https://ntrs.nasa.gov/search.jsp?R=20140010988 2019-08-31T19:27:52+00:00Z

Control and part of the part of the second s

Enhancement of the natural Earth satellite population through meteoroid aerocapture

Althea Moorhead, Bill Cooke NASA Meteoroid Environment Office April 28, 2014

1972 Great Daylight Fireball Image credit: ANSMET, James M. Baker

Earth-grazing meteoroids

Questions:

- How many re-exit?
- How many are aerocaptured?
 - Ratcliff et al. (1993)
 - Hills & Goda (1997)
 - Hunten (1997)
- Can they become natural Earth satellites?
 - Granvik et al. (2012)

Number and Size

Velocity

Directionality

Data from NASA All-Sky Fireball Network and Southern Ontario Meteor Network

Directionality

Moorhead Meteoroid aerocapture 8/ 21

The trajectory in the atmosphere

 Compute trajectory under Earth's gravity and atmospheric drag

$$\vec{F}_{g} = -\frac{GM_{\oplus}m}{r^{2}}\hat{r}$$
$$\vec{F}_{D} = -\frac{1}{2}\rho_{a}v^{2}C_{d}A\hat{v}$$

Model Earth

Earth as ellipsoid

MSIS-E 90 model

"in-atmosphere" = within 100 km of the surface

Ablation

• Meteoroid ablation is a function of mass and velocity (Ceplecha, 2000):

$$\dot{m} = -\sigma C_d A \rho_d^{-2/3} \rho m^{2/3} v^3$$

- Meteoroids modeled as spheres ($C_d = 0.47$, A = 1.21)
- Effective ablation coefficient (σ) includes some fragmentation

Catastrophic fragmentation

• Occurs when ram pressure exceeds material strength:

 $S < \rho v^2$

- Model fragmentation:
 - 20% chance of fragmentation every 0.1 s
 - 0-50% reduction in primary mass

Meteoroid composition

Fireball meteoroid properties by type:

Туре	%	$ ho_d$	σ	S
Iron	3	7.8	0.07	200
Stony	29	3.7	0.014	30
Carbonaceous	33	2.0	0.042	10
Cometary	30	0.75	0.1	1
		g/cc	s^2/km^2	MPa

Ceplecha (2001) Hills & Goda (1993)

Surviving population

Out of 10^7 incident meteoroids:

	Grazers	Aerocaptures
	27,250	10,589
Ablation	18,307	5,040
Frag.	16,754	5,146

Numbers are per year for meteoroids greater than 1 cm in diameter

Simulations

Image credit: NASA

- Simulations include Sun, Earth, and Moon
- Used *Mercury*, Bulirsch-Stoer method
- Random start between J2K and J2K + 19 years (Metonic cycle; Granvik et al., 2012)

End states

Leaving Earth's Hill sphere

Atmospheric re-entry

End states

Re-entry or escape after several orbits

Re-entry or escape after many orbits

Steady-state population

Using time spent in near-Earth space and in orbit:

	Number
Outbound	3,000
Orbiting	1,600

Period distribution

Size dependence

Conclusions and future work

- 0.2% of large meteoroids re-exit the atmosphere
- Meteoroid aerocapture can maintain a population of small (cm-sized) NES's
 - $\bullet~\sim$ 3,000 in near-Earth space
 - $\bullet~\sim$ 1,500 orbiting in near-Earth space
- Gravitational capture (Granvik et al., 2012) dominates for meter-sized bodies
- Future work:
 - Convolve results with meteoroid directionality