Detailed uncertainty analysis of the ZEM-3 measurement system

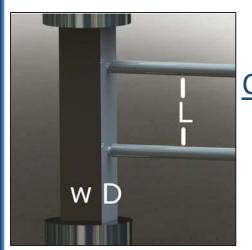
Jon Mackey Mechanical Engineering, University of Akron

Alp Sehirlioglu

Materials Science and Engineering, Case Western Reserve University

Fred Dynys NASA Glenn Research Center

NASA Cooperative Agreement: NNX08AB43A NASA/USRA Contract: 04555-004



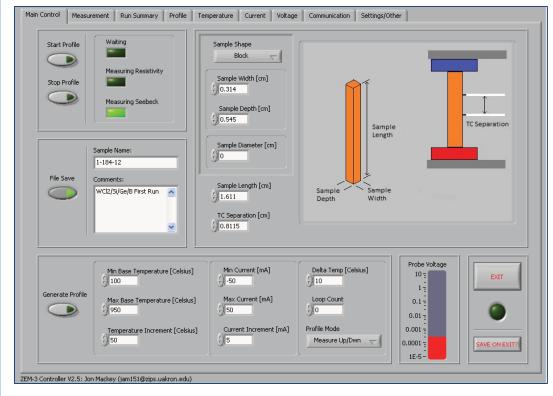
unink beyond the possible

Objectives

- Develop an uncertainty analysis for a common resistivity and Seebeck coefficient measurement configuration.
- Introduce a software package which includes the uncertainty analysis calculations.
- Establish measurement best practices to minimize measurement uncertainty.
- Demonstrate typical high temperature uncertainty on a Si/Ge sample.

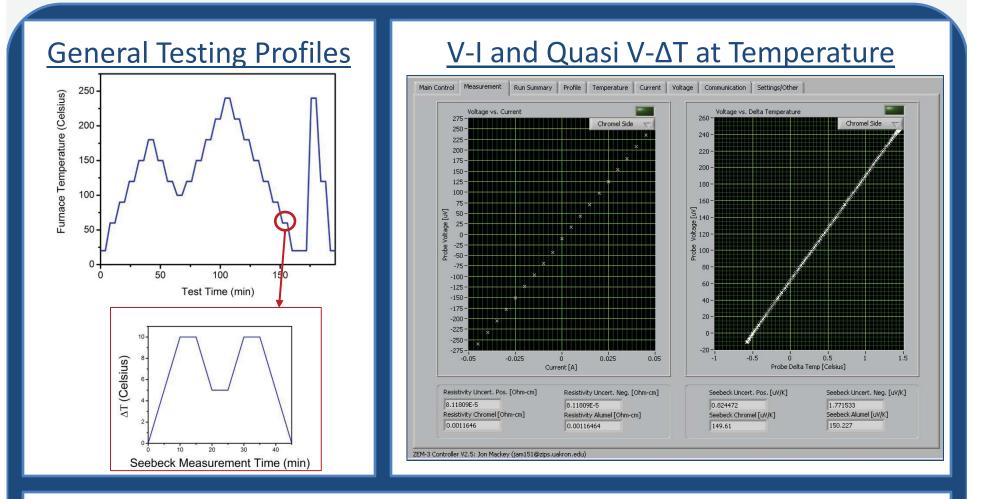
Potentiometric Configuration (4-probe)

Power Factor Uncertainty +7% / -25%


ULVAC ZEM-3

Linseis LSR-3

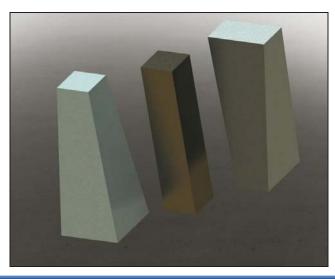
LabVIEW VI


- ZEM-3 system has been developed into a LabVIEW VI. (Independent of ULVAC Technologies)
- Software allows for versatile testing profiles.
- Includes full uncertainty analysis on data.
- •Open source makes customization possible.

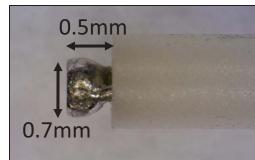
Custom ZEM-3 Software Available

Open Source LabVIEW VI

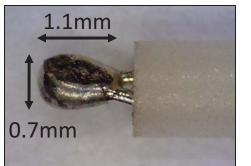
Contact: Jon Mackey (jam151@zips.uakron.edu or jonathan.a.mackey@nasa.gov)


Open Source LabVIEW VI

Contact: Jon Mackey (jam151@zips.uakron.edu or jonathan.a.mackey@nasa.gov)

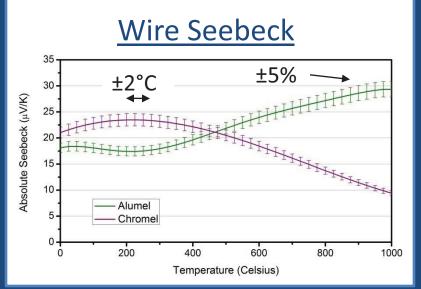

Resistivity Uncertainty

#	Source	Typical Values
1	Thermocouple tip radius	0.25 mm
2	Thermocouple separation length	±0.1 mm
3	Sample uniformity	±0.1 mm/cm
4	Caliper uncertainty	±0.01 mm
5	Statistical variation	Calculated
6	Wire discrepancy	Calculated
7	DAQ voltage uncertainty	50 ppm +1.2 μV
8	DAQ current uncertainty	0.2% +0.3 mA

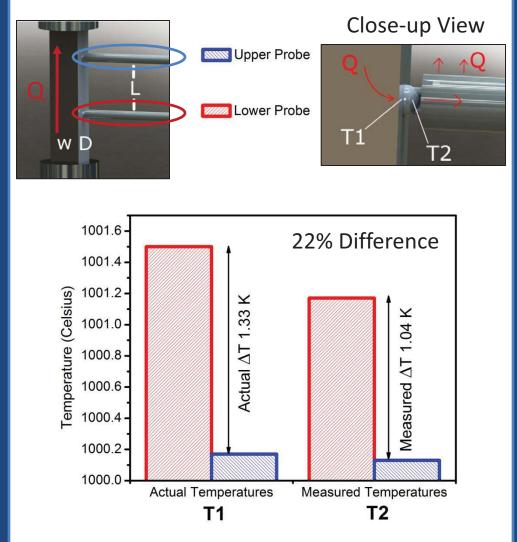

Sample Uniformity

Typical Thermocouple Beads

Source: ULVAC


Source: Cleveland Electric

DL2 L=0.196 mm DL1 L=0.783 mm

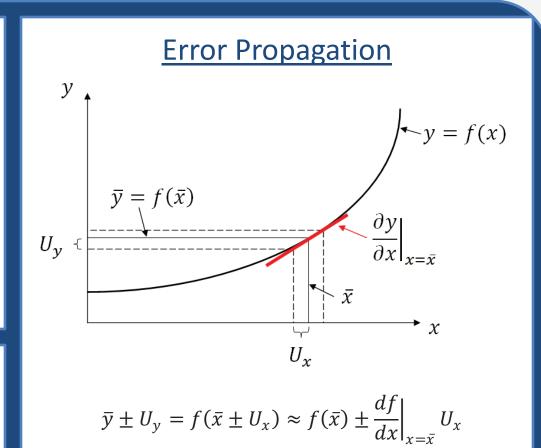


Seebeck Uncertainty Sources

#	Source	Typical Values
1	Cold-finger effect	10,000 W/(m ² K)
2	Wire Seebeck variation	±5%
3	Absolute temperature	± 2°C
4	Statistical variation	Calculated
5	Wire discrepancy	Calculated
6	DAQ voltage uncert.	50 ppm + 1.2 μV
7	DAQ temperature uncert.	50 ppm + 1.2 μV

Cold-finger Effect

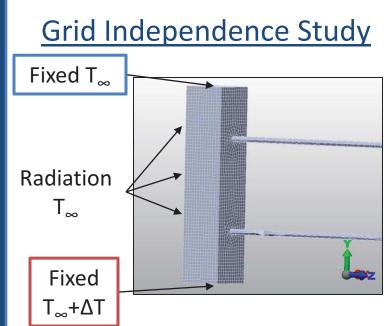
Resistivity Calculation


 $\rho = \frac{\sum z_i \sum y_i - N \sum z_i y_i}{(\sum z_i)^2 - N \sum z_i^2} \frac{wD}{L}$

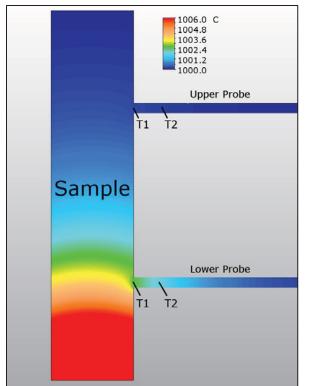
y- probe to probe voltage z- test electrical current w/D- sample width/depth L- probe separation length N- sample size

Seebeck Calculation

$$S = -\frac{\sum x_i \sum y_i - N \sum x_i y_i}{(\sum x_i)^2 - N \sum x_i^2} + S_{Wire} (T)$$

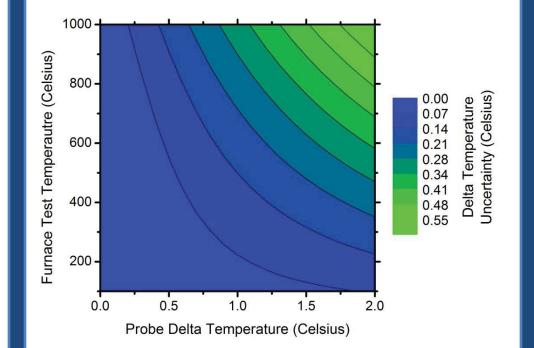

x- probe ΔT y- probe to probe voltage S_{wire}- wire Seebeck coefficient T- sample temperature N- sample size

Uncertainty can be calculated from a Taylor Series expansion around the nominal measurement value


FEA Model Parameters

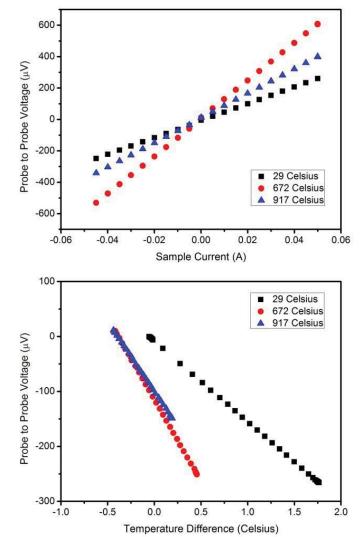
- Autodesk Simulation Multiphysics
 - Non-linear iterative thermal solver
- •Thermal domain:
 - Sample 4x4x18mm rectangular prism
 Thermal conductivity 4 W/(m²K)
 - Probes Ø0.5mm x 150mm
 - •Thermal conductivity 30 W/(m²K)
- Boundary conditions:
 - •Sample ends fixed temperatures
 - Probe ends fixed temperatures
 - Remaining faces radiation coupled
 - •ε=0.2,0.5, 0.7, 0.9 (40% change)
- Parameters of study:
 - •Furnace temp=200,600,1000°C
 - Differential temp=0.1 to 14°C
 - •Thermal conductance= 100,000, 33,000, 10,000 W/(m²K) (600% change)

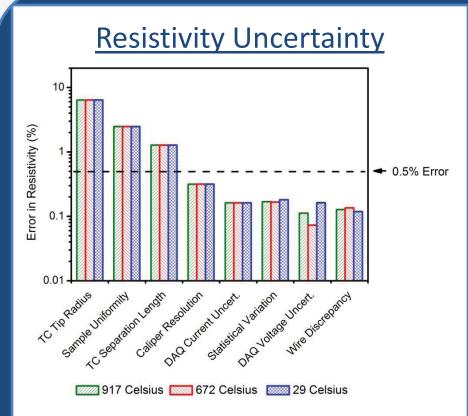
- •Two meshes were generated from primarily brick elements
- Course mesh (shown above)
 - •41,000 elements
- Fine mesh
 - •55,000 elements
- •Mesh agreement <0.2% change in results


Temperature Contour

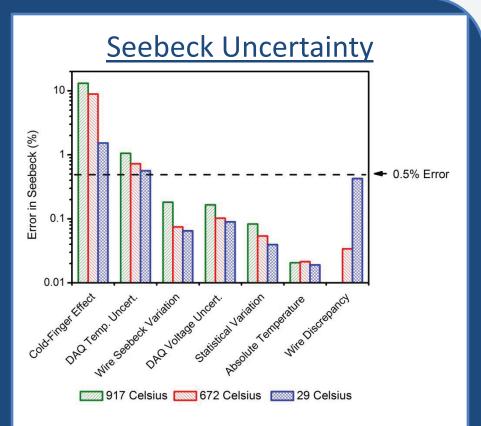
T1/T2 represent "actual" and "measured" temperatures
Model fits experiment well at high temperature

FEA Uncertainty Results

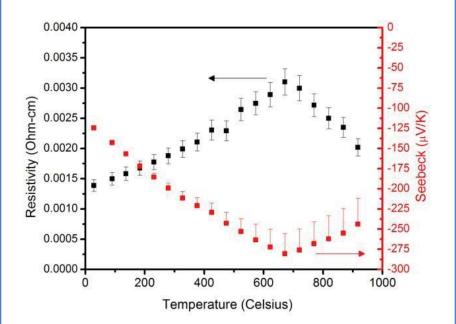

- •Uncertainty is defined as the difference between the desired and measured temperature difference.
- Uncertainty increases with furnace temperature and delta temperature.



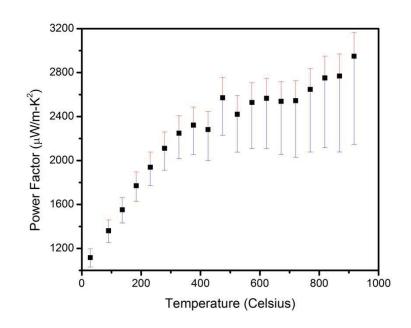
Testing Samples & Profile


- Si₈₀Ge₂₀ samples prepared by milling and spark plasma sintering elemental powders
 - •2at% P doped
- Ø 1" pucks machined to 4x4x18mm
 Samples measured from 25 to 950°C
 Equilibrium definition:
 - Furnace <5% change in 120 seconds
 - Isothermal <0.1°C in 120 seconds
- Resistivity measurement:
 - -50 to +50 mA increment 5mA
- •Seebeck measurement:
 - •+1°C/min up to 10°C

Example Measurement Data



- Resistivity uncertainty is fairly temperature independent, due to geometric nature.
- •Thermocouple tip radius dominates uncertainty.


- Seebeck uncertainty is highly temperature dependent.
- Cold-finger effect dominates at all temperatures, and is asymmetric.

Overall Results

- Resistivity uncertainty is ±7.0% at all temperatures.
- Absolute Seebeck uncertainty ranges from ±1.0% at room temperature to +1.0%/-13.1% at high temperature.

Power Factor Results

- Power factor uncertainty ranges from ±7.5% at room temperature to +7.3%/-25.0% percent at high temperature.
- •These values all assume the conservative parameter values listed.

Conclusion

- LabVIEW VI is available to operate the ZEM-3 and calculate the uncertainty.
- Resistivity uncertainty is primarily geometric, and can be reduced with careful preparation.
- Seebeck uncertainty is primarily due to the cold-finger effect, and can be reduced with good thermal contact.
- Power factor uncertainty is ±7.5% at room temperature and +7.3%/-25.0% percent at high temperature.

ASE WESTERN RESERVE

think beyond the possible

Acknowledgements

Tom Sabo, Ray Babuder, Ben Kowalski, Clayton Cross NASA Glenn Research Center

Dr. Sabah Bux, Dr. Jean-Pierre Fleurial JPL

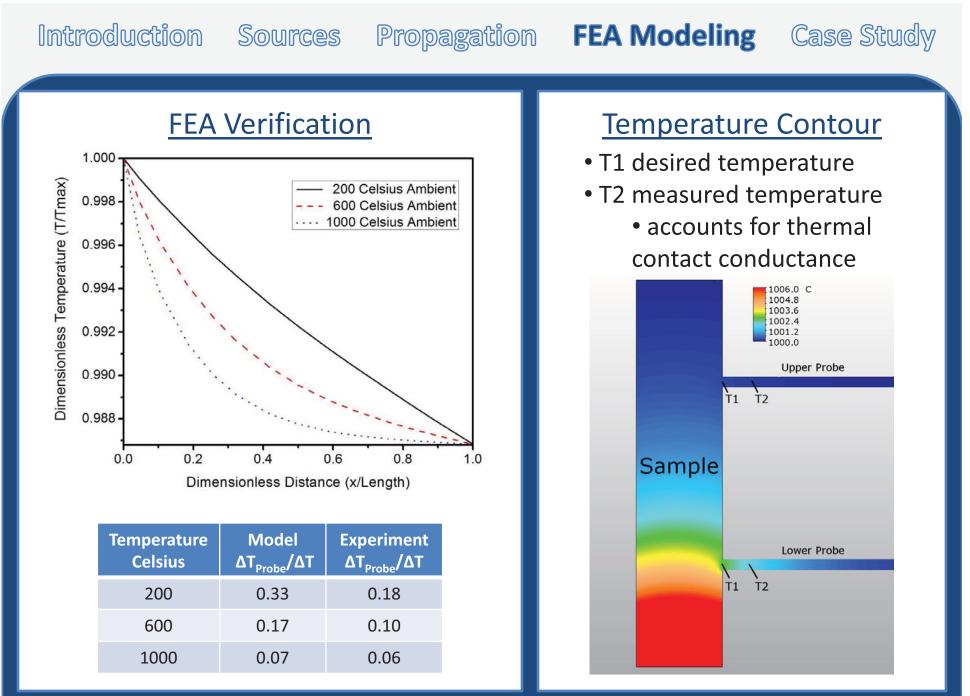
NASA Cooperative Agreement: NNX08AB43A

NASA/USRA Contract: 04555-004

Appendix

Error Propagation y y = f(x) $\bar{y} = f(\bar{x})$ ∂y U_y -($\overline{\partial x}|_{x=\bar{x}}$ \overline{x} ► x $U_{\boldsymbol{x}}$ $\bar{y} \pm U_y = f(\bar{x} \pm U_x) \approx f(\bar{x}) \pm \frac{df}{dx}\Big|_{x = \bar{x}} U_x$ $e_{y_x} = \frac{1}{\overline{y}} \frac{\partial y}{\partial x} \Big|_{x = \overline{x}} U_x$ $e_{Total} = \sqrt{e_{y_1}^2 + e_{y_2}^2 + e_{y_3}^2 + \cdots}$

Resistivity and Seebeck

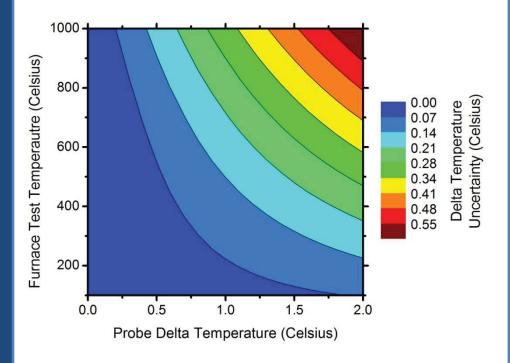

$$\rho = \frac{\sum z_i \sum y_i - N \sum z_i y_i}{(\sum z_i)^2 - N \sum z_i^2} \frac{wD}{L}$$

$$S = -\frac{\sum x_i \sum y_i - N \sum x_i y_i}{(\sum x_i)^2 - N \sum x_i^2} + S_{Wire} (T)$$

x- probe temperature difference
 y- probe voltage
 z- electrical current
 N- sample size

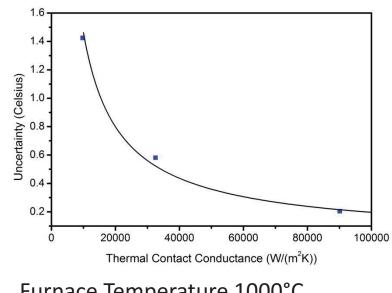
Statistical Uncertainty

$$U_{Stat} = t_{\nu,95\%} \sqrt{\frac{N \sum (y_i - y_c(z_i))^2}{\nu (N \sum z_i^2 - (\sum z_i)^2)}}$$



ZEM-3 Uncertainty Analysis

Appen 2


FEA Uncertainty Results

- Uncertainty is defined as the difference between the desired and measured temperature difference.
- Uncertainty increases with furnace temperature and delta temperature.

Influence of Thermal Contact Conductance

•Thermal contact conductance plays a significant role in the Cold-finger effect and displays a power law dependence.

Furnace Temperature 1000°C Delta Temperature 14°C