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ABSTRACT3

The Global Modeling and Assimilation Office is preparing to upgrade its three-dimensional4

variational system to a hybrid approach in which the ensemble is generated using a square-5

root ensemble Kalman filter (EnKF) and the variational problem is solved using the Grid-6

point Statistical Interpolation system. As in most EnKF applications, we found it necessary7

to employ a combination of multiplicative and additive inflations, to compensate for sampling8

and modeling errors, respectively and, to maintain the small-member ensemble solution9

close to the variational solution, we also found it necessary to re-center the members of10

the ensemble about the variational analysis. During tuning of the filter we have found re-11

centering and additive inflation to play a considerably larger role than expected, particularly12

in a dual-resolution context when the variational analysis is ran at larger resolution than the13

ensemble. This led us to consider a hybrid strategy in which the members of the ensemble14

are generated by simply converting the variational analysis to the resolution of the ensemble15

and applying additive inflation, thus bypassing the EnKF. Comparisons of this, so-called,16

filter-free hybrid procedure with an EnKF-based hybrid procedure and a control non-hybrid,17

traditional, scheme show both hybrid strategies to provide equality significant improvement18

over the control; more interestingly, the filter-free procedure was found to give qualitatively19

similar results to the EnKF-based procedure.20

1



1. Introduction21

It is now generally accepted that a practical feasible way to introduce flow dependence in22

the background error covariances needed for either sequential or variational data assimilation23

procedures is to rely on an ensemble of short-range forecasts. Multiple works have now shown24

(Whitaker et al. 2008, Buehner et al. 2010, and Clayton et al. 2012) that combining the time-25

varying background error covariance derived from an ensemble of forecasts with the typical,26

stationary, climatological background error covariance leads to non-trivial improvements to27

the resulting, so-called, hybrid data assimilation system (Lorenc 2003). Most operational28

weather centers use three- or four-dimensional variational (3D/4DVar) techniques and have29

implemented hybrid approaches in these contexts. With the variational component capable30

of accepting hybrid formulations of its underlying background error covariance, what remains31

to be specified is a methodology to generate the required ensemble of forecasts. Presently,32

the Global Modeling and Assimilation Office, follows the National Centers for Environmental33

Predictions, and uses the square-root-based ensemble Kalman filter (EnKF; Whitaker et al.34

2008) for this purpose. The small number of ensemble members used in practice requires35

care to render adequate spread from the ensemble of forecasts to represent forecast errors.36

It is thus necessary to fiddle with the ensemble of analyses and: (i) apply multiplicative37

inflation to compensate for sampling errors; (ii) apply additive inflation to represent model38

uncertainties; and (iii) re-center the ensemble of analyses around the, hybrid, variational39

analysis to prevent possible divergence between the two assimilation systems.40

During the process of implementation and testing of the EnKF to provide initial condi-41

tions for the ensemble of forecasts for a hybrid strategy to be adopted for the Goddard Earth42
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Observing System (GEOS) atmospheric data assimilation system (ADAS), we have found43

steps (ii) and (iii) above to play a significant role in determining the behavior of the ensemble44

of forecasts. This is particularly noticeable when the ensemble and the (hybrid) variational45

analyses are produced at different resolutions in a, so-called, dual resolution approach. That46

re-centering and additive inflation are such key components of the hybrid strategy is illus-47

trated in Fig. 1, where the incremental contribution to the 500 hPa temperature field is48

shown for an arbitrarily selected member of the ensemble, at an arbitrarily selected time,49

after the EnKF has cycled beyond a spin up period. The panels in the figure correspond50

to increments at various stages in the ensemble analysis procedure: directly from the EnKF51

(top left), when only multiplicative inflation has been applied; when the EnKF increment52

is re-centered around the (hybrid) variational (higher resolution) analysis (top right); when53

applying additive inflation to the EnKF increment (bottom left); and when multiplicative54

inflation, additive inflation, and re-centering have been applied to form the total increment55

(bottom right). Re-centering is clearly a larger contributor to the total increment. Still,56

the main features in the increment obtained from the EnKF assimilation of observations are57

visibly identified after re-centering and additive inflation have taken place. At first, these58

results might suggest the EnKF to be poorly tuned, however, as we will show later, this is59

far from being the case. One key factor is that the EnKF analyses are at coarser resolution60

than the (hybrid) variational analysis used for re-centering; when the ensemble is at full61

resolution, the contribution from re-centering is much lesser (not shown).62

The crucial role played by steps (ii) and (iii) prompted us to investigate what would63

happen if we bypassed the EnKF step altogether. This led us to the, so-called, filter-free64
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ensemble scheme when ensemble analyses are generated by simply adding perturbations to65

the central, hybrid, variational analysis – that is, steps (ii) and (iii) are what constitute66

the ensemble analysis strategy. The additive perturbations used in this procedure corre-67

spond to samples of the scaled, 48-minus-24-hour forecast differences, similar to those used68

to generate the climatological background error covariance of the traditional assimilation69

approach; these are also the perturbations used when the EnKF is exercised. The remaining70

of this manuscript presents a comparison of results obtained from dual-resolution hybrid71

3DVar procedures when either the EnKF or the filter-free approach is used for the ensemble72

analysis generation.73

2. Brief overview and the filter-free strategy74

The basic idea of hybrid variational data assimilation is to use an ensemble of background75

fields to introduce instantaneous, flow-dependent, features to the traditionally non-evolving76

(static) background error covariance. In 3DVar this can be done by augmenting the control77

vector with an extra set of variables, usually referred to as alpha-control variables. The cost78

function of a hybrid incremental 3DVar system can be written as79

J(δz) =
1

2
δzT

[
βsBs + βeT

T (Be ◦ L)T
]−1

δz+
1

2
(d−Hδz)TR−1(d−Hδz) , (1)

where the control variable δz is a combined contribution from the n-vector solution δx of the80

standard variational problem and a component that comes from an M -member ensemble,81

that is,82

δz = βsδx+ βeT
T

M∑
m=1

αm ◦Δwe
m . (2)
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Here, the symbol ◦ stands for the Hadamard-Schur (element-wise) product of two vectors,83

αm is the m-th control vector related to the m-th ensemble member, and, using the symbol84

Δ to denote deviation from the mean, Δwe
m = (wb

m − w̄)/
√
M − 1 is the m-th ensemble85

perturbation created from the m-th member background nw-vector state w
b
m, with respect to86

the ensemble mean w̄b. The formulation allows for the ensemble members to be of different87

(usually lower) resolution, than the primary n-vector control δx, with the operator TT being88

responsible for resolution conversion. In (1), the matrices Bs and Be stand for the static and89

ensemble background error covariances, respectively; the matrix L stands for a correlation90

matrix responsible for localization of the ensemble; the last term is the usual observation-fit91

term involving the observation error covariance matrix R, and the observation residual p-92

vector d = y−h(xg) created from differencing the observation p-vector y with the projection93

of the first-guess state-vector xg onto observation space by the observation operator h, whose94

linearization is represented by the matrix H. The parameters βs and βe specify the interplay95

between the static and the ensemble background error covariances, respectively. The problem96

is reset to its traditional 3DVar configuration, with solution δx, when βs = 1 and βe = 0.97

Details of the hybrid variational problem can be found in Hamill and Snyder (2000), Lorenc98

(2003) and Wang et al. (2007).99

The first hybrid implementation studied in the present work relies on the ensemble square-100

root Kalman filter formulation of Whitaker and Hamill (2002). Each 6-hours the ensemble101
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analysis updates the ensemble mean and its members through the sequence102

w̄a = w̄b +

p∑
j=1

kj

[
yj − hj(w̄

b)
]

(3a)

Δwa
m = Δwb

m −
p∑

j=1

kjγjδhm;j , (3b)

where yj is the j-th observation, δhm;j is the j-th element of the incremental factor δhm ≡103

HΔwm ≈ h(wb
m)−h(w̄b) resulting from the fact that observations are not perturbed in this104

formulation, and the nw-vector kj is the j-th column of the gain matrix, K, and is given by105

kj =
1

M − 1

M∑
m=1

Δwj−1
m δhm;j/σ

2
j (4a)

Δwj
m = Δwj−1

m − kjγjδhm;j (4b)

for j = 1, , 2 . . . , p, Δw0
m ≡ Δwb

m, and scalar coefficients σ2
j and γj given by106

σ2
j ≡ 1

M − 1

M∑
m=1

(δhm;j)
2 + (σo

j )
2 , (5)

γj ≡ 1/
[√

M − 1(1 + σo
j/σj)

]
, (6)

Here only the diagonal elements (σo)2j ≡ (R)jj of the observation error covariance are referred107

to, given that observation errors are assumed to be uncorrelated thus allowing observations108

to be processed serially (e.g., Houtekamer and Mitchell 2001); the algorithm above is a direct109

application of the expressions in Appendix II.E of Bierman (1977) for when the square-root110

of the background error covariance is made up of column vectors Δwb
m, for m = 1, 2, . . . ,M .111

After all p observations are processed, Δwp
m = Δwa

m, which is obtained by a backward recur-112

sion of (4b) from j = p to j = 1 to obtain (3b). Just as when solving the variational hybrid113

problem, localization is also needed and used in the square-root Kalman filter formulation114

of Whitaker and Hamill (2002), though it is left out of the equations above for the sake of115

notational simplicity.116
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The final ensemble of analyses, ultimately used to serve as initial conditions for the117

ensemble of forecasts, are typically re-centered around the variational analysis and inflated118

by scaled perturbations εm. That is, the m-th member final analysis is given by119

wa
m := wa

m − w̄a +Txa + μεm , (7)

where the parameter μ specifies the magnitude of the additive perturbation, and ideally, the120

operator T converting the high-resolution variational analysis onto the nw-dimensional space121

of the ensemble satisfies the relation TTT = Inw , though presently in our implementation122

this is not the case. Note that, in the application to GEOS ADAS, the operator T involves123

remapping of the central analysis to the topography of each member. Re-centering prevents124

the ensemble from steering far from the (hybrid) variational analyses, and additive inflation125

is one way of boosting error growth (e.g., Mitchell et al. 2002, Houtekamer et al. 2005, and126

Hamill and Whitaker 2005).127

The second hybrid strategy examined in the present work relies on the “filter-free” pro-128

cedure, constructed by simply replacing expression (7) with129

wa
m = Txa + αεm , (8)

completely removing the EnKF component from the cycle. By construction, the mean en-130

semble analysis equals the variational (hybrid) analysis, aside from differences in resolution.131

Notice that both strategies (7) and (8) employ the same additive perturbation εm, which in132

practice means pooling from the same database on 48-minus-24-hour forecast NMC-method-133

like differences.134
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3. GEOS ADAS 3DVar Ensemble Hybrid135

In GOES ADAS the variational problem of minimizing (1) is solved using the Grid-136

point Statistical Interpolation (GSI; Kleist et al. 2009a) analysis and the preconditioning137

formulation of (Derber and Rosati 1989). The static background error covariance matrix138

is implemented as a series of recursive filters producing nearly Gaussian and isotropic cor-139

relation functions following Wu et al. (2002), and tuned from GEOS forecasts (Wei Gu140

contribution in Rienecker et al. 2008); the hybrid background error covariance matrix uses141

an ensemble of GEOS background fields in a hybrid-capable GSI (David F. Parrish, personal142

communication). Satellite radiances are processed using the Community Radiative Transfer143

Model (CRTM; Kleespies et al. 2004) and the online variational bias-correction procedure of144

Derber and Wu (1998). A normal-mode-based balance constraint term following Kleist et al.145

(2009b) is applied to the static increment as well as to the ensemble part of the increment146

whenever the hybrid analysis is used.147

The ensemble hybrid-capable GEOS ADAS relies on the GEOS global atmospheric gen-148

eral circulation model (AGCM), developed at NASA/Goddard. The GEOS AGCM is built149

under the infrastructure of the Earth System Modeling Framework (ESMF; Collins et al.150

2005) and couples a cubed-sphere hydrodynamics (Putman and Lin 2007) with various151

physics packages including a modified version of the Relaxed Arakawa-Schubert convective152

parameterization scheme of Moorthi and Suarez (1992), the catchment-based hydrological153

model of Koster et al. (2000), the multi-layer snow model of Stieglitz et al. (2001), and154

the radiative transfer model of Chou and Suarez (1999), which uses interactive climatolog-155

ical aerosols from the Goddard Global Ozone Chemistry Aerosol Radiation and Transport156
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(GOCART; Collarco et al. 2010) package.157

In GEOS ADAS, assimilation is performed using the incremental analysis update (IAU)158

procedure of Bloom et al. (1996). A schematic representation of standard IAU appears in the159

top panel of Fig. 2. Considering for example the availability of observations around 00 UTC160

and of three-hourly AGCM background fields, the GSI analysis (purple boxes) produces an161

increment that is converted into a tendency and used to force a 6-hour (corrector) model162

integration (red triangles); this is followed by a 6-hour (predictor) integration period when163

the model is then set to run free from the analysis forcing as to produce backgrounds (green,164

upside-down, triangles) for the next assimilation cycle; the prediction period can be extended165

beyond 6-hours to complete, say, a 5-day forecast (horizontal orange-dashed lines). The cycle166

of running GSI and AGCM takes place whether GEOS ADAS is performing its traditional167

3DVar procedure or its hybrid extension. The only difference between these two options is168

that in the latter case, an ensemble of background fields is required for GSI to internally169

augment its background error covariance information, through (1). Hereafter, this cycle170

will be referred to as the central ADAS. It usually operates at a higher resolution than the171

ensemble ADAS (see below).172

Generation of the ensemble of background fields to make up the ensemble background173

error covariance Be involves AGCM integrations similar to those of the central ADAS, but174

generally carried at lower resolution. In turn, the ensemble of backgrounds requires an175

ensemble of “initial conditions” (analyses) to be available. At least three options exist within176

GEOS ADAS to generate an ensemble of analyses. The standard option follows Whitaker et177

al. (2008), as described earlier, and relies on the ensemble Kalman filter (EnKF) software of178
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J. S. Whitaker, from NOAA/ESRL. This is the same software presently used in the NCEP179

operational global data assimilation system. Alternatively, one can generate an ensemble180

of GSI analyses, but this is considerably more computationally demanding than using the181

EnKF since it involves a complete variational analysis for each member of the ensemble. And182

lastly, an option to exercise the filter-free ensemble analysis is also available. Regardless of the183

ensemble of analyses scheme, once analyses are available, a corresponding set of background184

fields is generated through IAU-based AGCM integrations, similar to those of the central185

ADAS. The IAU-based ensemble procedure is illustrated in the bottom panel of Fig. 2.186

Availability of observations and an ensemble of backgrounds triggers one of the ensemble187

analysis options (EnAna; right-placed, purple boxes), including re-centering and additive188

inflation, generating an ensemble of analyses which are then turned into an ensemble of189

tendencies used to initialize the ensemble of AGCM integrations — forced during the first190

6 hours (light-red triangles), and unforced during the 6-hour background prediction period191

(light-green, upside-down triangles).192

There is a subtle difference to note related to how the GEOS ADAS IAU-based ensemble193

evolves its members when the EnKF is used versus when the filter-free strategy is used194

instead. With the EnKF, each member permanently cycles its corresponding set of initial195

conditions needed by the GEOS AGCM each cycle. With the filter-free strategy, the initial196

conditions for the ensemble of AGCM integrations are generated by simply converting the197

(high-resolution) initial conditions from the central (hybrid) cycle to the configuration of198

the ensemble; namely, at each cycle, all members start from the exact same set of initial199

conditions; the only thing making these integrations distinct is the corresponding IAU forcing200
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term used by each member, each derived from the ensemble analysis equation (8).201

4. Evaluation of hybrid strategies in GEOS ADAS202

In what follows, we present a discussion of results obtained for experiments from single203

analysis as well as fully cycled ADAS. Regular, non-hybrid, 3DVar results are compared with204

results from hybrid 3DVar analyses produced at 0.5-degree resolution on 72 vertical levels205

and relying on a 32-member, 1-degree, 72-level ensemble generated by either the EnKF or206

the filter-free procedure described above.207

a. Non-cycling hybrid analysis208

When an ensemble of backgrounds is used in a hybrid GSI analysis, one of the first209

things we examined was how the analysis increment changed with respect to its non-hybrid210

counterpart. Figure 3 provides an illustration for the change in analysis increment, measured211

in total energy units, for an analysis calculated at a single synoptic time using: (i) regular212

3DVar, with only the static background error covariance (left); (ii) 3DVar with a background213

error covariance matrix that is fully determined by the 32-member ensemble (center); and (iii)214

3DVar hybrid, when 50% of background error covariance matrix comes from the ensemble215

and the remaining 50% comes from its regular static background error covariance matrix216

(right). The ensemble-only case (center) shows considerably more activity in the tropics217

than when compared with the static-only case (left); the resulting hybrid (right) increment218

shows slight, but noticeable, energy increase in the mid-tropospheric and low-stratospheric219
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levels — a little less energy seems to be present along the Southern tropospheric jet in the220

ensemble (center) when compared to the static case (left), with the resulting hybrid retaining221

the energy in this region (right).222

Another aspect of relevance when introducing upgrading to hybrid analyses relates to223

how balance gets affected. In its 3DVar configuration, GSI has the capability of applying a224

tangent linear normal mode constraint (TLNMC) to the increment (see Kleist et al. 2009b).225

The constraint can be applied to either part of the increment (essentially to either of the226

two terms in eq. 2, or both; see Kleist 2012). Figure 4 shows two illustrations of the result227

of balancing the increment in various configurations of GSI. The panel on the left shows the228

total cost function during the iterations of the GSI minimization when using: traditional229

3DVar without TLNMC (black curve); traditional 3DVar with TLNMC (red curve); hybrid230

3DVar with TLNMC applied only to the static part of increment (green); and hybrid 3DVar231

when TLNMC is applied to the full increment. The behavior is typical of when adding232

constraints to the analysis, that is, with balance, the cost settles a little higher than when233

no constraint is applied. The hybrid minimization tends to reduce the cost when compared234

to the static-balanced configuration; particularly noticeable in the first outer minimization235

(first 100 iterations; compare green and blue curves with red curve, respectively). This236

is indication that the hybrid minimization recovers the fit to the observations somewhat237

deteriorated when the constraint is added to traditional 3DVar.238

The real measure of improved balance is displayed in the right panel of Fig. 4 where239

the spectra of the vertically integrated mass-wind divergence increment is shown for the240

same four configurations. The color scheme is preserved, and the curves show clearly that241
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TLNMC brings in considerable improvement in balance when applied to traditional 3DVar242

(compare black and red curves). It is also clear from the figure that applying TLNMC only243

to the static part of the increment when hybrid 3DVar is used is rather troublesome (green244

curve). This is natural since nothing guarantees the ensemble contribution to the increment,245

through its background error covariance matrix Be, to be balanced in any way; TLNMC246

must be applied to the full increment (blue curve) for balance to be acceptable in the hybrid247

configuration. However, this latter case is not completely perfect since some power in the248

spectrum still remains for large wave numbers which would best be reduced. As pointed249

out by Kleist (2012; see Figure 4.2 on page 108, in that work), this is a consequence of the250

dual-resolution aspect of the hybrid analysis and some aliasing of the winds. It is possible to251

use scale-dependent weights to reduce some of the aliasing issue (see Kleist 2012, Fig. 4.4, in252

that work), but this is part of future work. At present, the default in GEOS hybrid ADAS253

is to apply TLNMC to the full increment.254

The remaining illustrations in this section summarize results and comparisons from three255

experiments covering the month of April 2012. The abbreviations and brief explanation of256

each experiment follows:257

• Control (CTL): traditional 3DVar, similar to what is used by GMAO Operations,258

though experiments here are at, coarser, 0.5-degree resolution.259

• Hybrid (HY5): Dual-resolution hybrid ADAS using 50% static and 50% ensemble260

background error covariance contributions, with an ensemble of analyses generated by261

the EnKF.262

• Hybrid (HYA): similar to HY5, but using the filter-free procedure, that is, at each263
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cycle, an ensemble of analyses is generated by adding scaled NMC-like perturbations264

to the hybrid (central) variational analysis.265

Evaluation of results of these experiments examine familiar diagnostics: observation-minus-266

analysis (OMA), observation-minus-background (OMB), and observation-minus-forecast (OMF)267

residual statistics, monthly mean comparison with corresponding means from other numer-268

ical weather prediction (NWP) centers, and forecast skills scores. Additionally, ensemble-269

related diagnostics have also been examined to evaluate the performance of the ensemble270

itself. These included monthly-mean of the ensemble mean analyses and/or backgrounds,271

OMA, OMB and OMF residual statistics for the mean and ensemble members, and also time272

evolution of ensemble spread. Rank histograms (of say, OMB residuals) have been looked273

but we have found them to be rather difficult to interpret given the uncertainties associated274

with the observations (see Hamill 2001), therefore we refrain from discussing them here.275

b. About the ensemble itself276

We have seen in Fig. 1 how much re-centering and additive inflation participate to modify277

the analysis increments calculated by the EnKF. In addition to what was said earlier, we278

should point out that we have found re-centering and additive inflation to be necessary within279

the context of the small-size ensemble GEOS hybrid ADAS. Without re-centering the EnKF280

analyses were found to diverge from the central hybrid analysis; without additive inflation the281

ensemble was found to collapse rather quickly. Furthermore, finding the scaling parameter282

α multiplying the additive inflation term requires careful tuning. We have found a value of283

0.25 to be rather reasonable when the EnKF is used. This is considerably lower than value284

14



of 0.40 presently used in the NCEP hybrid 3DVar (Daryl Kleist, pers. comm.). However,285

when using the filter-free approach, the value of 0.40 was found to be more adequate.286

In a cycling situation, the interplay between re-centering and inflation must lead to287

reasonable forecast spread. Figure 5 illustrates the time evolution of the global (largely tro-288

pospheric) spread of a 32-member ensemble for typical experiments performed with GEOS289

hybrid ADAS. The panel on the left uses the EnKF for its ensemble analysis and shows how290

the initial spread (blue curve) changes as the members evolve within the 9-hour background291

period (green, red, and black for the 3-, 6- and 9-hour backgrounds, respectively). The292

resulting hybrid ADAS performs rather well (see below), even when there is not much error293

growth within the 9-hour background period — note the green, red and black curves are very294

close to each other; however, the growth of error is consistent within the same period, with295

the smallest error seen in the 3-hr background and the largest in the 9-hour background.296

The panel on the right shows similar forecast spread for various times within the background297

period, but now when the filter-free approach is used to generate the ensemble of analyses.298

The initial spread is zero by construction (blue curve); the overall error growth is smaller299

than when the EnKF is used, and the error growth for within the 6-hour background period300

is now considerably larger. However, as we will see shortly, even with this difference in fore-301

cast spread within the 6-hour background period, the end result between the two ensemble302

generation procedures is very similar to the corresponding hybrid ADAS performing rather303

closely.304
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c. Evaluation with respect to observations305

Figure 6 shows vertical profiles of monthly averaged zonal wind (top) and temperature306

(bottom) radiosonde OMB residuals over three regions of the globe, namely, Northern Hemi-307

sphere (NH; left), tropics (center), and Southern Hemisphere (SH; right). Two hybrid ex-308

periments, one using the EnKF (HY5, red) and another using the filter-free scheme (HYA,309

green), are compared to the traditional 3DVar control experiment (CTL, blue). The only310

noticeable differences are in the tropics and SH for zonal winds, where the hybrid experi-311

ments show reduced biases with respect to the control; the EnKF and simplified (filter-free)312

scheme are rather comparable to each other. Results for temperature remain rather neutral.313

Examination of standard deviation of the OMB residuals for both winds and temperature314

indicate negligible differences among all three experiments (not shown).315

It is also possible to examine the impact of observations on the analysis following Todling316

(2013). This is an observation-space approach that uses the inverse of the observation317

error variances to define a measure for evaluating the contribution of various observing318

systems to the cycling assimilation. Fig. 7 displays impact results for the three experiments319

under consideration: control (black), EnKF-based hybrid (cyan), and filter-free-based hybrid320

(magenta). Regardless of the underlying analysis procedure, all three experiments show321

aircraft, radiosondes, and Aqua AIRS as the dominating observing systems in GEOS ADAS.322

These observing systems tend to display smaller impact when the cycling analysis is based323

on a hybrid approach as compared to traditional 3DVar — the hybrid strategies seem to rely324

slightly more on these observing systems than does traditional 3DVar.325

Figure 8 shows vertical profiles of standard deviations, calculated over the month of April326

16



2012, for zonal wind radiosonde OMF residuals of the 24 hour forecasts. Though rather small,327

the benefit of using a hybrid assimilation strategy shows in both the tropics and Southern328

Hemisphere. Again here, the difference between the EnKF-based system and that using the329

filter-free configuration is very small, with some advantage shown for the latter in the SH.330

d. Evaluation with respect to independent analysis331

We routinely compare monthly mean analyses with those from other NWP centers. Fig-332

ure 9 shows the differences of the April 2012 zonally-averaged zonal wind for each experiment333

with the corresponding ECMWF operational analysis. Panels in the figure are differences for334

the control (CTL, top left), the filter-free hybrid scheme (HYA, top right), and the EnKF-335

based hybrid (HY5, bottom left). Compared with the control, both hybrid procedures ob-336

tains monthly mean analysis considerably closer to ECMWF’s monthly mean analysis; this is337

especially noticeable in the tropics. The bottom-right panel shows the monthly mean of the338

ensemble mean EnKF analysis (from HY5) difference with ECMWF operational analysis.339

Comparing this result with, say, that in the bottom-left panel, illustrates the behavior and340

reliability of the underlying EnKF ensemble analyses, though in the presence of re-centering341

it serves mainly as a sanity check to show that inflation averages away.342

e. Evaluation with respect to self analysis343

Lastly, we show some results when comparing forecasts from each of the three experiments344

with their own respective analyses. Figure 10 displays the zonally-averaged wind RMS error345
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of the 24 hour forecast, as a function of pressure, for three regions of interest. Results are346

for the three experiments under consideration: control (blue), and the two EnKF (HY5,347

red) and filter-free (HYA, green) hybrid strategies. Both hybrid strategies yield the same348

improvement in RMS error in the Northern and Southern Hemispheres, but result in some349

deterioration in Tropical mid-troposphere, with the filter-free procedure being less damaging350

than the EnKF. This behavior is opposite to that seen when examining both the monthly351

mean analyses and mean OMB radiosonde residuals, in which hybrid strategies amounted to352

improvement over traditional 3DVar. This remains an issue to tackle in future studies with353

GEOS Hybrid ADAS.354

In many ways, successful procedures must amount to improvement in the 500 hPa geopo-355

tential height anomaly correlations. Self-analysis evaluation results appear in Fig. 11 for356

5-day forecasts in both Northern (top-right) and Southern Hemisphere (top-left). Curves for357

the control experiment are in blue, those for the EnKF-based hybrid are in red, and those for358

the filter-free strategy are in green. The corresponding statistical significance curves appear359

at the bottom panels. The NH scores are pretty much neutral, but those in the SH show360

significant benefit from hybrid assimilation (bottom-left shows red and green curves outside361

and above significance boxes). Both hybrid strategies bring comparable and non-negligible362

improvements up to 5 days in their forecasts. We must stress the word comparable, as we see363

the filter-free procedure amounting to rather indistinguishable performance from a system364

using the EnKF to generate the ensemble of analyses.365
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5. Closing remarks366

In the process of implementing a 3DVar hybrid strategy for the Goddard Earth Ob-367

serving System (GEOS) atmospheric data assimilation system (ADAS) using the ensemble368

Kalman filter (EnKF) of Whitaker and Hamill (2002), under a dual resolution approach,369

we have found re-centering and additive inflation to play a fundamental role in determining370

the behavior of the ensemble. Examination of some preliminary results led us to consider371

generating the ensemble by simply adding NMC-method-like perturbations to the central372

(hybrid) variational analysis at each cycle, thus completely bypassing the EnKF. This so-373

called filter-free procedure was put to the same evaluation test suite as that used to examine374

the quality of our EnKF-based 3DVar hybrid implementation. Both schemes are shown to375

perform rather similarly, bringing statistically significant improvements to GEOS ADAS. In-376

deed, the improvements to GEOS ADAS due to hybridization are comparable in magnitude377

to those seen at NCEP when upgrading its 3DVar system to a hybrid strategy, around May378

2012. The successful evaluation of the filter-free approach is encouraging since one of its379

main advantages relates to not having to maintain two considerably different analysis sys-380

tems, namely, one to perform the EnKF and another to perform the 3DVar hybrid analysis381

(the Grid-point Statistical Interpolation analysis, in the present case). Though not the main382

driving motivation for this work, it is also important to stress the computational advantages383

of the filter-free approach over the EnKF, or any alternative ensemble filter scheme, since384

the filter-free scheme does not explicitly analyze the members of the ensemble.385

At this point, we can only attempt to speculate on the reasons why the EnKF and filter-386

free procedures perform so similarly. Factors that are likely to contribute to this are the small387
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size of the ensemble, and the dual resolution aspect of the GEOS ADAS implementation.388

Future tests are planned to accurately evaluate the role solely due to the resolution interplay.389

Further tests are also planned to look at the role played by the size of the ensemble, though390

we expect these to be harder to accurately provide conclusive results since they may require391

too large an ensemble to possibly afford in real applications such as the ones presented here.392
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Fig. 1. Illustration of contribution from each step taking place after the EnKF ensemble
of analyses are generated. The panels show 500 hPa temperature: analysis increment for a
given ensemble member (top left); effect of re-centering this given member about the central
GSI analysis (top right); effect of applying additive inflation to the member analysis with a
coefficient of 0.25 (bottom left); and resulting increment after both re-centering and additive
inflation are applied (bottom right).
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Fig. 2. Schematic of AU as implemented in GEOS hybrid ensemble-variational atmospheric
data assimilation system.
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Fig. 3. Zonal mean analysis increment, in total wet energy (J/kg) norm, using a standard
3DVar (left), a 3DVar when the background error covariances are fully determined by the
ensemble (center), and a hybrid 3DVar when the covariances are a 50% weighted sum of the
static- and ensemble-derived background error covariances (right).
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Fig. 4. The panel on the left shows the total cost function as it changes during the iterations
of the GSI minimization; all cases are calculated for the same synoptic time but GSI is
configured as follows: static (non-hybrid) 3DVar without balance constraint (black curve);
(non-hybrid) 3DVar with TLNMC balance constraint (red curve); hybrid 3DVar without
balance constraint applied to hybrid part of increment (green curve); and hybrid 3DVar
with balance constraint applied to full increment (blue curve). The panel on the right shows
the integrated mass-wind divergence spectra of the analysis increment as a function of wave
number for the same four configurations; color scheme of curves is as in panel on the left.
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Fig. 5. Global spread of a 32-member ensemble measured in total energy units (J/kg);
when EnKF is used to generate ensemble (top), and when filter-free ensemble scheme is
used instead (bottom). The curves are for: analysis spread before re-centering and inflation
(blue); 3-, 6- and 9-hour backgrounds (green, red, and black respectively). Totals exclude
levels roughly above 10 hPa.
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Fig. 6. Regionally-averaged, monthly mean of radiosonde OMB residuals of zonal wind
(top) and temperature (bottom) for three experiments: control (blue), EnKF-based hybrid
(red), and filter-free hybrid (green), shown for: Northern Hemisphere (left column), tropics
(center column), and Southern Hemisphere (right column).
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Fig. 7. Observation impact on the analysis for three 3DVar experiments: control, non-
hybrid (black bars); hybrid using EnKF (cyan bars); and hybrid using simplified, filter-free
approach (magenta bars). In addition to the observation types shown, all experiments use
GPS radio occultation, but results are not shown here due to a little glitch in the output
files saving their corresponding information (basically, GPS impacts are of the magnitude of
those of radiosondes, and are comparable among the difference analysis approaches).
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Fig. 8. Similar to Fig. 6, but for standard deviation. Only zonal winds are shown since
temperature have neutral results.
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Fig. 9. April 2012 monthly mean of zonally-averaged zonal wind analysis differences with
ECMWF operational analysis from four different ADAS scenarios: control, traditional 3DVar
(top left); filter-free-based hybrid 3Dvar (top right); EnKF-based hybrid 3DVar (bottom
left); and EnKF ensemble mean (bottom right).
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Fig. 10. Twenty-four hour forecast RMS error, with respect to self-analysis, of regionally-
averaged zonal winds for the three experiments under consideration: control (blue), EnKF-
based hybrid (red), and filter-free hybrid (green); Northern Hemisphere (left), tropics (cen-
ter), and Southern Hemisphere (right).

39



Fig. 11. Anomaly correlation of the 500 hPa height of 5-day forecasts (top) verified with
respect to own analysis, and shown for Northern (left) and Southern (right) Hemispheres for
the three experiments under consideration: the control (blue), EnKF-based hybrid (red), and
filter-free hybrid (green). Significance plots appear beneath anomaly correlations with sig-
nificance boxes color according to experiment designation; results are statistically significant
when curve appear outside, and above, corresponding box.
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