View metadata, citation and similar papers at core.ac.uk

brought to you by .{ CORE

provided by NASA Technical Reports Server

NASA/TM—2014-218319

Advanced Extravehicular Mobility Unit
Informatics Software Design

Theodore W. Wright
Glenn Research Center, Cleveland, Ohio

June 2014

https://core.ac.uk/display/42726707?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

NASA STI Program . . . in Profile

Since its founding, NASA has been dedicated to the
advancement of aeronautics and space science. The
NASA Scientific and Technical Information (STI)
program plays a key part in helping NASA maintain
this important role.

The NASA STI Program operates under the auspices
of the Agency Chief Information Officer. It collects,
organizes, provides for archiving, and disseminates
NASA’s STI. The NASA STI program provides access
to the NASA Aeronautics and Space Database and

its public interface, the NASA Technical Reports
Server, thus providing one of the largest collections
of aeronautical and space science STI in the world.
Results are published in both non-NASA channels
and by NASA in the NASA STI Report Series, which
includes the following report types:

* TECHNICAL PUBLICATION. Reports of
completed research or a major significant phase
of research that present the results of NASA
programs and include extensive data or theoretical
analysis. Includes compilations of significant
scientific and technical data and information
deemed to be of continuing reference value.
NASA counterpart of peer-reviewed formal
professional papers but has less stringent
limitations on manuscript length and extent of
graphic presentations.

« TECHNICAL MEMORANDUM. Scientific
and technical findings that are preliminary or
of specialized interest, e.g., quick release
reports, working papers, and bibliographies that
contain minimal annotation. Does not contain
extensive analysis.

« CONTRACTOR REPORT. Scientific and
technical findings by NASA-sponsored
contractors and grantees.

* CONFERENCE PUBLICATION. Collected
papers from scientific and technical
conferences, symposia, seminars, or other
meetings sponsored or cosponsored by NASA.

+ SPECIAL PUBLICATION. Scientific,
technical, or historical information from
NASA programs, projects, and missions, often
concerned with subjects having substantial
public interest.

« TECHNICAL TRANSLATION. English-
language translations of foreign scientific and
technical material pertinent to NASA’s mission.

Specialized services also include creating custom
thesauri, building customized databases, organizing
and publishing research results.

For more information about the NASA STI
program, see the following:

* Access the NASA STI program home page at
http://www.sti.nasa.gov

* E-mail your question to help@sti.nasa.gov

* Fax your question to the NASA STI
Information Desk at 443—757-5803

e Phone the NASA STI Information Desk at
443-757-5802

* Write to:
STI Information Desk
NASA Center for AeroSpace Information
7115 Standard Drive
Hanover, MD 21076-1320

NASA/TM—2014-218319

Advanced Extravehicular Mobility Unit
Informatics Software Design

Theodore W. Wright
Glenn Research Center, Cleveland, Ohio

National Aeronautics and
Space Administration

Glenn Research Center
Cleveland, Ohio 44135

June 2014

Trade names and trademarks are used in this report for identification
only. Their usage does not constitute an official endorsement,
either expressed or implied, by the National Aeronautics and

Space Administration.

Level of Review: This material has been technically reviewed by technical management.

Available from

NASA Center for Aerospace Information National Technical Information Service
7115 Standard Drive 5301 Shawnee Road
Hanover, MD 21076-1320 Alexandria, VA 22312

Available electronically at http://www.sti.nasa.gov

Advanced Extravehicular Mobility Unit
Informatics Software Design

Theodore W. Wright
National Aeronautics and Space Administration
Glenn Research Center
Cleveland, Ohio 44135

Abstract

This is a description of the software design for the 2013 edition of the Advanced Extravehicular
Mobility Unit (AEMU) Informatics computer subassembly. The Informatics system is an optional part of
the AEMU space suit assembly. It adds a graphical interface for displaying suit status, timelines,
procedures, and caution and warning information. In the future it will display maps with GPS position
data, and video and still images captured by the astronaut.

NASA/TM—2014-218319 il

Contents
1 Introduction

2 Hardware Platform
21 Real TimeClock
2.2 Compass and Accelerometer
23 GPSo

3 Operating System and Software Libraries
31 Linux
32 Qt ..
33 ZeroMQ
34 Google Protocol Buffers/Nanopb . . .

4 Software Architecture
4.1 C++ Infrastructure
411 Setup,
4.1.2 Periodic Processing
413 SendingData
414 ReceivingData
4.1.5 AppData Data Exchange . . .

4.2 QML/Javascript Graphical User Interface

42.1 Consumable Display
422 Communications Display . . .
423 BuddyDisplay
424 File Selection
42.5 Procedure Display
42.6 Timeline Display
427 Caution and Warning Display

S Summary

6 References

1 Introduction

10
10
11
11
12
13
13
15
16
17
18
19

20

20

This is a description of the software design for the 2013 edition of the Advanced Extravehicular
Mobility Unit (AEMU) Informatics computer subassembly. The Informatics system is an optional
part of the space suit assembly. It adds a graphical interface for displaying suit status, timelines,
procedures, and caution and warning information. In the future it will display maps with GPS
position data, and video and still images captured by the astronaut.

NASA/TM—2014-218319

Note that the Informatics system is a work in progress, and many of the features, interfaces, teleme-
try formats, timelines, procedures and other data are currently just placeholders to test that the de-
sign is working as expected. This document has been updated to describe the newer Informatics
system as used in the subassembly integration tests.

2 Hardware Platform

There are currently no space-rated radiation-hardened computer systems with a Graphics Process-
ing Unit (GPU). Until an affordable graphics capable computer with a path-to-flight is available,
for breadboard testing Informatics will use a simple, low cost, low power, embedded computer that
is hopefully representative of future space-rated hardware.

The hardware selected is called a Beaglebone Black. 1t is a small (3.4" by 2.1"), light (1.4 oz.),
$45 computer board with an ARM 7 architecture processor and PowerVR graphics coprocessor
combined in a System-On-Chip package. It has 512 MB of RAM memory, a 2 GB flash file system
and a SD card slot for the operating system and user file systems, 100 Mbit/s Ethernet, and a USB
host connector. The processor has a maximum speed of 1 GHz, but if the software load permits, it
slows to 300 MHz to reduce power consumption.

The Informatics system receives inputs over an Ethernet network. This could eventually include
audio information (for voice recognition) and video information (for real time video displays), but
those are not implemented in the current Informatics software. Reception of streaming audio over
Ethernet has been successfully tested with the Informatics software, but the audio was just stored
to a file (voice recognition is not implemented).

With the addition of an HDMI to LVDS converter board, the Beaglebone can drive the cuff display
(shown in Figure 1) developed for the NASA Desert Research and Technology Studies (Desert
RATYS) tests. The 1024 by 600 resolution 5" cuff display has edge buttons to use for operator
control, and the buttons connect through a USB keyboard interface. For bench top testing, the
Beaglebone can drive an LCD7 800 by 480 resolution 7" LCD display that mounts on top of the
Beaglebone. The LCD7 has five pushbuttons that emulate keystrokes for operator input (and a
resistive touchscreen, but that will not work if the operator is wearing gloves).

The Beaglebone has expansion connectors that can add optional additional hardware. Hardware
and software support has been tested for the following expansions:

e Real Time Clock
e Compass and Accelerometer
* GPS

A Beaglebone Black computer with breadboard connections for the hardware expansions is shown
in Figure 2.

NASA/TM—2014-218319 2

Figure 1: Beaglebone Black computer driving the Desert RATS cuff display

Figure 2: Beaglebone Black computer with breadboard Clock, Compass and GPS

NASA/TM—2014-218319 3

2.1 Real Time Clock

The Beaglebone hardware does not include a battery-backed real-time clock circuit, so when the
system is powered on, the operating system time defaults to January 1, 1970. The correct time
and date can be set manually or with a Network Time Protocol daemon if the appropriate server
is available (the Radio subassembly provides this, if present). Adding a battery backed clock chip
enables correctly time stamped data under all configurations without user intervention.

A battery-backed clock based on the Maxim DS3231 temperature compensated chip is easily con-
nected with a 2 wire (plus 3.3V power and ground) I2C interface. An I2C interface is preconfigured
on a stock Beaglebone Black on P9 expansion header pins 19 and 20. The clock appears at address
0x68. A Linux driver for the compatible DS1307 chip comes with Angstrom Linux distribution,
so the clock can be configured and read by adding two lines to a system startup script as shown in
Listing 1.

Listing 1: Configuring the clock driver and reading the clock

create /dev/rtl
echo ds1307 0x68 > /sys/class/i2c—adapter/i2c —1/new_device

read battery backed hardware clock
hwclock —r —f /dev/rtcl

2.2 Compass and Accelerometer

The Informatics display has a compass heading indicator to help astronauts orient themselves for
surface operations. For testing on Earth, this can be driven by an electronic compass. The bread-
board design uses an STMicroelectronics LSM303 chip containing a 3 axis magnetometer and a 3
axis accelerometer with an 12C interface (with addresses Ox1e and 0x19 respectively). Vector cross
products can be used to combine the magnetic field vector with the gravity vector to determine a
compass heading without requiring a fixed orientation of the subassembly.

There is no pre-written device driver for this chip, so a Python language script is started in the
background that reads the 12C registers to determine magnetic field and gravity vectors, combines
them to generate a compass heading, and publishes the heading using the ZeroMQ/Protocol Buffer
format described in Sections 3.3 and 3 4.

23 GPS

The Informatics display also has an astronaut position display, which appears as latitude, longitude
and altitude for Earth testing. This information comes from GPS satellites, using a GlobalTop
MTK3339 GPS chipset connected through a 2 wire (plus power and ground) serial interface.

NASA/TM—2014-218319 4

The Beaglebone Black P9 header pins 21 and 22 can be configured as a serial UART using the
Linux device tree overlay support. Pre-compiled device tree overlays for the Beaglebone UARTSs
come with Angstrom Linux, so all that is needed to make the UART device appear is to write the
device name to the configuration register at system startup, as shown in Listing 2.

Listing 2: Configuring the Serial UART connected to the GPS

create serial port /dev/tty02
echo BB-UART2 > /sys/devices/bone_capemgr.8/slots

There is no pre-written device driver for a serial GPS, so a Python language script is started in the
background that opens the serial port and parses the NEMA formatted text data stream to extract
latitude, longitude and altitude. It then publishes the data using the ZeroMQ/Protocol Buffer format
described in Sections 3.3 and 3 4.

3 Operating System and Software Libraries

Although the software environment for Informatics is geared for embedded system compilers and
tools, it also tries to take advantage of existing higher level open source protocols, libraries, and op-
erating systems. This allows the software to be developed in a more timely manner, and with rapid
prototyping several ideas can be tried and discarded to determine the better way to do things.

3.1 Linux

There are no hard real-time software requirements for Informatics, so Linux was chosen as the
operating system due to its ease of use, good development tools, documentation, hardware support,
and price (free).

The Beaglebone Black was delivered with the Angstrom Linux distribution on it's flash file system.
This was updated to the latest version (Angstrom release August 21, 2013 - Linux kernel version
3.8.13) before testing, and run from a 16 GB high speed micro SD card to provide ample free
file system space. Ubuntu Linux 13.04 was also tested, and was a little bit easier to work with
due to primarily to past experience and familiarity. However, it was decided to use Angstrom for
the present because it has drivers that support the hardware accelerated GPU, and Ubuntu does
not. Drivers could probably be compiled for Ubuntu with some effort, but the time has not been
available to complete that task.

Several standard Linux software daemons are important for Informatics. The Beaglebone has no
battery backed clock, so it relies on a Network Time Protocol daemon to set its clock and keep
itself synchronized with other assemblies. The radio subassembly will provide an NTP server
(Informatics could also use a GPS chip for this purpose, or a dedicated battery-backed clock chip).
A Secure Shell daemon allows logging into the Beaglebone across the network, and it allows file

NASA/TM—2014-218319 5

transfer to and from the Beaglebone with the Secure Copy Protocol. A File Transfer Protocol
daemon could also be used to update files on the Beaglebone's SD card. The GStreamer software
is used to receive and decode audio streams over Ethernet from the Audio subassembly.

32 Qt

The previous generation Informatics system ran on an Intel computer and used the Adobe Action-
Script (Flash) graphics development tools and libraries. Flash is being discontinued and does not
support non-Intel platforms, so a different Graphical User Interface (GUI) library is required.

The library chosen is the open source Ot library. Qt was primarily a C++ based tool, but recent
versions have added a declarative layout language with embedded Javascript called QML. QML is
similar to ActionScript, and it is much faster to work with than C++. GUI development is tedious
and time consuming, so faster development speed is helpful. Qt has several other advantages:

e It is cross-platform. This allows code to be developed on desktop Linux, Macintosh, or
Windows computers and simply recompiled to run on the embedded computer, where it looks
and runs identically.

* On embedded computers, Qt interfaces directly with the video driver, bypassing operating
system layers such as the X11 Window system. It has good performance even on relatively
slow hardware.

* QML layouts can adapt somewhat to different screen resolutions, allowing easy hardware
changes.

Qt version 4.8 was installed from the Angstrom software repository and used for all Informatics
development so far. However, Qt version 5 was recently released and claims to be even more
optimized for embedded systems. The Ubuntu 13.04 Linux release that was tested used Qt 5.0, but
did not include the necessary accelerated hardware support. A switch to Qt 5 should be re-evaluated
when support matures.

33 ZeroMQ

A Publish/Subscribe network architecture is a best practice for reliable information exchange be-
tween loosely coupled networked subassemblies, such as the AEMU. While it is possible to create
a simple system based on UDP broadcasts, past experience has shown that making it reliable and
fixing all the corner cases can become complicated.

The open source ZeroMQ socket library makes coding a basic Publish/Subscribe system trivially
easy, requiring about a dozen lines of code. ZeroMQ is a library that is linked to code, so unlike most
other "middleware" solutions, it does not require a separate daemon process or broker software. It

NASA/TM—2014-218319 6

was originally developed for high frequency trading applications on Wall Street, where efficiency
is paramount.

There are dozens of language bindings to ZeroMQ. The Python binding is used to create a simple
"fake telemetry" generator that is used to make network traffic to test the Informatics software.
Another small Python/ZeroMQ script can be used to decode and print network traffic generated by
AEMU subassemblies. ZeroMQ version 3.2.2 is currently used by Informatics.

3.4 Google Protocol Buffers/Nanopb

ZeroMQ is responsible for moving bytes between computers, but does not care what format those
bytes take. A wire protocol is needed to standardize the format of the data being exchanged. The
open source Google Protocol Buffer format was selected as a binary wire protocol.

Advantages of using Protocol Buffers include:

* An efficient (slightly compressed) binary data representation

Easy backwards compatible extension as more data is added

Thoroughly tested and optimized by Google

A code generator that creates the necessary encoding and decoding software from a simple
data description language

Portable generated source code is added to projects instead of requiring a library

Protocol Buffers as packaged from Google has support for the C++ and Python languages, but
implementations for other languages are provided by third parties.

Informatics and the other AEMU subassemblies use the Nanopb C language implementation. Nanopb
is designed for embedded systems, and an option to statically allocate all of its memory. Although
the Informatics code is partially written in C++ and could use the higher level interface, it uses the
Nanopb implementation to share commonality with other AEMU assemblies.

The wire format of the data published by ZeroMQ is shown in Figure 3. A 16 bit Cyclic Redundancy
Check is stored in the first part of the message (and is computed over the remainder of the message).
Next is two bytes that encode the length of the Protocol Buffer part of the message. The CRC and
length are sent in network byte order. Next is the Protocol Buffer payload, followed by O to 3 pad
bytes (ASCII 0x00) to make the total message length a multiple of 4 for easier compatibility with
the older ARM architecture CPU used in the Audio subassembly.

The Protocol Buffer port of the message has 3 mandatory fields followed by 0 or more optional
fields. The mandatory fields are sender, timestamp, and type. The type field determines which
optional fields follow. For example, the EVENT _LOCATION type will always be followed by the
latitude, longitude and altitude fields. About 2 dozen message types are currently understood by
the Informatics software.

NASA/TM—2014-218319 7

Figure 3: ZeroMQ/Protocol Buffer wire format

T~

16 bit CRC 16 bit length of |
CCITT/xmodem | protocol buffer Protocol Buffer Payload 0 to 3 pad bytes

T~

UDP or ZeroMQ Data

key sender key timestamp key type i
(varint) (varint) (varint) | (8 byte double) | (varint) (varint) P
key key | .. | ______ key
(varint) value (varint) value (varint) value

4 Software Architecture

The software architecture of the Informatics GUI is split into two parts:

* An infrastructure part written in the C++ programming language that is responsible for all
of the network communication and network packet decoding and verification.

A graphical user interface part written in the Qt QML language (which is a combination of
a declarative graphics layout language and Javascript) that is responsible only for formatting
the display of data.

The architecture uses a software component called AppData that handles the exchange of data
between the C++ and QML halves. AppData hides the details of the Qt Signal and Slot update
mechanism, and makes it so that when new telemetry arrives and the infrastructure code changes a
value, updates are propagated only to dependent data in the user interface.

4.1 C++ Infrastructure

A block diagram of the C++ infrastructure code is shown in Figure 4. The infrastructure is di-
vided into five major operations: Setup, Periodic Processing, Sending Data, Receiving Data, and
AppData Change. Major operations are broken into a number of minor operations, and solid ar-
rows between them show their order of execution. Some minor operations will trigger the start of

NASA/TM—2014-218319 8

Figure 4: Block Diagram of C++ code functions

Initialize Initialize Initialize Initialize
Setup Publish Subscribe)
AppData Socket Socket Timers

- Update Create
Periodic N .
(1 Hz) Time in Informatics
AppData Telemetry
»
Create Fill In Encode .
Send Message Message Protocol Adg ;g bit Publish
Structure Fields Buffer
»
Subscribed Compute Decode Msg Type Undate
Receive Message And Check Protocol Specific A P Data
Arrives 16 bit CRC Buffer Processing PP
4 | 4

AppData Graphics
Change Update

different major operations, and these links are indicated with dotted arrows.

4.1.1 Setup

The Setup code is executed when the program starts. Its first job is to initialize AppData, and
since AppData is actually a class, it is initialized by creating an instance and then calling the setter
Junctions for the class members that need to have initial values.

Next a ZeroMQ socket is created for publishing any information that Informatics needs to make
available to other AEMU assemblies.

A different ZeroMQ socket is then subscribed to any data Informatics needs to receive from the
network. A single ZeroMQ subscribe socket can be connected to multiple ports and interfaces, so
only one subscribe socket is needed. The subscribe socket is connected to the port that the publish
socket uses, so anything Informatics publishes will be received and processed in the same manner
as data from other AEMU assemblies.

The last step of the Setup code is to initialize timers. After initialization, a 1 Hz timer triggers
Periodic Processing at regular intervals.

A second unrelated timer exists in the infrastructure code for keyboard handling. If a key is held

NASA/TM—2014-218319 9

for more than 800 ms before it is released, the Alt flag is added to the keystroke, allowing it to
be treated differently in the user interface code. This is intended to help work around the limited
number of input buttons available on some displays.

4.1.2 Periodic Processing

The Periodic Processing runs at 1 Hz intervals. The first thing it does is to get the current time and
update the value in AppData. This change in AppData will trigger an update to GUI elements that
depend on time.

The second periodic task is to create and publish a telemetry packet containing the Informatics
status, which so far is always nominal. The process for creating and publishing data is the same for
any type of telemetry, and is described in the next section.

The final periodic task is to create and publish a telemetry packet containing Buddy Information
(suit ID, consumable time remaining, position, and caution or warning messages).

4.1.3 Sending Data

Publishing data starts with allocating a Nanopb protocol buffer structure (a type of "C struct") to
hold the details of the packet being created. A call to the standard C memset function is used to
initialize all fields in the structure to zero.

Next, values are assigned to some of the fields in the structure. There are currently three mandatory
fields that must always have values: sender, type,and timestamp. The sender field indicates that this
data is coming from Informatics. The fype field contains the type of the protocol buffer message,
which determines the additional optional fields that must be included. The timestamp field contains
the time the packet is created.

Optional data fields may be really be required, depending on the type field. For example, if the type
fields say that the packet contains Informatics Status information, then a value must be assigned to
the status field.

Because this is the simple Nanopb interface instead of the more full featured C++ interface for pro-
tocol buffers, an additional field of the form has_X must be set to true for every optional parameter
X to indicate that it is being used.

After the fields are filled in, the structure is encoded as a protocol buffer into an array of bytes. Two
function calls are required to perform this task: pb_ostream_from_buffer and pb_encode.

After encoding, the encoded length is prefixed to the beginning of the encoded data, and O to 3 pads
bytes are added to the end.

Next a 16-bit Cyclic Redundancy Check (CRC - CCITT xmodem variant) is computed for the array
of bytes, and prepended to its beginning.

NASA/TM—2014-218319 10

Finally, the byte array is sent to the ZeroMQ publish socket for delivery to the network. Note
that since the Informatics subscribe socket is connected to the port of the publish socket, anything
published will trigger the reception of a network packet.

4.14 Receiving Data

The Receiving Data operation is started whenever a complete packet has arrived on the subscribe
network socket. A 16-bit CRC is computed for the packet (ignoring the first two bytes), and then
compared to the 16-bit CRC assumed to be stored in the first two bytes of the packet. If they are
not identical, the packet is discarded.

After the CRC is stripped off, the next two bytes are read to find the length of the Protocol Buffer
portion of the packet, which is then extracted from the bytes immediately following the length. The
length is required because there may be pad bytes at the end that must be ignored.

Next, the Protocol Buffer bytes are decoded into a Nanopb protocol buffer structure. If there is
a decoding error (because it somehow received a packet not representing a Protocol Buffer), the
packet is discarded.

The type field of the structure is examined, and a case statement chooses some type specific code
to execute based on the field. In almost all cases, this code simply reads the optional fields required
by the type from the structure and calls the setter functions to write the values to AppData.

Data handling for the Caution and Warning type is slightly different, because that data is maintained
in a separate list structure that works much like AppData, but is variable length (there may be zero
or more Caution and Warning messages that have been received). Items are never deleted from
this list, but their timestamp and acknowledged status is updated with the most recently observed
telemetry.

4.1.5 AppData Data Exchange

The AppData class is basically just a place to store values (as instance variables) with getfer and
setter functions for reading and writing each value. The setfer function checks to see if the value
has changed, and if so, emits a Qt signal to notify dependent code that it needs to update. The
signal declaration and a Qt property declaration are also part of the class.

This results in five lines of hard to read boilerplate declarations and repetitive code for each value
that is stored in AppData, when all a programmer really cares about is the variable's type and
name. To help make the code maintainable, the repetitive code is generated from an M4 macro
expansion. Listing 3 shows the code generated from a line with the APPDATA(double, timeNow)
macro that contains only the type double and name timeNow. This expansion allows the AppData
class definition to consist of an easy to read macro line for each variable.

NASA/TM—2014-218319 11

A prebuild.sh script is run before compilation to perform M4 macro expansion (resulting in the
file called gmlapplicationviewer.h) and to generate the C code for protocol buffer encoding and
decoding from the protocol buffer definition file (aemu proto).

Listing 3: M4 macro expansion output for input: APPDATA(double, timeNow)

// autogenerated from qmlapplicationviewer.in — DO NOT EDIT
Q_PROPERTY (double timeNow READ timeNow WRITE settimeNow NOTIFY timeNowChanged)
public: void settimeNow (const double &s) { if (s != m_timeNow) { m_timeNow = s; emit timeNowChanged(); }}
double timeNow () const { return m_timeNow; }
signals: void timeNowChanged () ;
private: double m_timeNow;

4.2 QML/Javascript Graphical User Interface

The layout of the graphical user interface is based on previous version of the Informatics interface
as tested at Desert RATS and user interface prototypes from AEMU human factors studies.

The graphical user interface has copious information to display and a limited screen area on which
to display it, so the screen is divided into a number of areas where the largest area varies to show
details of a particular data set. There is a row of tab-like buttons across the top of the display that
are used to select the variable set of data to display. On the right edge of the display is an area
of persistent information that is always displayed, no matter which tab is selected along the top.
The bottom portion of the persistent information is a duplicate of the information on the 2 line text
display controlled by the CWCS subassembly. See Figure 5 for an example.

The currently selected tab across the top is highlighted with a blue border. There are several ways of
switching to a different tab to accommodate running the program on different types of hardware. If
a keyboard is connected to the hardware, the left and right arrow keys will select adjacent tabs. The
LCD7 display on the Beaglebone development board has 5 pushbuttons (up, down, right, left, and
enter), where the left and right buttons switch between tabs. If a mouse is connect to the hardware,
the tab can be clicked upon to select it. If the hardware has a touch-screen interface (like the LCD7)
touching the tab on the display will select it.

Some data sets have a secondary menu of operations that appears along the left edge of the display.
For example, Figure 8 shows the File Selection display (because the FILE tab is selected at the
top), which has four operations in the menu: Scroll Down, Scroll Up, Select File, and Up Level.
The currently selected operation is highlighted with a yellow border, and can be changed with the
up and down arrow keys, dedicated up and down buttons, mouse click or touch. The enter key or
pushbutton is used to perform the action associated with the currently selected menu item. With a
mouse or touchscreen, selecting an already highlighted menu item will perform its action.

Each of the data set displays that have (partial) implementations will be described in greater detail.
However, the user interface is a work in progress, and some of the displays so far are just simple
proof of concept implementations with placeholders for many of the details.

NASA/TM—2014-218319 12

Several Informatics displays are considered less critical for near term implementation, so they are
present in the GUI only as placeholders. These include:

e CAM (Camera Display, currently blank)
* MAP (Map Display, currently blank)

4.2.1 Consumable Display

There are four consumable displays: Primary Oxygen, Secondary Oxygen, Battery Charge and
Water. Each of these displays has a tab at the top of the screen to select it, labelled: 02, S_02,
BATT, and H20, respectively. Figure 5 shows the Primary Oxygen display. Under the name on
the tabs is the estimated time (in hours and minutes) before the consumable is exhausted, with the
limiting (nearest) time colored red for emphasis. Secondary Oxygen is not consumed until Primary
Oxygen is gone, and its time will show 23:59 until it is being consumed (this is the largest number
that can be represented in this implementation).

When any of the four consumable displays are shown, the left side of the display will show bar
graphs for all four consumables. Numbers near the graphs show the current level of the consumable,
the maximum value, the percent remaining, as well as the time remaining. If the current value is
less than some critical value, the bar graph will turn from green to red, and the critical value will
be displayed inside the graph. All of these numbers, with the exception of percent remaining, are
received via telemetry from the Caution and Warning Control System (CWCS) subassembly. They
are not fixed values in the GUI code.

The center of the screen will show consumable specific details (that vary when a different consum-
able tab is selected), but currently is is just a placeholder.

Under the consumable specific display is biomedical data, currently consisting of heart rate and
metabolic rate. Each bar in the metabolic rate chart represents half an hour.

4.2.2 Communications Display

The Communication Display (shown in Figure 5) consists mainly of temporary placeholder areas
for the four major subsystems: Informatics, Radio, Audio, and CWCS. These areas turn green if a
recent network message arrived indicating that the subsystem status is nominal. The status and last
update time of the status for each subsystem is shown as text.

The Informatics area also displays a count of the total number of network messages received, the
number of CRC decoding errors, and the number of protocol buffer decoding errors.

At the bottom of the Communication Display is an area showing received text messages (sent from
ground stations or other assets). When a new text message arrives, the message list scrolls to the
end to show the new message and the COMM tab at the top of the screen turns blue as a visible

NASA/TM—2014-218319 13

Figure 5: Consumable Display
aNO

02 § 02 BATT H20 COMM BUDD FILE TLINE PROC CAM MAP caw
01:02 | 23:59 04:13 0148 00:06

i Primary O2 consumable details 13:43:23 UTC Time
Prlmal'y 02 06:05:49 EVA Time
=== 127.5 15% Manual Mode
01:02 _ 01:02 Time Left
124.5 / 850 psi 01:02 02 Left

04:13 BATT Left
Secondary 02 01:48 H20 Left
DI 100 % 6.16 psi Suit P

; 6200 psi SO2 P
6200.0 / 6200
/ ps’ 6.08 psi FEEDWATER P
60.1 degF H20 TEMP
16.0 VDC BATT Voltage
4.04 Amps BATT Current

+41.4102 N Latitude
-81.8648 E Longitude
238 m ASL Altitude
285 degrees Heading
Mirror of CWCS display
21949.638079

Heart rate Metabolic rate 965 BTU/hr
80 bpm

Figure 6: Communications Display

BATT H20 |COMM: BUDD FILE TLINE PROC CAM MAP Caw
04:52 05:10 | 18:20

Comm 13:11:52 UTC Time
Unknown 02:21:18 EVA Time
00:00:00 Manual Mode
04:35 Time Left
04:35 02 Left
04:52 BATT Left
. false 05:10 H20 Left
- ‘hardware failure 0 6.14 psi Suit P
Audio 561.6 psi PO2 P

g;_“(;‘nff‘;; ! 6200 psi SO2 P
LY : 6.15 psi FEEDWATER P
60.0 degF H20 TEMP
hannel 2 Volume? 15.9 VDC BATT Voltage
hannel 3 Volume? 4.02 Amps BATT Current

hannel 4 Volume?
ones Volume 7

broadcasted random text message number: 595 - -
broadcasted random text message number; 869 | Latitude
broadcasted random text message number: 786 E Longitude
broadcasted random text message number: 662 :

broadcasted random text message number; 825

broadcasted random text message number; 694 = T
broadcasted random text message number 707 Mirror of CWCS display
broadcasted random text message number: 638 8478.845349

NASA/TM—2014-218319 14

Figure 7: Buddy Display
aNn

02 § 02 BATT H20 COMM BUDD | FILE TLINE PROC CAM MAP caw
01:04 23:59 04:16 01:50 00:04

Buddy ID: 1 Last update: 13:41:18 13:41:22 UTC Time
Consumables Time: PO2 01:04, SO2 23:59, Batt 04:16, H20 01:50 06:03:48 EVA Time
Position: lat 41.410267, lon -81.864799, alt 239.3 Manual Mode
13:41:22 Water Level Low 01:04 Time Left
13:41:22 Primary Oxygen Low 01:04 02 Left
Buddy ID: 10 Last update: 13:41:22 04:16 BATT Left
Consumables Time: PO2 01:04, SO2 23:59, Batt 04:16, H20 01:50 01:50 H20 Left
Position: lat 0.000000, lon 0.000000, alt 0.0 6.15 psi Suit P
128.6 psi PO2 P

Buddy ID: 11 Last update: 13:41:22 6200 psi SO2 P
Consumables Time: PO2 01:04, SO2 23:59, Batt 04:16, H20 01:50 6.04 psi FEEDWATER P
Position: lat 0.000000, lon 0.000000, alt 0.0 60.0 degF H20 TEMP
13:41:22 Battery Level Low 16.0 VDC BATT Voltage
4.02 Amps BATT Current

+41.4103 N Latitude
-81.8648 E Longitude
239 m ASL Altitude
285 degrees Heading
Mirror of CWCS display
21828.420039

indicator on every screen that a new message has arrived. A new message also triggers a network
message to the Audio subassembly to play an alert sound.

The menu items on the left side of the display can be used to scroll up and down the list, and the
Ack Msg menu item will acknowledge that current messages have been viewed by turing off the
blue highlight on the COMM tab.

The message list has a fixed upper limit to its size (currently 50) to limit memory consumption of
the program. If more than the maximum number of text message are received, the oldest ones will
be dropped form the list.

4.2.3 Buddy Display

The Buddy Display (shown in Figure 7) shows information from other EVA assets. This informa-
tion is currently generated by the Informatics software, and for testing purposes the Buddy Display
has been modified to display information sent from itself (which would normally be ignored).

The buddy information displayed includes a suit ID number, the UTC time of the last update from a
suit, time remaining for the four consumables, position (latitude, longitude and altitude) reported by
the other suit, and a line for each caution or warning message generated on the other suit. Receiving
anew caution or warning message also triggers a network message to the Audio subassembly to play
an alert sound and highlights the BUDD tab at the top of the screen. The Ack button acknowledges
the caution or warning and removes the highlight.

NASA/TM—2014-218319 15

Figure 8: File Selection Display
aNn

02 § 02 BATT H20 COMM BUDD | FILE | TLINE PROC CAM MAP caw
01:06 23:59 04:19 01:52 00:02

file:// /informatics /files 13:39:37 UTC Time
images 06:02:04 EVA Time
procedures Manual Mode
timelines 01:06 Time Left
01:06 02 Left
04:19 BATT Left
01:52 H20 Left
6.08 psi Suit P
132.2 psi PO2 P

6200 psi SO2 P
6.11 psi FEEDWATER P
60.0 degF H20 TEMP
16.0 VDC BATT Voltage
3.97 Amps BATT Current

+41.4100 N Latitude
-81.8649 E Longitude
242 m ASL Altitude
285 degrees Heading
Mirror of CWCS display
21724.234766

4.24 File Selection

The Informatics subassembly has a file system that holds images, procedures, and timeline files
that the astronaut can view. The File Selection display, shown in Figure 8, provides a way for the
astronaut to navigate the file system and select a file for viewing.

The current directory being viewed is shown at the top of the center section of the display, and the
contents of the directory are shown as a list below. Directory names are shown in bold to distinguish
them from regular files. The currently selected file or directory is highlighted in blue.

The Scroll Up and Scroll Down menu items on the left of the screen change the currently selected
file or directory. Choosing the Select File menu item when a directory is highlighted changes
the current location to that directory and shows its contents. Choosing the Up Level menu item
goes back to the parent directory. The Up Level menu item will be dimmed and disabled if the
current directory is the highest level allowed (the File Display can not be used to explore the entire
computer).

Choosing the Select File menu item when a file is highlighted will load the file and switch to the
appropriate tab to display it. The Timeline Display (TLINE) will display timeline files, and the
Procedure Display (PROC) will display images or procedures.

If a mouse or a touchscreen is available, they can be used to select files and directories.

NASA/TM—2014-218319 16

Figure 9: Procedure Display is a full-featured HTML renderer

fA.MNO

5 02
23:59

BATT H20 COMM BUDD FILE
04:18 01:51

http://news.google.com/news

00:03

+You Search

Go uglc

Modermn - 0

News - U.S, edition ~

Top Stories

Norwegian may have been involved in Westgate
mall attack, Kenya sources say

Nairobi, Kernya (CNN) — Kenyan counterterronsm sources are looking at a
MNorwegian citizen of Somali descent as a possible suspect in the Westgate
mall attack last month, the sources told CNN on Friday.

From Kenya: Investigators recover body parts from Westgate mall Coastwes

Images Maps Play YouTube News Gmail Drive Calendar

TLINE | PROC| CAM MAP caw

13:40:27 UTC Time
06:02:54 EVA Time
Manual Mode
01:05 Time Left
01:05 02 Left
04:18 BATT Left
01:51 H20 Left
6.14 psi Suit P
130.5 psi PO2 P
6200 psi SO2 P
6.08 psi FEEDWATER P
60.1 degF H20 TEMP
16.0 VDC BATT Voltage
3.98 Amps BATT Current

In Depth: Trail of Kenyan mall attack leads investigators to Nonway

Wikipedia: Westgate shopping mall attack

+41.4102 N Latitude
-81.8649 E Longitude
240 m ASL Altitude

285 degrees Heading

Mirror of CWCS display

21774.324311

Related Kenya » Shopping malls » Nairobi »

4.2.5 Procedure Display

The Procedure Display is used to display images or procedures that the astronaut has selected.
These images and procedure files are stored on a file system, and may be updated by ground systems
or other assets using a file transfer protocol. Images may also come from an Informatics camera
(once that functionality is implemented).

Procedure files are formatted as standard HTML, and may contain text markup, links and images.
The Procedure Display has the features of a web browser. In fact, it is not restricted to loading data
from the local file system, and if it has access to a larger network, it can load data from standard
HTTP URLs. Figure 9 demonstrates this by rendering an Internet news site. There is no interface
for entering an HTTP URL, but a procedure file can be loaded that contains an HTTP redirect
command. Actual procedures that an astronaut might perform have yet to be written, but there are
a few placeholder files for demonstration purposes.

The menu items on the left of the screen can be used to pan and zoom around the displayed image
or procedure. If a mouse or a touchscreen in available, they can be used to select and follow
HTTP links. There is currently no interface for selecting an following a link via the keyboard or
pushbuttons.

The Procedure Display (and other displays) stores its current position within a page, so the astro-
naut can switch to another tab to check something and then switch back, returning to the same
place.

NASA/TM—2014-218319 17

Figure 10: Placeholder Timeline Display
aNn

02 § 02 BATT H20 COMM BUDD FILE | TLINE| PROC CAM MAP caw
01:05 23:59 04:17 01:50 00:03

idle.tline 13:40:46 UTC Time
Read News 06:03:12 EVA Time
— s Manual Mode
Open Idle time line 01:05 Time Left
Open Second time line 01:05 O2 Left
04:17 BATT Left
01:50 H20 Left
6.02 psi Suit P
129.9 psi PO2 P

6200 psi SO2 P
6.17 psi FEEDWATER P
60.0 degF H20 TEMP
16.1 VDC BATT Voltage
3.95 Amps BATT Current

+41.4102 N Latitude
-81.8649 E Longitude
241 m ASL Altitude
285 degrees Heading
Mirror of CWCS display
21792.356173

4.2.6 Timeline Display

Timelines are lists of procedures with expected starting times and completion status indications.
They serve as a "to do" list for astronaut activities.

The Timeline Display is shown in Figure 10. The contents of a particular timeline are loaded from
a file on the file system. The contents of the placeholder file used for testing that resulted in Figure
10 are shown in Listing 4 to demonstrate the file format.

Each line in the timeline display list begins with a starting time (in hours and minutes) relative to
the start of the list. The first entry will will always be 00:00. In the example shown, the second
entry has a start time of 00:20, so the first entry is expected to require a total of 20 minutes. The
third entry has a start time of 00:25, so the second entry is expected to take 5 minutes.

After the starting time, the timeline display list has a short title. If the activity is marked as com-
pleted, the title will be dimmed and a strike-through font will be used (as demonstrated in the second
entry).

A timer showing the current number of hours and minutes since a timeline was loaded is shown in
the tab display underneath TLINE. The same timer (but including seconds) is shown in the menu
on the left of the screen. The timer can be paused or continued by selecting the time display in the
menu with the keyboard, pushbutton, mouse, or touchscreen.

Additional menu items allow the astronaut to toggle the completion status of an entry, scroll up and
down the list of entries, and view the procedure associated with an entry. If a procedure is viewed,

NASA/TM—2014-218319 18

Do W =

it will be loaded and the Informatics display will switch to the PROC tab. It is also possible to
have another timeline as an entry. If a timeline entry is viewed, it will replace the currently shown
timeline and reset the timer to zero,

The timeline files are structured using the JSON text format demonstrated in Listing 4. For each list
entry, a starting time, completion status, title, and path are required. The path is the file system path
to the new procedure or new timeline that will be loaded if the entry is selected. These timelines
files are read-only for the GUI, so the files are not changed if the completion status of an item is
toggled.

Listing 4: Placeholder timeline file: idle.tline

"start":0, "complete":false, "title":"Read News", "path":"/informatics/files/procedures/GoogleNews.html"},
"start":20, "complete":true, "title":"Read Hello", :"/informatics/files/procedures/helloworld .html"},
"start":25, "complete":false , "title":"Open Idle time line", :"/informatics/files/timelines/idle.tline"},
"start":26, "complete":false , "title":"Open Second time line", "path":"/informatics/files/timelines/second.tline"}

e

4.2.7 Caution and Warning Display

The Caution and Warning Display records caution and warning messages in a list, as shown in
Figure 11. The list (and display) is initially empty, but one entry is created when a new unique
caution or warning message is received (for example, Battery Level Low). If more messages arrive
for the same condition (Battery Level Low), the data for the existing entry in the list will be updated.
Updating existing entries is preferred over adding new entries to prevent the list from becoming
huge and to give the astronaut the ability to select an entry (which would be difficult if the list is
quickly changing order or scrolling).

The first item in an entry is the timestamp associated with the caution or warning. It is followed
by a short readable description of the condition. The color of the entry indicates whether it rep-
resents a caution (blue) or a warning (red). Entries may have a status of either acknowledged or
not acknowledged. Acknowledged entries are faded to be less noticable. If any entry is not ac-
knowledged, the C&W tab will change color to show that it needs attention (red if there are any
un-acknowledged warnings, otherwise blue if there are any un-acknowledged cautions). The In-
formatics Caution and Warning Display is only a display (output only), so it has no interface for
changing the acknowledged state of a a caution or warning.

The menu items on the left side of the display can be used to scroll through the list or to load a
procedure describing what to do about the caution or warning. If such a procedure does not exist,
the Go To Proc menu item will be dim and have no effect. If a procedure is selected, it will be
loaded from the file system and the Informatics display will switch to the PROC tab.

NASA/TM—2014-218319 19

Figure 11: Caution and Warning Display announcing low consumables
aNn

02 § 02 BATT H20 COMM BUDD FILE TLINE PROC CAM MAP Caw
01:03 23:59 04:14 01:49 00:05

13:42:24 Primary Oxygen Low 13:42:24 UTC Time
13:42:24 Water Level Low 06:04:50 EVA Time
Manual Mode
01:03 Time Left
01:03 02 Left
04:14 BATT Left
01:49 H20 Left
6.12 psi Suit P
126.5 psi PO2 P

6200 psi SO2 P
6.14 psi FEEDWATER P
60.0 degF H20 TEMP
16.0 VDC BATT Voltage
3.97 Amps BATT Current

+41.4101 N Latitude
-81.8647 E Longitude
239 m ASL Altitude
285 degrees Heading
Mirror of CWCS display
21890.531778

S Summary

An Informatics prototype for space suit graphical displays was developed. Several open source
software libraries were leveraged to ease development, reducing the schedule and budget problems
often associated with creating graphical software. The Qt graphics library allowed creating the
displays primarily using a declarative markup language, which is much easier than using a C/C++
language application programming interface.

The ZeroMQ library hid the details of implementing a publish/subscribe network architecture, and
the Nanopb implmentation of Google Protocol Buffers made creating and updating the network
message formats easy. Good software libraries and inexpensive but full featured development
hardware allowed one person to develop and test the entire prototype in under 6 months.

6 References

The Informatics software makes use of several open source software libraries. These libraries are
primarily documented at their web sites.

More information about the Ot graphical user interface library is here:
http://qt-project.org

NASA/TM—2014-218319 20

More information about the ZeroMQ network library is here:
http://www.zeromq.org

More information about the Google Protocol Buffers network wire format is here:
http://developers.google.com/protocol-buffers

More information about the Nanopb C language interface for protocol buffers is here:
http://koti.kapsi.fi/jpa/nanopb

NASA/TM—2014-218319 21

