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THE  CVB  HEAT  TRANSFER  SYSTEM 
� The CVB is a Constrained Vapor 

Bubble inside a quartz cuvette with a 
working fluid like pentane.   

� Inside 3mm x 3mm ~ 40 mm long. 
� Liquid rises along the sharp corners 

and across the flat surfaces due to 
interfacial forces. 

� Heat source at one end. 
� Inside Radiation and Radiation to the 

surroundings Important  
� Evaporation from the hotter regions; 

condensation in the cooler regions;.  
� Important visual observation through 

the cuvette gives unprecedented 
insight into transport processes. 

� Emissivity = 0.775 for thermal 
radiation frequencies. 

A transparent “heat pipe” – ideal for studying basic fluid 
flow and heat transfer due to interfacial forces inside .  
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Micro-gravity Attributes 
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Interfacial  Forces  Dominate in μg 

Interfacial Curvature (K = 1/R) Gradient is 
Less in  Large (R) Systems [i.e. more flow]; 

Simpler system without natural convection. 
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Use of pressure gradient due to interfacial forces 
that control fluid flow is optimized in μg 

 [ capillarity (�K) for all thicknesses +  
disjoining pressure (A/�n) for thickness < 100 nm ] 

(Pl � Pv )' = � � K +
A

�n

� 

� 
� 

� 

� 
÷ 
'

4 

VISUAL 
Reflectivity  profile  gives 
liquid film thickness profile & 
pressure gradient  in liquid  



Objectives 
• Basic science study of transport processes  
 due to interfacial phenomena.  
  
• Basic engineering study of the CVB 
    extended surface fin (“wickless heat pipe”)  
    for cooling hot surfaces. 
 
• Generic study of phase-change heat transfer processes in 
     a non-isothermal constrained vapor bubble sub-system.   
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Recorded Multi-Scale Data 
CVB 

The macroscopic view – 
flow and heat transfer in 
the axial direction  
 

Dimensions ~ mm 

The microscopic view – 
interfacial phenomenon 
at the contact line 
 

Dimensions ~ �m 

Axial Corner Curvature Gradient 
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• (MACRO) Temperature field from thermocouples gives information 
on the details of heat transfer. 

• (MACRO) Vapor pressure data gives vapor purity and temperature.  
• (MACRO) Surveillance video gives bubble location, stability, boiling. 
• --------------------------------------------------------------------------------------- 
• (MICRO) Liquid film thickness profile from microscopic  reflectivity 

gives local pressure gradient for fluid flow. 
• (MICRO) Transient Reflectivity Profile from video camera on 

microscope gives transient data on microscopic details of pressure 
gradient and fluid flow. 
 

• WHICH  SCALE  DO  WE  ANALYZE  FIRST  ? 
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RECORDED  EXTENSIVE  DATA  
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Surveillance Camera Images: 
MACROSCOPIC  VIEW 
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Surveillance Camera Image: 
40 mm higher flux 

 Visual Observations Support Experimental Heat 
Transfer Results Based on the Temperature Profile 
Note: Excess fluid at hot end. 



0.2 W   30 mm Cell – �g  at 10 x 
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H E A T E R       E N D 

Condensation 

FRINGES  SHOW  THE  DETAILS  OF  
MANY  DIFFERENT  LOCAL  ZONES 

? HOW AND WHERE TO MODEL FIRST  ?  

Evaporation 

Corner meniscus 

Film on flat side surface 



ENGINEERING  SCALE  DATA 
 

(SIMPLE  1D  MODEL  EASIER  TO  
ANALYZE  WHICH  GIVES  OVERALL  

VIEW  OF  TRANSPORT  PROCESSES) 
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SIMPLE  ONE  DIMENSIONAL  HEAT  BALANCE 
 
  
 
MEASUREMENTS:  TEMPERATURE  DATA  GIVES OUTSIDE HEAT  TRANSFER  RATE  
PER  UNIT  LENGTH  &  CONDUCTION  GRADIENT IN WALL  
 
1 UNNOWN: qin�x , LOCAL INSIDE HEAT TRANSFER RATE PER UNIT  
                               LENGTH INCLUDES RADIATION & PHASE CHANGE  
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TEMPERATURE  GIVES  OBVIOUS  CHANGE  IN  AXIAL   CONDUCTION  GRADIENT  
PER  UNIT LENGTH, EXTERNAL  RADIATION  AND INSIDE HEAT TRANSFER 
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DRY  CUVETTE  VERSUS  PENTANE  VAPOR  BUBBLE 
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Inside heat transfer per unit length for 2 W in �g.  Only radiation present on 
inside and outside for the dry case.  Net inside radiation field is thereby known. 

DRY  CUVETTE  VERSUS  PENTANE  VAPOR  BUBBLE 
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Conclusions from �g 
  

■ Using temperature data, zones in the CVB and local heat transfer 
fluxes were determined. 

■ Phenomena in �g are very different –  
■  because of low effective gravity, there is more fluid flow. 
■  because of no natural convection, there is a change in the heat 

transfer profile. 
■ Surface of the CVB runs “hotter” in space due to lack of convective 

cooling.  
■ Macroscopic model shows expected trend – enhanced liquid flow 

and heat transfer coefficient for evaporative heat transfer. 
■ More microscopic models describing the details of the transport 

processes and stability are being evaluated. 
■ Visual  Observation are Essential for Understanding. 
■ Loop Configuration Design Using the CVB Concept is Anticipated. 
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