the three-
stage progression of (1) helicity injection at the
small scales of the vortical convection, (2) helic-
ity transfer via reconnection from the small injec-
tion scales to the large scales of the magnetically
unipolar regions, and (3) helicity condensation at
the perimeter of regions of unipolar magnetic field
and vortical flow. On the Sun, those regions are
bounded by polarity inversion lines of the large-
scale magnetic field, exactly where the strongly
sheared filament channels form.

In the present work, the objective is to simu-
late the consequences of the helicity condensation
process, and its competition with other flux trans-
port processes that affect filament-channel forma-
tion, within a global-scale 3D model. It would be
very challenging to resolve flow fields that are the
size of supergranules in such a calculation, and
prohibitively expensive to resolve granules. Thus,
we employ a spatially averaged, large-scale repre-
sentation of the effects of helicity injection, trans-
fer, and condensation in this paper. A derivation
of the appropriate helicity injection term, which
leads to Equation 3, is presented in the Appendix.
A key feature of this model is that the total mag-
netic helicity injected by the vortical motions is
conserved throughout the processes of reconnec-
tive transfer to, and condensation at, the largest
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scales. It is widely accepted that magnetic helicity
is conserved during reconnection in all highly elec-
trically conducting natural and laboratory plas-
mas (Taylor 1974, 1986; Berger 1984), including
the solar corona. This property of rugged invari-
ance also holds throughout the MHD simulations
of helicity injection, transfer, and condensation re-
ported by Zhao et al. (2013).

The average rate of injection of magnetic helic-
ity into the large-scale coronal magnetic field, due
to the small-scale vortical motions associated with
the granular and supergranular convection cells,
can be expressed simply through the source term

Hsg =

{
∇r(ζBr), r = R�;
0, otherwise.

(4)

In this equation, ∇r is the gradient operator in-
cluding only the radial derivative and ζ parame-
terizes the rate and scale of the helicity injection.
The latter has the dimensions of a diffusivity and
takes the explicit form

ζ ≡ l2ωl/2, (5)

where l and ωl are the radius and angular rotation
rate, respectively, within the convection cells, and
the overline denotes a spatial and temporal aver-
age over the characteristic scales of the convection.
Note that this rotation rate ωl is associated with
a vortical flow of the cell in the plane of the pho-
tosphere, which gives rise to a radial component
of the vorticity, ∇× v. It is not the rotation rate
of the cell across the surface of the Sun, nor is
it a rotation rate of the cell associated with the
strong central upwelling and annular downflows of
the convection, which generate a horizontal com-
ponent of ∇× v. To avoid confusion, throughout
the main body of this paper we refer to ωl simply
as the vorticity of the convection cells, although
the equivalence is strictly true only if the cells ro-
tate rigidly, with ωl independent of l throughout
each cell. With respect to the relative contribu-
tions of the solar convection at different scales,
note also that the supergranulation is anticipated
to dominate strongly over the granulation, due to
the size of the supergranules and the attendant
much larger weighting of their l2 factor to the ef-
fective diffusivity.

Equations 4 and 5 for the helicity injection term
are derived in the Appendix. They are employed

in Equation 3 to calculate the consequences of the
helicity injection for the evolution of the large-
scale coronal magnetic field. Since the photo-
spheric motions twist only the footpoints of the
coronal magnetic field, the helicity injection term
Hsg is applied only at the first grid cell above the
bottom boundary of the simulation domain. The
effect of this term is to induce a horizontal twist
component Bs of the magnetic field at the base of
the corona wherever the product ζBr is nonuni-
form over the surface (see Appendix). The asso-
ciated change in B in the global coronal model is
divergence-free by construction. After being in-
jected at the base, the twist component Bs then
propagates upward along the field lines through
the ideal convection term v × B in Equation 3.
We note that, as a result of the staggered grid
employed, Br and ζBr are defined at different lo-
cations; the product is positioned at the base of
the radial ribs of the cells. Thus, a four-point av-
erage of the face values of Br at the base of the
corona is used to evaluate Equation 4, for inclusion
in Equation 3.

Now the supergranular helicity parameter, ζ,
must be specified. It depends upon both l and
ωl, which can take on a range of values in the
constantly shifting pattern of the supergranula-
tion. The cell size l typically varies from 14,000
km to 30,000 km; for the simulations presented
here we simply assign a fixed, geometric-mean
value l = 20,000 km. At this time, neither the
average vorticity of supergranules nor its spatial
dependence versus latitude is firmly established
from observations. The most compelling measure-
ments come from applying time-distance and ring-
diagram methods of helioseismology to global solar
oscillations (Duvall & Gizon 2000; Gizon & Duvall
2003; Komm et al. 2007). These show that the
vorticity at supergranular scales is positive (coun-
terclockwise) in the downflow lanes between cells
in the northern hemisphere, and negative (clock-
wise) in those lanes in the southern hemisphere;
the signs are reversed in the upwelling centers of
the cells, but the field dwells most of the time in
the downflow lanes. This behavior of the signed
vorticity is consistent with the influence of Coriolis
forces on the convection. The vorticity magnitude
is found to be on the order of 1×10−6 s−1. In other
observations, magnetograms and Dopplergrams in
quiet-Sun regions have been analyzed to discover
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Fig. 1.— Differential rotation gradient, ωdr ≡
dΩ/dθ, versus latitude. Vertical dashed lines indi-
cate the latitudes of the polarity inversion line in
the axisymmetric cases described in §4.

much more intense, but much smaller scale and
very transient, cyclonic flows lacking any system-
atic dependence on latitude (Bonet et al. 2008,
2010; Zhang & Liu 2011). The relationship, if any,
between these cyclonic flows and the supergranu-
lar convection is obscure. Additional observations
are needed to fix more precisely the vorticity of the
supergranular convection cells, whose value cur-
rently is at the limit of observational detection.
Consequently, for simplicity in the present investi-
gation, we consider only a spatially uniform value
that falls in the range ωl = 1–5× 10−6 s−1. With
this assumption, the helicity parameter ζ ranges
from roughly 200 to 1000 km2 s−1, which is of the
same order of magnitude as the surface diffusion
coefficient, D = 450 km2 s−1.

As demonstrated below, one of the conse-
quences of the supergranular helicity injection is
to counter the effect of differential rotation. Thus,
it is useful to compare the vorticity ωl to the differ-
ential rotation gradient, ωdr ≡ dΩ/dθ. The latter
is shown in Figure 1 as a function of latitude λ, in
the northern hemisphere only, since the profile is
symmetrical about the equator. From the graph it
can be seen that the gradient of differential rota-
tion peaks at λ = 54◦, at a rate ωdr = 0.85× 10−6

s−1. This peak value is, therefore, just slightly
lower than the smallest nonzero value of super-
granular vorticity (ωl = 1 × 10−6 s−1) considered
in this paper. The vertical dashed lines denote

the latitudes of the east/west PILs for the simula-
tions discussed in §4. It should be noted that, for
the PILs at λ = 29◦ and 79◦, the lowest imposed
vorticity is nearly twice as high as the differential
rotation gradient.

To investigate the effects of the supergranular
helicity injection, three distinct sets of simulations
were carried out. In §3, a single, isolated bipole is
considered. Following this, in §4 the competing ef-
fects of differential rotation and the supergranular
helicity injection are considered for an east/west
PIL. Finally, in §5, simulations of the interaction
of a single bipole with a polar field are considered
during both the rising and declining phases of the
solar cycle. In all of the simulations, the initial
coronal field is constructed using the potential-
field/source-surface approximation, in which the
field lines are required to assume a radial orienta-
tion at and beyond r = 2.5R�. As a result, the ini-
tial configurations contain a mixture of open and
closed field lines.

3. BIPOLE AT 25◦ LATITUDE

To investigate the role of supergranular helic-
ity injection, its effect on a single magnetic bipole
is first considered. The initial condition is shown
in Figure 2a, where the thin black lines denote
the limb of the Sun and the limits of the compu-
tational domain. The domain extends over φ ∈
[0◦,120◦], λ ∈ [−5◦,+55◦] and r ∈ [1R�,2.5R�]
with a resolution of 241 × 143 × 106 grid points.
The bipole is placed at 25◦ latitude in the northern
hemisphere. Red and blue contours represent posi-
tive and negative magnetic flux, respectively, while
the thick black lines follow the magnetic field. The
bipole is placed so that both polarities lie at the
same latitude. Thus, the PIL dividing the two po-
larities initially lies in the north/south direction.

The effect of the helicity injection term can be
seen in Figures 3a and 3c, where the coronal field
is shown after 27 and 54 days, respectively, of su-
pergranular helicity injection with a vorticity of
ωl = 1 × 10−6 s−1. Since no differential rotation
or surface diffusion is applied, the radial field com-
ponent at the photosphere remains fixed over the
time period of the simulation. The positive vor-
ticity injects a negative helicity into the field lines
lying at low heights above the PIL. As a result,
a dextral skew of the field develops. This skew
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(a) (b)

(c) (d)

Fig. 3.— Evolution of an isolated bipole when (left column) helicity injection with vorticity ωl = 1×10−6 s−1

is applied with no other surface flux transport processes, and (right column) surface flux transport processes
are applied with no helicity injection. Elapsed times are 27 days (top row) and 54 days (bottom row). Line
styles are the same as in Figure 2.

is seen as a sheared arcade on day 27 and a flux
rope on day 54. The formation of the flux rope
is due to numerical diffusion, as once the coronal
field overlying the PIL becomes strongly sheared,
reconnection occurs in the corona. From this, it
is clear that the supergranular helicity injection
term produces a chirality of the field that is con-
sistent with the dominant hemispheric pattern of
filaments.

While this is true, it should be noted that if sur-
face flux transport effects alone are applied over
the same time period, then a dextral chirality is
also found along the PIL between the two polar-
ities of the bipoles. This can be seen in Figures

3b and 3d, which show that simulation after 27
and 54 days of evolution. Due to the application
of surface flux transport processes, the radial field
at the photosphere no longer remains fixed. The
east/west shearing of the bipole due to differential
rotation is clearly evident, along with the pole-
ward advection due to meridional flow and expan-
sion due to surface diffusion. In addition, there is
cancellation of flux at the PIL. As the field lines
initially lie east/west, with their footpoints at the
same latitude, their orientation is not affected by
differential rotation. In contrast, the PIL is ro-
tated counter-clockwise, and this builds up a dex-
tral skew. Flux cancellation aids this process, so
that a stronger shearing of the field and a larger

8



(a)

(b)

Fig. 2.— Initial conditions for (a) an iso-
lated bipole at 25◦ latitude and (b) an east/west
PIL at 54◦ latitude. Red/blue represents posi-
tive/negative flux; thick black lines are field lines;
thin black lines demarcate the boundaries of the
computational domain and the limb of the Sun.

flux-rope structure is produced earlier in the simu-
lation than for the case with helicity injection only.
After 54 days, the flux rope has become so large
that it can no longer be held down by the overlying
arcades, and it starts to rise. This removes a large
amount of shear from the field overlying the PIL,
but still leaves behind a dominant dextral skew.

From the results in Figure 3, it can be seen that
along the north/south PIL of the bipole, the su-
pergranular helicity injection term with positive
vorticity and surface flux transport processes have
the same basic effects, but act on different time
scales. Flux transport develops shear in the field
faster. This result may seem surprising, as the
gradient of differential rotation is less than the ap-
plied supergranular vorticity. However, the extra
effect of surface diffusion speeds up the process of
shearing the field, as it diffuses flux towards the

(a)

(b)

Fig. 4.— Normalised (a) magnetic energy Em (Eq.
6) and (b) relative magnetic helicity Hr (Eq. 7)
versus day of simulation for an isolated bipole. In
all simulations a radial outflow is applied at the
upper boundary. The various line styles denote:
no photospheric boundary transport (dash); he-
licity injection at a rate of ωl = 1×10−6 s−1 (dot)
or ωl = 5×10−6 s−1 (dash-dot-dot-dot); and stan-
dard surface flux transport without helicity injec-
tion (solid). In (b), the stars denote the results
for a helicity injection rate of ωl = 1 × 10−6 s−1,
scaled up by a factor of 5.

PIL and reduces the footpoint separation of al-
ready sheared field lines.

In Figure 4, diagnostic tests of the supergranu-
lar helicity injection term can be seen in graphs of
(a) normalised volume integrated magnetic energy
and (b) relative magnetic helicity. Correspond-
ingly in Figure 5, the force-free metric (Wheat-
land et al. 2000), which tests how force-free the
field is, can be seen. In each case the quantities
are graphed versus the number of days elapsed in
the simulation. The magnetic energy,

Em =

∫
V

B2dτ, (6)

is normalised to its initial value, which is the same
for all simulations. The relative magnetic helicity
is calculated using the formula of Finn & Antonsen
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Fig. 5.— Force-free metric σj (Eq. 8) versus day
of simulation for an isolated bipole. In all simu-
lations, a radial outflow is applied at the upper
boundary. Line styles are the same as in Figure 4.

(1985),

Hr =

∫
V

(A+Ap) · (B−Bp) dτ, (7)

where Ap and Bp = ∇ × Ap represent the po-
tential field that possesses the same normal mag-
netic field components on all boundaries as the
actual field. The force-free metric is a calculation
of the current-weighted sine of the angle between
the electric current and magnetic field, as defined
by

σj =

∑
i jiσi∑
i ji

where

σi = sin θi =
| j×B |i
| ji || Bi |

.

The metric is summed over all grid points (i), and
its value lies between 0 and 1. The lower the value
of the metric, the more force-free the resulting
field. However, this metric has the undesirable
feature that the value is 1 for a potential field. As
the initial condition in all simulations is a poten-
tial field, therefore, the value is 1 at the start of
each simulation.

In each of the graphs, four simulations repre-
senting different physical effects and parameter
values are compared to one another. The effect
of the radial outflow velocity when no surface mo-
tions or supergranular helicity injection is applied

is quantified by the dashed line. The other three
lines demonstrate the radial outflow velocity com-
bined with flux transport processes alone (solid
line) and with helicity injection alone (fixed radial
field at the photosphere) for vorticities of 1×10−6

s−1 (dot) and 5 × 10−6 s−1 (dash-dot-dot-dot).
From Figures 4 and 5, it is clear that the radial
outflow velocity has no significant effect on the
magnetic energy and relative helicity; however, it
does have a significant effect on the force-free met-
ric, which converges to 0.8. This high value rep-
resents the stressing and opening of the field lines
near the top boundary due to the radial outflow
imposed there.

For the case where only flux transport is in-
cluded, the total magnetic energy is continually
decreasing due to flux cancellation. In contrast,
when supergranular helicity injection is consid-
ered, the magnetic energy increases. A nearly lin-
ear increase is found when ωl = 1 × 10−6 s−1.
However, for the case of ωl = 5 × 10−6 s−1, the
magnetic energy eventually levels off at approxi-
mately twice the original value.

For both the flux-transport case (solid line) and
the two cases with helicity injection (dot, dash-
dot-dot-dot), the relative magnetic helicity is al-
ways negative. The flux transport results are con-
sistent with the results of DeVore (2000), who
showed that when differential rotation acts on an
east/west oriented bipole, during the early stages
of evolution a negative helicity injection occurs.
This negative injection then slows down as the
bipole becomes oriented in a north/south direc-
tion. When the supergranular helicity injection
is included with vorticity ωl = 1 × 10−6 s−1, the
relative helicity shows a linear trend, which is ex-
pected when the radial field component is held
fixed. In contrast, when the vorticity is increased
to ωl = 5 × 10−6 s−1, it is linear only up until
day 30. Beyond this point, the relative helicity
increases for a time before once again decreasing
linearly. The changing trend of relative helicity
is the result of a flux rope forming above the in-
ternal PIL of the bipole. Eventually, it becomes
too strong to be held down by the overlying ar-
cade and subsequently is ejected through the top
boundary. The increase in relative helicity at that
time is due to the loss of negative helicity by the
ejection, not to any injection of positive helicity.
Following the ejection, the previous linear trend
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with similar slope resumes until a second ejection
occurs at around day 50. The stars in Figure 4b
denote the results from the simulation with a vor-
ticity of ωl = 1 × 10−6 s−1 multiplied by a factor
of 5. These show good agreement with the results
from the simulation with vorticity ωl = 5 × 10−6

s−1 up to the time when the first ejection occurs.

For the three simulations where the coronal
field is stressed by either supergranular helicity in-
jection or surface flux transport effects, the value
of the force-free metric settles at a value below 0.2.
This convergence represents a balance between the
stressing and relaxing as the field evolves through
a continuous sequence of quasi-steady states. The
values of the metric can be compared to those re-
ported by Schrijver et al. (2006) in their Table
3. Before the comparison is carried out, it should
be noted that two very different types of mod-
elling are being compared. Schrijver et al. (2006)
construct single magnetic field configurations from
a fixed photospheric boundary condition, not a
time series of quasi-steady states through contin-
ual stressing and relaxation as is carried out here.
In addition, the simulations presented here use an
open top, forced boundary condition which pre-
vents the field from relaxing to a force-free state at
the top of the box (dashed in Figure 5). The values
quoted in Schrijver et al. (2006) range from 0.037
to 0.57 where the range of values occur through ap-
plying different initial conditions (potential, linear
force-free, random) and relaxation parameters (see
also Wheatland et al. (2000)). The lowest values
were found for initial conditions that were close to
the final state (e.g. potential or linear force-free)
and produced metrics in the range of 0.037-0.07.
For the simulations presented here, the value of the
force-free metric is 3-5 times higher than the best
results reported in Schrijver et al. (2006). How-
ever, as the simulations presented here represent
a time series with forced open top boundary con-
dition, the values of the force-free metric are not
expected to be as low as in Schrijver et al. (2006).
The values obtained are however within acceptable
limits.

4. EAST/WEST PIL AT 54◦ LATITUDE

The next series of simulations compares the
competing effects of differential rotation and su-
pergranular helicity injection when the PIL lies in

an east/west direction, such as is shown in Fig-
ure 2b. This axisymmetric flux distribution is
typical of a high-latitude east/west polar or sub-
polar crown PIL and filament channel. For the
case shown, the PIL lies at 54◦ latitude, while the
computational domain extends over φ ∈ [0◦,60◦],
λ ∈ [25◦,75◦], and r ∈ [1R�,2.5R�], with a reso-
lution of 101 × 149 × 88 grid points. In the ini-
tial configuration a series of field lines (thick black
lines) can be seen, where they extend over a range
of latitudes and heights.

Figure 6 illustrates the competing effects of dif-
ferential rotation and supergranular helicity injec-
tion alone, with meridional flow and supergranular
diffusion excluded. The top and bottom rows de-
note the results after 10 and 20 days of simulation,
respectively. As differential rotation is indepen-
dent of φ, the contours of Br at the photosphere
remain unchanged and the footpoints of the field
lines are just advected along the contours in all
cases. In Figures 6a and 6d, the effect of applying
differential rotation alone is considered. It can be
clearly seen that over the 20 day period, differen-
tial rotation shears the field lines in an east/west
direction and builds up a sinistral skew. This is
inconsistent with the dominant (dextral) chirality
found for northern hemisphere filaments.

In Figures 6b and 6e, results are shown when
both differential rotation and supergranular helic-
ity injection are included, where the helicity in-
jection occurs with a vorticity of 1 × 10−6 s−1.
The positive value of vorticity injects a negative
helicity, which is opposite in sign to the helicity
injected by the differential rotation. With the in-
clusion of the supergranular helicity injection, the
short field lines that lie at low heights now re-
main unskewed after 10 days but begin to develop
a slight dextral skew after 20 days. This is consis-
tent with the vorticity being slightly greater than
the local differential rotation gradient. Therefore,
locally around the PIL the supergranular helicity
injection has countered and overcome the effect of
differential rotation, to give a chirality consistent
with the dominant hemispheric pattern. While
this occurs near the PIL, for field lines with foot-
points far away from the PIL the effect of dif-
ferential rotation still dominates and a sinistral
skew develops. Finally, in Figures 6c and 6f, re-
sults can be seen when the vorticity is increased to
ωl = 5× 10−6 s−1. Due to the increased negative
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(a) (b) (c)

(d) (e) (f)

Fig. 6.— Competing effects of differential rotation and helicity injection (no surface diffusion). Results are
shown for differential rotation alone (left column) and for differential rotation plus helicity injection at rates
of ωl = 1× 10−6 s−1 (middle column) and ωl = 5× 10−6 s−1 (right column). Elapsed times are 10 days (top
row) and 20 days (bottom row). Dashed lines indicate where the computational domain is truncated in the
images; other line styles are the same as in Figure 2.

helicity injection, a strong dextral skew develops
on the short, low-lying field lines after just 10 days.
After 20 days, a strong dextral axial field lies along
the full length of the PIL. While this strong ax-
ial field exists at low heights, differential rotation
still dominates for high-lying field lines that have
a large latitudinal separation in their footpoints.
This means that the skew of the field reverses with
height, and a negative-helicity region lies beneath
a larger-scale positive-helicity region.

In Figure 7a, the skew angle of the field lines
above the PIL can be seen as a function of height,
up to 1.2R�, after 20 days of evolution. The skew
angle γ is defined as

cos γ =
Bh · n̂

| Bh || n̂ |
, (8)

whereBh is the horizontal field at any given height

above the PIL and n̂ = −∇Br/ | ∇Br | is the unit
normal over the PIL at r = 0, pointing from posi-
tive to negative flux. Dextral skew is defined when
γ > 0◦, sinistral when γ < 0◦. If | γ |< 90◦, the
field has normal polarity and takes the form of an
arcade. In contrast, if | γ |> 90◦, the field has
inverse polarity and is dipped. From the graph it
can be seen that when differential rotation alone is
applied (solid line), then γ is always negative and a
sinistral chirality is produced; however, the skew
is generally weak. In contrast, when the super-
granular helicity injection term is included with a
vorticity of ωl = 1× 10−6 s−1 (dotted), 2.5× 10−6

s−1 (dash-dot), or 5×10−6 s−1 (dash-dot-dot-dot),
then a dextral skew is found at low heights. How-
ever, only for the two higher values of vorticity
does a clear region of dextral skew extend to sub-
stantial heights. When ωl = 5× 10−6 s−1, a flux-
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(a) (b) (c)

(d) (e) (f)

Fig. 8.— Competing effects of differential rotation and supergranular helicity injection with surface diffusion
included. The plots show the results for differential rotation and surface diffusion only (left column); with
helicity injected at a rate of ωl = 1 × 10−6 s−1 (middle column); and with helicity injected at a rate of
ωl = 5 × 10−6 s−1 (right column). Elapsed times are 10 days (top row) and 20 days (bottom row). Line
styles are the same as in Figure 6.

rope structure forms as can be seen in Figure 6f.

Figure 8 shows the same cases as Figure 6, but
now with the non-local effect of surface diffusion
included. Due to the inclusion of surface diffusion,
the normal component Br diffuses across the solar
surface both towards the PIL, where cancellation
occurs, and away from it. The cancellation of flux
at the PIL has a significant effect on the chiral-
ity produced. For the case of differential rotation
without supergranular helicity injection (Figures
8a and 8d), the inclusion of surface diffusion re-
sults in the development of a strong sinistral skew
after 20 days. The stronger skew occurs as a result
of surface diffusion converging footpoints towards
the PIL, which decreases their latitudinal sepa-
ration and increases the skew. Hence, while the
non-local effect of surface diffusion cannot create

skew by itself, it can enhance the skew added by
differential rotation. When supergranular helicity
injection with vorticity ωl = 1 × 10−6 s−1 is in-
cluded (Figures 8b and 8e), different results are
obtained compared to Figures 6b and 6e. Now a
weak sinistral skew is found at low heights all along
the polarity inversion line, where before some of
the skew was dextral. The changing orientation of
the skew compared to that found previously oc-
curs as supergranular helicity injection can only
dominate over differential rotation locally at the
PIL. Once these field lines have been cancelled,
longer field lines where differential rotation domi-
nates are advected towards the PIL. As these field
lines already have a sinistral skew that is further
enhanced by the convergence due to surface dif-
fusion, the supergranular helicity injection is un-
able to overcome these combined effects. Never-
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(a)

(b)

Fig. 7.— Skew angle γ versus radial height after
20 days for the cases of differential rotation and su-
pergranular helicity injection (a) only and (b) in
combination with surface diffusion. The various
line styles denote different rates of helicity injec-
tion: ωl = 0 s−1 (solid), ωl = 1 × 10−6 s−1 (dot),
ωl = 2.5×10−6 s−1 (dash-dot), and ωl = 5×10−6

s−1 (dash-dot-dot-dot). Positive values indicate a
dextral skew; negative values, sinistral skew.

theless, the helicity injection does limit the skew
and stops a strong sinistral axial field from form-
ing. Finally, in Figures 8c and 8f results can be
seen when the supergranular vorticity is increased
to ωl = 5× 10−6 s−1. With the increased value of
vorticity, the effect of differential rotation can once
again be overcome and a dextral axial field com-
ponent is produced at low heights over the PIL.
On comparing Figure 8f to Figure 6f, it can be
seen that the inclusion of surface diffusion makes
the axial field much stronger than before. This
illustrates a key feature of surface diffusion: it al-
ways enhances the existing skew, irrespective of
whether it is dextral or sinistral. Therefore, for the
supergranular helicity injection to dominate over
differential rotation and produce a dextral skew,
it must be sufficiently strong to overcome differ-
ential rotation not just locally at the PIL but in
an extended zone around it. As a consequence of

non-local effects, to overcome differential rotation
the vorticity must be around a factor of 2-3 higher
than the local differential rotation gradient. This
can be seen in Figure 7b, where in each case the
skew is significantly enhanced compared to that
found before (Figure 7a), except for ωl = 1×10−6

s−1, which is of opposite sign.

Finally, Figure 9 shows the relative magnetic
helicity for the simulations in which only differen-
tial rotation and supergranular helicity injection
are included. In all cases, the curves are posi-
tive, indicating that over the full computational
domain the injection of positive helicity by differ-
ential rotation is dominant. However, as the rate
of supergranular helicity injection increases, lower
positive values are obtained, reflecting the larger
injection of negative helicity.

The results above illustrate a key feature that
must be taken into account, namely that due to
the non-local process of surface diffusion converg-
ing fields toward the PIL, it is insufficient for the
supergranular helicity injection to dominate over
differential rotation only locally. Rather, it must
dominate non-locally as well, and be sufficiently
higher than the local rate of differential rotation
to have a dominant effect. While the results above
have been shown for a PIL at 54◦ latitude, similar
results were found for PILs at 29◦ and 79◦ lati-
tude in the critical vorticity values needed relative
to the local rates of differential rotation.

5. BIPOLE PLUS POLAR FIELD

In this section, we consider magnetic field con-
figurations that can occur in both the rising and
declining phases of the solar cycle.

5.1. RISING PHASE

First, results are shown for the interaction of
a single magnetic bipole with the polar field, for
a magnetic configuration that is representative of
the rising phase of the solar cycle. The initial con-
figuration can be seen in Figure 10a, where the
bipole is centred at a latitude of 20◦ and has a
tilt angle of 0◦. The computational domain ex-
tends over φ ∈ [0◦,140◦], λ ∈ [−4.5◦,+65◦] and r ∈
[1R�,2.5R�], with a resolution of 281× 183× 106
grid points. As the magnetic configuration repre-
sents the rising phase of the solar cycle, the po-
lar field has the same polarity as that of the lead
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(a)

(b)

Fig. 11.— Interaction of a single magnetic bipole at 20◦ latitude with the polar field in the rising phase of the
solar cycle for full surface flux transport (a) alone and (b) with helicity injection at a rate of ωl = 1× 10−6

s−1. Elapsed time is 27 days. Line styles are the same as in Figure 2.

polarity of the bipole. Correspondingly, the PIL
wraps around the following polarity and in the
initial configuration the PIL may be regarded as
consisting of two distinct parts. First, there is the
north/south part of the PIL that separates the two
polarities of the bipole, above which the field lines
have an initial east/west orientation. Second, the
PIL wraps around the top of the following polar-
ity, where it separates the following polarity from
the polar field. Here the PIL has an east/west
orientation, with the field lines lying north/south.
Therefore, the initial configuration features both
orientations of the PIL and the field lines that have
been considered previously.

In Figure 11, the results after 27 days of evo-

lution for full surface flux transport (a) alone and
(b) combined with supergranular helicity injection
(with vorticity ωl = 1×10−6 s−1) can be seen. As
the helicity injection does not affect Br, the sur-
face magnetic field configuration is identical in the
two cases. During the evolution, differential rota-
tion rotates the north/south part of the PIL to-
ward an east/west orientation, so that it becomes
more aligned with the higher latitude east/west
part of the PIL. Therefore, over time the two parts
of the PIL increasingly become less distinct.

For the case of surface flux transport effects
alone (Figure 11a), a dextral axial field and flux-
rope structure form along the mainly north/south
part of the PIL. The formation process is the same
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(d)
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(b)

(e)

(h)

(c)

(f)

(i)
Fig. 12.— Interaction of a single magnetic bipole at 20◦ latitude with the polar field in the declining phase
of the solar cycle. Results are shown for full surface flux transport alone (left column) and in combination
with supergranular helicity injection at rates of ωl = 1 × 10−6 s−1 (middle column) and ωl = 5 × 10−6 s−1

(right column). Elapsed times are 30 days (top row), 60 days (middle row), and 90 days (bottom row). Line
styles are the same as in Figure 2.

as that discussed in §3. On the other hand, a slight
sinistral skew forms along the small east/west
high-latitude PIL. For the case where supergranu-
lar helicity injection is included (Figure 11b), very
similar results are found. The only differences are
that the dextral flux-rope structure forms faster
along the north/south PIL and the sinistral skew
found on the east/west PIL is slightly weaker.
Thus, while the helicity injection does have an
effect, it mainly changes the time scales for the
formation of the axial field. To determine whether
such an effect occurs on the Sun, detailed observa-
tions of the time scale to develop sheared fields is
required. Both simulations described above have

been run for a further three rotations, and simi-
lar results are found. Only in the later stages of
the simulation, when the initial north/south PIL
has rotated to lie east/west, does a sinistral axial
component form along the whole PIL, consistent
with the results of §4.

5.2. DECLINING PHASE

The initial condition for the simulations that
represent the declining phase of the solar cycle can
be seen in Figure 10b. As for the rising phase, the
bipole is placed at 20◦ latitude and has a tilt an-
gle of 0◦. The key difference is that now the polar
field is of opposite sign to that of the lead polar-
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Fig. 9.— Relative magnetic helicity Hr for simula-
tions with an east/west PIL at 54◦ latitude when
differential rotation and helicity injection only are
applied (no surface diffusion). The various line
styles denote different rates of helicity injection:
ωl = 0 s−1 (solid), ωl = 1 × 10−6 s−1 (dot),
ωl = 2.5×10−6 s−1 (dash-dot), and ωl = 5×10−6

s−1 (dash-dot-dot-dot).

ity of the bipole. This means that the PIL follows
a different path and forms what is known as a
switchback. Again there is a north/south portion
of the PIL that separates the two polarities, called
the “return arm”. The east/west portion that lies
at near constant latitude is called the “lead arm”.
As the lead arm lies at constant latitude, it is un-
affected by differential rotation. In contrast, the
return arm is rotated by differential rotation to
have an East-West component. Although the re-
turn arm develops an East-West component, the
lead and return arms do not merge into one PIL
and remain distinct from one another throughout
the entire simulation period.

The results of the simulations can be seen in
Figure 12, where the simulation is run for 90 days.
The first column considers only flux transport pro-
cesses for (a) 30 days, (d) 60 days, and (g) 90
days. Consistent with the previous simulations,
along the return arm a dextral skew develops. The
amount of skew varies as first a dextral flux rope
forms (day 30), then starts to rise and is ejected
from the simulation (days 60-70), and finally be-
gins to reform again (day 90). In contrast, on the
lead arm a sinistral skew develops as differential
rotation shears the field lines that lie north/south.
In the later stages of the evolution, a sinistral flux

(a)

(b)

Fig. 10.— Initial conditions for a single bipole
at 20◦ latitude in the (a) rising and (b) declining
phases of the solar cycle. Line styles are the same
as in Figure 2.

rope forms as flux cancellation takes place between
the lead polarity of the bipole and the polar field.
A large flux rope of sinistral skew can be seen in
Figure 12g. Therefore, the chirality along the lead
arm is inconsistent with the dominant chirality
pattern found for northern-hemisphere filaments.

The second column in Figure 12 considers the
effect of the supergranular helicity injection when
the vorticity is 1 × 10−6 s−1. With this addi-
tional helicity injection, the dextral axial compo-
nent strengthens along the return arm and the flux
rope forms earlier and is correspondingly larger at
each of the times shown in the figure. Along the
lead arm, a sinistral skew still develops, although
by comparing the first and second columns it can
be seen that at each time, the sinistral skew is now
weaker. The negative helicity injection driven by
the positive vorticity of the supergranular cells is,
however, insufficient to overcome the positive he-
licity injection due to differential rotation.

In the third column of Figure 12, the effect of
increasing the vorticity to ωl = 5 × 10−6 s−1 can
be seen for the same times. Along the lead arm,
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slightly different results are found. On both day
30 and day 60, the sinistral skew is much weaker
than before. The higher rate of helicity that is
injected by the increased value of supergranular
vorticity can now overcome the positive helicity in-
jection by differential rotation, and the field lines
become twisted in the opposite sense. While this is
true for days 30 and 60, a more dominant sinistral
skew can be seen by day 90, as longer field lines
that previously have been more strongly sheared
by differential rotation converge towards the PIL.
Thus, when the larger vorticity is applied, the su-
pergranular helicity injection can help to minimise
the production of sinistral skew over time along
the lead arm. While it does not produce dextral
skew on the lead arm, by minimising the sinistral
skew it does allow an overall preferred dextral pat-
tern to form along the entire length of the PIL, due
to the consistent production of dextral skew along
the return arm in all of the cases.

Finally, in Figure 13 another simulation of the
declining phase can be seen, where this time the
central location of the bipole is placed at 30◦ lati-
tude with a tilt angle of 0◦. The north/south field
lines that lie above the lead arm are now much
shorter. As before, field configurations are shown
after (a) 30 days, (b) 60 days, and finally (c) 90
days of evolution with a vorticity of ωl = 5× 10−6

s−1. With the shorter field lines, the rate of he-
licity injection can now overcome the non-local ef-
fects of differential rotation and supergranular dif-
fusion to produce a dextral skew along the lead
arm. After 90 days, a clear dextral axial compo-
nent with a flux rope that bends around from the
return to the lead arms can be seen. The results
clearly show that as long as the initial field lines
upon which supergranular helicity injection act are
short in length, then the injection can overcome
the effect of differential rotation if a sufficiently
large vorticity is applied. Even if the value of vor-
ticity is not sufficient to produce dextral skew on
the lead arm, so long as it can minimise the effect
of differential rotation producing sinistral skew on
the lead arm, it will allow a dominant dextral pat-
tern to form over the entire Sun as both differential
rotation and supergranular helicity injection pro-
duce a dextral pattern on the return arm. This
indicates to a preferred site for the location of
negative helicity and dextral skew on return arms
which in principle may be tested observationally.

6. DISCUSSION AND CONCLUSIONS

In the recent paper of Antiochos (2013) the
concept of “helicity-condensation” acting in the
solar chromosphere and corona was proposed.
Within this model magnetic helicity first arises
as a consequence of vortical motions in small-
scale convective cells. It is then redistributed
across the surface of the Sun, through the process
of magnetic reconnection, to lie above or “con-
dense” along large-scale polarity inversion lines
(PILs). Assuming that the vortical motions are
predominantly counterclockwise in the northern
hemisphere and clockwise in the southern (in the
observed sense of differential rotation), then these
motions result in a negative/positive magnetic
helicity injection in the northern/southern hemi-
sphere. The sign of injection is consistent with
the dominant hemispheric pattern of filament chi-
rality, where dextral/sinistral filaments containing
negative/positive helicity dominate in the north-
ern/southern hemisphere. The present paper con-
siders this new method of helicity injection and
condensation within the context of large-scale
magnetic flux transport simulations and global-
scale modeling of the coronal magnetic field.

Previous models which have considered the ori-
gin of the hemispheric pattern of solar filaments
have only focused on large-scale mechanisms to
inject magnetic helicity into the solar corona. The
first mechanism considered, differential rotation,
injects both positive and negative magnetic helic-
ity into each hemisphere, depending on the ori-
entation of the PIL. On a north-south PIL, neg-
ative/positive helicity is injected in the north-
ern/southern hemisphere which matches the hemi-
spheric pattern of filaments. In contrast on an
east-west PIL, such as occurs at high latitudes,
the sign of helicity injection reverses in each hemi-
sphere. Note also that differential rotation, by it-
self, does not produce a concentration of shear at
a PIL as is observed in actual filament channels. A
further mechanism, flux cancellation (surface dif-
fusion), is needed in order to match the observa-
tions.

The second mechanism of helicity injection con-
sidered is associated with the emergence of new
magnetic bipoles. The bipoles are specified to
have an internal magnetic helicity that matches
the observations of Pevtsov et al. (1995), namely,
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(a)

(b)

(c)

Fig. 13.— Interaction of a single magnetic bipole at 30◦ latitude with the polar field in the declining phase
of the solar cycle. Results are shown for full surface flux transport with supergranular helicity injection at
a rate of ωl = 5× 10−6 s−1. Elapsed times are (a) 30 days, (b) 60 days, and (c) 90 days. Line styles are the
same as in Figure 2.

negative/positive in the northern/southern hemi-
sphere. Through including these two large-scale
methods of helicity injection, Yeates et al. (2008)
found a 96% agreement between the observed chi-
rality of filaments and the chirality produced by
these two mechanisms over a 6 month period (see
Yeates & Mackay (2009a)). An important as-
pect of the agreement was that it was equally
good for both the dominant and minority chiral-
ity filaments in each hemisphere. While an excel-
lent agreement was obtained, one limitation of the
study was that it only considered filaments below
50◦ latitude. In a further study, Yeates & Mackay
(2012) simulated the entire length of cycle 23 and
showed that in the rising phase of the cycle, these

two effects can produce the correct sign of helic-
ity and chirality to match filament observations
at high latitudes. In contrast the opposite was
found for the declining phase, were positive helic-
ity was dominant at high latitudes in the north-
ern hemisphere and negative helicity in the south-
ern hemisphere. It should be noted that so far no
detailed observational studies of filament chirality
have been carried out in the declining phase of the
solar cycle.

One limitation of the injection of magnetic he-
licity into the solar corona through the emergence
of new bipoles, is that it only occurs at low lati-
tudes in a sporadic manner. As flux is transported
poleward and eruptions occur, this magnetic he-
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licity can be lost. Once lost, the correct sign of
helicity to produce the observed hemispheric pat-
tern cannot always be regenerated in situ. Conse-
quently, the helicity condensation model put for-
ward by Antiochos (2013) provides an attractive
third source of helicity injection. A key feature
of this model is that it acts over all latitudes,
at all times and can regenerate magnetic helicity
in situ, even after it has been lost due to erup-
tions. Furthermore, it is not sensitive to the ori-
entation of the PIL, so that the same sense of
shear will form all along a single PIL irrespective
of whether it contains a switchback. The present
paper has, therefore, considered this new method
of helicity injection and concentration within the
context of large-scale magnetic flux transport sim-
ulations. For simplicity we have only carried out
simulations in the northern hemisphere and so as-
sumed a counter-clockwise (positive) vorticity for
the small-scale convective motions. While the re-
sults are presented with regard to the northern
hemisphere the converse is true for the south.

To implement the small-scale injection of mag-
netic helicity, a large-scale averaged representation
of the small scale dynamics has been developed
(see Appendix). Within this formalization two key
parameters arise, l the cell size and ωl the cell vor-
ticity. For each of these parameters there is cur-
rently a high degree of uncertainty, where uncer-
tainties include the magnitude of each term and its
variation with latitude. For simplicity, we assume
typical values of l = 20,000 km and ωl = 1–5×10−6

s−1 and only consider helicity injection from su-
pergranular cells. The lowest value of the vortic-
ity is slightly larger than the peak value of the
differential rotation gradient, ωdr = 0.85 × 10−6

s−1, which occurs at λ = 54◦. The two helicity in-
jection parameters combine together to form the
helicity injection term ζ =≡ l2ωl/2 which ranges
from roughly 200 to 1000 km2 s−1.

To quantify the effect of helicity injection due to
vortical motions in supergranular cells, a variety
of magnetic field configurations typical of those
found on the Sun have been considered. These
include high-latitude east-west orientated polar
crown or sub-polar crown PILs and the interaction
of a magnetic bipole with the polar field for both
the rising and declining phases of the solar cycle.
These simulations show two key features: (i) For
a North-South orientated PIL in either the rising

or declining phase of the cycle, both differential
rotation and super granular helicity injection, in-
ject the same sign of helicity. In each hemisphere
this helicity matches that required to reproduce
the hemispheric pattern of filaments. Therefore
at this location the two mechanisms are comple-
mentary. (ii) Along an East-West orientated PIL
such as that of the polar crown or sub-polar crown
the vorticity of the super-granular helicity injec-
tion needs to be roughly 2-3 times higher than the
local value of the differential rotation gradient to
overcome the sign of helicity injection from dif-
ferential rotation. The value of 2-3 times higher
is required so that the super-granular helicity in-
jection can overcome differential rotation not just
locally at the PIL, but also in an extended zone
around it. This is necessary due to the presence of
surface diffusion which converges field lines which
have a large latitudinal separation in their foot-
points towards the PIL. The latitudinal separa-
tion in footpoints means that the field lines ex-
perience a larger rate of differential rotation than
that found locally at the PIL.

The most important aspect of the helicity in-
jection from supergranular cells occurs when con-
sidering the interaction of a bipole with the polar
field in the declining phase of the cycle. In some in-
stances the helicity injection can overcome differ-
ential rotation along what is called the East-West
lead arm, but not in all cases. As long as the field
lines overlying the lead arm are short enough and
the helicity injection large enough (ωl ∼ 5× 10−6

s−1) the helicity injection can dominate the com-
bined non-local effects of differential rotation and
surface diffusion.

From the results discussed above it can be con-
cluded that the previous methods applied for he-
licity injection and the new effect of super-granular
helicity injection are complementary in the rising
phase of the solar cycle. However, in the declining
phase of the cycle super-granular helicity injection
adds new features not found in the previous simu-
lations. In the combined model exceptions to the
hemispheric pattern may still occur, depending on
the relative values of the vorticity, differential rota-
tion gradient and finally the latitudinal separation
of field lines overlying the PIL. It should be noted
that even if the value of vorticity is not sufficient
to completely overcome differential rotation on an
East-West PIL, so long as it can minimize the ef-
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fect of differential rotation, a dominant chirality
pattern will be produced in each hemisphere. This
pattern will form as both differential rotation and
super-granular helicity injection produce the same
chirality on North-South orientated PILs. This in-
dicates to the existence of a preferred site for the
location of negative/positive helicity in the north-
ern/southern hemispheres which can in principle
be tested observationally.

Another possible observational test of the he-
licity injection mechanism for the Sun’s corona
is in the topology of the resulting filament chan-
nel. Supergranular helicity injection and conden-
sation tends to produce primarily sheared field at a
PIL, whereas flux diffusion and cancellation invari-
ably produces a strongly twisted filament chan-
nel. This difference is most easily seen in Fig-
ure 3 which shows the magnetic topology resulting
from supergranular injection only, versus differen-
tial rotation/cancellation only. It is evident that
the filament channel due to cancellation has much
stronger twist, which has important implications
both for observational tests and for the possible
eruption mechanism (e.g., Forbes et al. 2006).

For the simulations described above the effect
of helicity injection due to convective cells has
only been considered relative to differential rota-
tion and not to the injection of magnetic helic-
ity within new magnetic bipoles. This is a conse-
quence of assuming a potential field for the initial
condition. The question now arises as to how the
internal helicity of the bipole would effect the re-
sults. If the bipole emerges with the dominate
sign of helicity for each hemisphere, then along
the north-south PIL of the bipole the same sign
of helicity is injected by all three methods. The
effect of the additional helicity injection from the
emerging bipole would be to shorten the time of
formation of the axial field along the PIL. Previ-
ous simulations (Mackay & van Ballegooijen 2001)
have shown that in the declining phase, including
the helicity injection during emergence does not
overcome the effect of differentiation rotation on
the East West lead arm (see also Yeates & Mackay
(2012)). Therefore the inclusion of a bipole with a
self helicity would not change the results presented
here for the simple magnetic field configurations
considered.

While the results presented in this paper are
positive, a number of further studies need to be

carried out. First, new observations are required
to determine the rate of vorticity within convec-
tive cells and its corresponding variation with lat-
itude. In addition it must be determined whether
or not the hemispheric pattern of filaments still
holds in the declining phase of the solar cycle.
Next, the 6-month comparison between the flux
transport simulations and 109 filaments as carried
out by Yeates et al. (2008) needs to be re-run with
the super-granular helicity injection included. It
must be shown that with the small-scale helicity
injection included the simulation still reproduces
the exceptions in addition to the dominant hemi-
spheric pattern. Finally, the full solar cycle sim-
ulations of Yeates & Mackay (2012) can be rerun
to determine the consequence of different rates of
super-granular vorticity on the hemispheric pat-
tern throughout solar cycle 23. Within this study
the effect of latitudinal variations of the vorticity
should also be investigated.
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APPENDIX

Our objective here is to derive the large-scale
helicity injection rate associated with an ensem-
ble of small-scale cyclonic convection cells. First,
let us consider an isolated flux tube being twisted
by an individual cell lying in the plane S. Sup-
pose that the cyclone’s average rotation rate is ωl

and scale length (radius) is l, and that its average
signed magnetic field in the vertical direction is Bl,
so that its total signed vertical flux is Φl = πl2Bl.
Over a time interval δt, the cyclonic motion in-

21



duces an azimuthal flux change δΨl,

δΨl

δt
= −ωlΦl/2π

= −l2ωlBl/2

≡ −ζlBl,

passing through a vertical plane section Nl that
extends from the cyclone’s center to its edge and
upward from the convection plane S. The flux
change δΨl can be represented by a change δAl

in the component of the vector potential that lies
in S and is directed away from the center of the
cyclonic cell,

δAl

δt
l = −

δΨl

δt
= +ζlBl,

since the azimuthal flux passing through Nl equals
the line integral of the vector potential around its
perimeter. The magnetic helicity injected, δHl,
due to the linking of the fluxes by the cyclonic
motion is given by

δHl

δt
= Φl

δΨl

δt

= −ωlΦ
2
l /2π

= −ζlBlΦl.

The sign convention employed is that a positive ro-
tation rate corresponds to a right-handed or anti-
clockwise motion, which for positive Bl induces
a negative azimuthal flux with left-handed twist,
i.e., having a negative magnetic helicity. If the sign
(handedness) of the rotation is reversed, then so is
that of the helicity (twist). On the other hand, if
the sign of the vertical field Bl is reversed, then the
sign of the azimuthal flux reverses, but the sign of
the helicity and the handedness of the twist are
unchanged.

Now we accumulate the contributions to the
twist flux and magnetic helicity of multiple cy-
clonic cells over substantially larger scales. Con-
sider a longer vertical plane section NL that ex-
tends beyond the boundary of the first cyclone
to that of a remote second cyclone. The foot-
print of NL on S will include arbitrary chords
cutting through other cyclonic cells along the
way; however, the net azimuthal flux through NL

contributed by all such intervening cells is zero.

Therefore, the net flux change δΨL and vector-
potential change δAL along the footprint of NL

are simply the algebraic sums of the contributions
by the two cyclonic cells at its end points. Posi-
tioning those points at linear coordinates s1 and
s2 = s1 + L, there results

δΨL

δt
= −ζlBl

∣∣
s1

+ ζlBl

∣∣
s2
.

The corresponding expression for δAL then takes
the form

δAL

δt
= −

ζlBl

∣∣
s2

− ζlBl

∣∣
s1

s2 − s1
.

Let us now consider this equation on scales δt and
L that are large compared to the time and spatial
scales of individual cyclones but still small com-
pared to the length of a filament channel (PIL).
Note that we are interested only in the global
long-term evolution of the corona, not in its struc-
ture and dynamics on the supergranular (i.e., cy-
clone) scale. Over these large scales the effect of
the reconnection-driven helicity condensation is to
smooth out the small-scale temporal and spatial
fluctuations due to the individual cyclonic motions
Antiochos (2013). Considering the relation above
on these large scales, the variation on the left and
right hand sides can be approximated as deriva-
tives. Converting both sides to vector form, as
well, results in

∂As

∂t
= −∇s (ζBr) , (9)

where As is the vector potential and ∇s is the gra-
dient operator including only surface terms (along
θ and φ), and Br and ζ are the large-scale, aver-
aged values of Bl and ζl, respectively.

The helicity source in Equation 9 induces a
horizontal twist component Bs in the low-coronal
magnetic field wherever ζBr is nonuniform over
the surface. It leaves the radial component, Br,
unchanged, since from the induction equation 3
we have

∂Br

∂t
= −r̂ · ∇s ×∇s(ζBr),

which vanishes identically. On the other hand, the
horizontal component adjacent to the surface, Bs,
evolves according to

∂Bs

∂t
= −∇r ×∇s(ζBr),
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where ∇r is the radial component of the gradient
operator. It is numerically convenient to inter-
change the order of differentiation in this expres-
sion, so that

∂Bs

∂t
= +∇s ×∇r(ζBr).

This is consistent with a time-varying vector po-
tential Ar r̂ that obeys

∂Ar

∂t
r̂ = +∇r (ζBr) , (10)

which also leaves Br unchanged. This alterna-
tive form of the helicity-injection term was imple-
mented and used in the global-evolution calcula-
tions of this paper (cf. Equations 3 and 4).

We emphasize that the helicity injection model
expressed here by Equation 9 or 10 is only a statis-
tical approximation. It does not replicate any of
the complex convection and reconnection dynam-
ics that occur on short spatial and temporal scales,
whether those of the cyclonic motions in the low
solar atmosphere or of the transient reconnecting
current sheets formed between twisted flux tubes
in the overlying corona. A first-principles model
that attempted to capture all of this physics in
3D over the whole Sun would be prohibitively ex-
pensive to run and to analyze. Our prescription
instead seeks to capture the evolution averaged
over time and space scales that are large compared
to those characterizing the convection and recon-
nection processes, but still small compared to the
formation and life times and the spatial extent of
filament channels. This approach is entirely anal-
ogous in spirit to that underlying the continuum
diffusion model of the large-scale solar magnetic
field, which approximates the cumulative effects
of discrete random walks of elementary flux tubes
in the photospheric convection (Leighton 1964).

As a consequence of this implicit averaging over
small scales, our model yields negligible twist field
in any region where the product ζBr is approx-
imately uniform across the surface. Of course,
in such regions where the radial field is uniform
and nonzero and the cyclonic motions are acting,
nonzero twist fields will be produced locally and
be present all the time. As described in Antiochos
(2013), however, this twist reaches a low satura-
tion level and does not grow due to its transport
by reconnection to larger scales. We expect a long-
term growth of the twist field only near PILs where

there is a large-scale, persistent variation in the
average radial field strength. This is expressed by
the twist-field generation term ∇s (ζBr). In the
simulations in this paper, we assume that ζ is uni-
form, so that the resulting twist fields tend to ac-
cumulate primarily at PILs, where ∇sBr is large.
In principle, the twist fields could also grow in re-
gions where the radial-field gradients are strong,
even if far from the PIL. However, the same cy-
clonic convective motions that produce the twist
field from the vertical field also shuffle the mag-
netic flux elements across the surface. The re-
sulting large-scale diffusion will smooth out any
radial-field gradients over time, while transporting
the twist flux to the PILs. Our simulations, there-
fore, capture to a good approximation the smooth-
ing of radial-field gradients and the concentration
of twist at PILs, as observed on the actual Sun.
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