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Tropical rainforests are significant contributors to the global cycles of energy, water and carbon. As a result,
monitoring of the vegetation status over regions such as Amazônia has been a long standing interest of Earth
scientists trying to determine the effect of climate change and anthropogenic disturbance on the tropical eco-
systems and its feedback on the Earth's climate. Satellite-based remote sensing is the only practical approach
for observing the vegetation dynamics of regions like the Amazon over useful spatial and temporal scales, but
recent years have seen much controversy over satellite-derived vegetation states in Amazônia, with studies
predicting opposite feedbacks depending on data processing technique and interpretation. Recent results
suggest that some of this uncertainty could stem from a lack of quality in atmospheric correction and cloud
screening. In this paper, we assess these uncertainties by comparing the current standard surface reflectance
products (MYD09, MYD09GA) and derived composites (MYD09A1, MCD43A4 and MYD13A2 — Vegetation
Index) from the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard the Aqua satellite to results
obtained from the Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm. MAIAC uses a
new cloud screening technique, and novel aerosol retrieval and atmospheric correction procedures which are
based on time-series and spatial analyses. Our results show considerable improvements of MAIAC processed
surface reflectance compared to MYD09/MYD13 with noise levels reduced by a factor of up to 10. Uncertainties
in the current MODIS surface reflectance product were mainly due to residual cloud and aerosol contamination
which affected the Normalized Difference Vegetation Index (NDVI): During the wet season, with cloud cover
ranging between 90% and 99%, conventionally processed NDVI was significantly depressed due to undetected
clouds. A smaller reduction in NDVI due to increased aerosol levels was observed during the dry season, with
an inverse dependence of NDVI on aerosol optical thickness (AOT). NDVI observations processed with MAIAC
showed highly reproducible and stable inter-annual patterns with little or no dependence on cloud cover, and
no significant dependence on AOT (pb0.05). In addition to a better detection of cloudy pixels, MAIAC obtained
about 20–80% more cloud free pixels, depending on season, a considerable amount for land analysis given the
very high cloud cover (75–99%) observed at any given time in the area. We conclude that a new generation of at-
mospheric correction algorithms, such asMAIAC, can help to dramatically improve vegetation estimates over trop-
ical rain forest, ultimately leading to reduced uncertainties in satellite-derived vegetation products globally.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

The Amazon basin encompasses almost half the tropical rainforest
of the planet, storing an estimated 100 billion tonnes of carbon
(Atkinson et al., 2011) and accounting for about 15% of global photo-
synthesis (Malhi et al., 2008), while hosting roughly a quarter of the
world's terrestrial species (Dirzo & Raven, 2003). Evapotranspiration

over Amazônia is a major factor of global energy andwater circulation
and affects precipitation rates across the Americas and large parts of
the northern hemisphere (Werth & Avissar, 2002). Alterations of
this ecosystem due to anthropogenic disturbance and climate change
could have dramatic effects on the global carbon and energy balance
(Gedney & Valdes, 2000). For instance, increased sea surface temper-
atures in the Pacific ocean could intensify El Niño southern oscillation
events and associated periodic Amazon droughts, while higher Atlantic
sea surface temperatures and the northwest displacement of the inter-
tropical convergence zone (Li et al., 2006) could cause these droughts to
occur more frequently (Malhi et al., 2008). Some global circulation
models (GCMs) predict that these drought effects alone may turn the
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currently estimated carbon sink of Amazônia into a source, thereby sub-
stantially affecting rates of global climate change (Lewis et al., 2011).

As a result, accurate monitoring of the Amazon is essential for es-
timating future climate scenarios, predicting global energy fluxes and
precipitation rates, and assessing the success of conservation efforts,
such as the United Nation's REDD (reducing emissions from defores-
tation and degradation) initiative (Mollicone et al., 2007). While sat-
ellite remote sensing provides the only viable means to observe the
Amazon in a spatially comprehensive and temporally frequent fash-
ion, spaceborne optical assessment of tropical vegetation is inherent-
ly difficult due to high cloud cover, high aerosol concentration from
biomass burning and limited physical access to ground validation
sites. Consequently, recent years have seen much controversy over
satellite derived estimates of the vegetation status in Amazônia. For
instance, Saleska et al. (2007) reported an increase in vegetation
greenness over the Amazon during the 2005 drought based on
MYD13A2 observations from MODIS. This study was subsequently
challenged by others, most notably Samanta et al. (2010) and
Atkinson et al. (2011) on the basis of poor data quality and processing
methodology. In response to a second drought event in 2011, Xu et al.
(2011) reported a widespread decline in Amazon greenness, thereby
directly contradicting the results reported by Saleska et al. (2007) for
the 2005 drought. Similarly, Zhao and Running (2010) reported a 1%
decrease in global primary productivity between 2001 and 2009,
which was based largely on a decrease in primary productivity (and
fPAR) in the Amazon, a result subsequently challenged by Samanta et
al. (2011) and Medlyn (2011).

Recent work (Forster & Ramaswamy, 2007; Levy et al., 2010) sug-
gests a substantial uncertainty of atmospheric aerosol properties from
MODIS data over the Amazon region as potential cause of these discrep-
ancies (Zelazowski et al., 2011). These uncertainties could introduce
errors in discrete and continuous land surface parameters, such as
land cover classes (Lu & Weng, 2007) and vegetation indices (Myneni
& Asrar, 1994) throughout the Amazon basin (Zelazowski et al., 2011).
The current MODIS land surface reflectance product (MOD09/MYD09)
routinely corrects for atmospheric scattering using models of the radia-
tive transfer of light through the atmosphere (Vermote & Kotchenova,
2008). While this technique is widely applied, it uses a single observa-
tion to characterize a pixel value driven by twomain unknowns, aerosol
optical thickness (AOT) and surface reflectance (SR) and, as a result, a
priori assumptions are required to describe their relationship. For in-
stance, the current aerosol retrieval algorithm of MOD04/MYD04
(Kaufman et al., 1997; Levy et al., 2007) relates surface reflectance in
the visible (blue and red) spectral bands with MODIS band 7 (2.1 μm)
reflectance by using a prescribed spectral regression coefficient (SRC).
A Lambertian surface model is then applied for aerosol retrievals and
atmospheric correction. While this technique greatly simplifies data
processing, the Lambertian assumption reduces the anisotropy of the
derived reflectance and introduces an error that depends on the aerosol
amount and the view-observer geometry (Lyapustin, 1999;Wang et al.,
2010).

In addition to the uncertainties from the Lambertian assumption,
pixel-based algorithms have to rely on spectral reflectance and thermal
thresholds for cloud masking. However, lack of a priori knowledge
about the specific cloud free reflectance makes the distinction between
cloudy and clear observations difficult (Yang & Di Girolamo, 2008). Tra-
ditionally, a generic land type classification has been used to address
this limitation by substituting a standard reflectance value for clear
pixels; however, considerable uncertainties remain due to the wide
natural variability of both land surface and cloud reflectance (Lyapustin
et al., 2008; Rossow & Garder, 1993).

MAIAC grids MODIS L1B data to a 1 km resolution, and accumu-
lates measurements of the same surface area from different orbits
(view geometries) for up to 16 days of observations for equatorial
and up to 4 days for polar regions using a moving window approach.
The MAIAC cloud mask (CM) algorithm composes a dynamically

updated reference clear-sky image of the surface from spatial and
time series analyses. The knowledge of reference clear-sky reflectance
in addition to spectral and thermal reflectance tests (Ackerman et al.,
1998) has been shown to improve cloud detection (for detail, see
Lyapustin et al., 2008). MAIAC aerosol retrieval (Lyapustin et al.,
2011b) and atmospheric correction (Lyapustin et al., this issue) algo-
rithms use an advanced radiative transfer theory with anisotropic
land surface reflectance (Lyapustin & Knyazikhin, 2001) parameterized
by the Ross-Thick Li-Sparse (RTLS, Roujean et al., 1992) bidirectional
reflectance model (Lyapustin et al., 2011a). Once RTLS in MODIS band
7 (2.13 μm) is initialized, the aerosol algorithm derives a spectral re-
gression coefficient (SRC) for each 1 km grid cell by simultaneously
processing 25×25 km2 blocks of pixels from four or more cloud-free
observations obtained from different view angles. Knowledge of SRC
allows aerosol retrievals at 1 km resolution over spatially heteroge-
neous surfaces, and helps to avoid dependence of derived AOT on sur-
face brightness (Lyapustin et al., 2011b). Finally, the atmospheric
correction algorithm(see Lyapustin et al., this issue) derives parameters
of the RTLSmodel for each 1 km grid cell alongwith spectral surface al-
bedo and a bidirectional reflectance factor (BRF). An overview of all
components of MAIAC is provided in Lyapustin and Wang (2009).

Algorithms like MAIAC, with more complete descriptions of the
physical system and limited role of empirical assumptions, hold
promise to overcome many of the restrictions currently faced by con-
ventional satellite retrievals over tropical regions. In this paper, we
compare MODIS standard atmospheric correction from Aqua (using
the MYD09 and MYD13 reflectance products) to MAIAC results over
the Amazon basin and assess the potentials and limitations of satellite
retrievals of vegetation greenness over Amazônia. The implications
for determining the biophysical state of the rainforest and detecting
changes over time are being discussed for the different products.

2. Methods

2.1. Data

The study encompasses two MODIS tiles (h11v09 and h11v08), an
area of 2.88 million km2, spanning 10°N to 10°S in latitude and 70°30′
W to 62°W in longitude (Fig. 1). The area is characterized by seasonal
tropical savannah and seasonal rain forest in the north, while the
southern part consists of evergreen tropical forest. We used MODIS
data from the Aqua satellite platform collected between 2002/07/04
and 2010/12/31. Collection 5 data of the MYD09GA 1 km daily surface
reflectance product and the MYD09A1 eight-day composite product
were obtained from EOS data gateway of NASA's Goddard Space
Flight Center (https://wist-ops.echo.nasa.gov/api/) and data mosaick-
ing was performed using the MODIS reprojection tool (MRT). Clouds
were masked by means of the 'state_1km' scientific dataset (SDS) in-
cluded in the MYD09GA product ('state_500m' in case of MYD09A1),
which is based on two cloud detection algorithms, the MOD/MYD35
cloud mask (Frey et al., 2008) and an additional, internal cloud screen-
ing (Vermote et al., 2008). In addition to cloudmasking, all MYD09 data
were quality filtered using theMYD09 quality (QA) flags and only cloud
free pixels with high data quality were passed and used for all subse-
quent analyses (Vermote et al., 2008). An overview of the quality and
cloud flags set for quality assurance is given in Table 1.

In addition to MYD09, we also acquired the MODIS 16-day 500 m
vegetation index (VI) product, MYD13A2, for the same observation pe-
riod from the same data gateway. Data quality was assured using the
'‘500 m 16 days VI Quality’ flags as well as the ‘500 m 16 days pixel re-
liability‘ layer to allow only pixels with good quality and high reliability
rating to pass (see Table 1). The MYD13A2 product supplies both NDVI
and the Enhanced Vegetation Index (EVI), however in this study we
focussed on the effect of atmospheric correction and cloud screening
on NDVI. The compositing algorithms, MYD09A1 and MYD13A2, accu-
mulate observations over 8 and 16 days, respectively, and use pixel
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values with darkest surface reflectance (highest NDVI in case of
MYD13A2) and closest to nadir view angle to represent a given lo-
cation and compositing cycle.

MODIS Aqua calibrated and geometrically corrected (Level 1B)
data acquired between 2002/07/04 and 2010/12/31 for the same
area were also processed by MAIAC. For this study, we used the

Fig. 1. Study site. The study area encompasses two MODIS tiles, spanning an area of 2.88 million km2.

Table 1
Quality /cloud flags of the MYD09GA, MYD09A1, MYD13A2 and MCD43A2 (for MCD43A4 quality) products used in this study. Flags that are not mentioned were not used.

Product SDS name Flag Accepted values

MYD09GA QC 500 m MODLAND QA bits 00 (ideal quality — all bands)
band 1 data quality 0000 (highest quality)
band 2 data quality 0000 (highest quality)
atm. corr. performed 1 (yes)

State 1 km cloud state 00 (clear)
cloud shadow 0 (no)
aerosol quantity 00 / 01 (climatology/low)
cirrus detected 00 (none)
internal cloud flag 0 (no cloud)
fire flag 0 (no fire)
pixel adjacent to cloud 0 (no)

MYD09A1 QC 500 m see ‘QC 500 m’ for MYD09GA
State 500 m see ‘State 1’ km for MYD09GA

MYD13A2 VI Quality MODLAND QA Bits 00 (VI produced with good quality)
VI Usefulness 0000 (Highest quality)

0001/0010/0100/1000 (Lower quality)
aerosol quantity 00 / 01 (climatology/low)
adjacent cloud 0 (no)
mixed cloud 0 (no)
possible shadow 0 (no)

Pixel reliability Rank Key 0 (Good data — use with confidence)
MCD43A2 (appendix) Albedo Quality 0 (Processed, good quality)

1 (Processed, see other QA)
Albedo Band Quality Band 1 0000 (best quality)

0001 (good quality)
Band 2 0000 (best quality)

0001 (good quality)
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following MAIAC outputs: cloud mask, aerosol optical thickness
(AOT), bidirectional reflectance factors (BRF, also known as surface
reflectance), and RTLS model parameters for the red and near-IR
MODIS bands. MAIAC data does not include quality flags, but rather
provides observations only for those pixels that were found not to
be cloud contaminated and for which a stable aerosol correction
could be made.

We used the BRF (or surface reflectance) values from both the
MYD standard products and MAIAC to compare the effects of cloud
masking and aerosol correction on the assessment of vegetation sta-
tus from MODIS. A separate assessment of the BRDF-normalization
(to remove view geometry variations) on MODIS NDVI can be found
in the appendix.

2.2. Approach

We conducted a comparative analysis of cloud mask, aerosol,
and NDVI between MAIAC and the respective operational MODIS
algorithms. Performance of the two cloud screening algorithms
(MYD35/MYD09 and MAIAC) was assessed relative to each other, by
computing errors of omission/commission of MYD35/MYD09 using
MAIAC as a reference. Further, MAIAC aerosol retrievals were qualita-
tively compared to the MODIS operational aerosol product MYD04 as
the internal aerosol product of MOD09, which is based on similar prin-
ciples as the Dark Target method of MYD04 (Vermote & Kotchenova,
2008) but at a 1 km resolution, is not reported. The MYD04 Level 2
data is available at a 10 km spatial resolution and was gridded to the
same sinusoidal projection as MAIAC, MYD09 and MYD13 to allow a
direct comparison between the data products.

The normalized difference vegetation index was computed using
MODIS bands 1 and 2 from the two MYD09 products (MYD09GA
and MYD09A1) and from MAIAC, and was also acquired directly
from MYD13A2. The MAIAC NDVI was computed from MAIAC BRF
data in order to be directly comparable to MYD09GA, MYD09A1 and
MYD13A2 NDVI. The area studied in this work includes seasonal trop-
ical forests and savannahs in the north (Fig. 1), which are expected to
show seasonal variability in vegetation greenness driven by the regu-
lar changes between dry and wet season. Relatively little variability is,
however, expected in the southern part of the study area, which is
covered by dense evergreen forest. As a result of the climatological
conditions found in the study area, it can be assumed that vegetation
indices related to greenness should be relatively stable over short pe-
riods of time (a few days) as there is no physiological reason for rapid
and notable changes vegetation greenness (>5–10%). The short-term
stability of NDVI can therefore be seen as an indicator of data quality,
since high frequency changes in NDVI will most likely be driven by
cloud and aerosol artifacts rather than changes in vegetation status.

3. Results

Fig. 2 shows a comparison of NDVI time series obtained from
MYD09GA, MYD09A1, MYD13A2 and MAIAC across six 50×50 km2

spatial subsets of the study area. The subsets were selected using reg-
ularly spaced raster sampling to obtain representative regions for
both seasonal and non-seasonal vegetation (as marked in the map).
To allow a comparison between the daily, biweekly and monthly
products, we first computed monthly mean values for each pixel by
averaging all valid (that is cloud screened, and quality filtered) pixels
acquired during a month. The arithmetic means and standard devia-
tions shown in Fig. 2 were then obtained by averaging the monthly
values across each 50×50 km2 block. It is important to note that our
processing approach excludes temporal variability in the standard devi-
ation shown since each pixel is represented by only onemonthly value,
regardless of whether MYD09GA, MYD09A1, MYD13A2 or MAIAC was
used. As a result, the standard deviations describe only variability due
to heterogeneity of the landscape. Differences between these standard

deviations can be attributed to differences in cloud screening and atmo-
spheric correction since all datasets describe the identical area over the
same time period. The largest variability in NDVI was found for the
MYD09GA 1 km daily surface reflectance product across all samples,
while the errorbars were smaller for the MYD09A1 composite (Fig. 2).
The 16-day composite showed the least variability of all conventionally
processed products, but scattering was still about twice as large as that
fromMAIAC dataset,which showed anup to 10-fold reduction in spatial
variability compared to the daily MYD product. The northern sites
exposed a clear seasonal signal of NDVI across all examined MODIS
datasets, while little seasonal variability was found for the two equato-
rial and the southern regions.

3.1. Cloud masking

Overall, a good correlation was found between MYD35 and MAIAC
in cloud detection (r2=0.75), however, MAIAC cloud screening
yielded significantly more cloud free observations than MYD35/
MYD09 (Figs. 3, 4). Fig. 3A presents a false color NIR image of the en-
tire study area observed on July 16, 2002 (day of year, DOY=197);
the high cloud fraction typical for the Amazon basin is visible in
both cloud screening products (Fig. 3B and C). For this overpass, the
MYD09/MYD35 cloud mask (Fig. 3B) identified 6.84% of the image
as cloud free, significantly less than the MAIAC algorithm (Fig. 3C),
which found cloud free pixels in 14.34% of the entire image area.
Depending on algorithm and season, the detected cloud cover was
between 75% and 99% of the total area across all examined MODIS
scenes (Fig. 4). Seasonal variation in cloud cover was in the order of
10–15% between the wet and dry seasons. On average, the area
marked as cloudy by MAIAC was about 4% less than that masked by
MYD09/MYD35 which, given the cloud cover, provides on average
between 20–80% more cloud-free data for the land analysis in Amazon
basin, depending on season.

Fig. 5 shows a comparative metric of cloudy/clear pixel classifica-
tion of MYD09/MYD35 relative to that of MAIAC. The red line shows
the relative accuracy of the MYD09/MYD35 cloud detection (the
ratio of the number of detected cloud pixels to that of MAIAC is called
user accuracy). The difference between 100% and this line represents
the error of commission (relative to MAIAC), when MYD09/MYD35
classified a pixel as being cloudy, whereas the reference algorithm
(MAIAC) did not. As the majority of pixels in each scene is classified
as cloudy in both algorithms, the relative error of commission is low
(~6%). The difference between 100% and the black line represents
the error of omission when MYD09/MYD35 failed to detect a cloud,
relative to MAIAC cloud mask.

The relative accuracies for cloud-free pixels derived from MYD09/
MYD35 and MAIAC were significantly lower, as only 1% to 25% of each
image area was cloud-free, and as a result, a misclassification error of
the same number of pixels is relatively larger. The green and blue lines
show the omission/commission error for the clear pixels. The green line
gives the percentage of pixels classified as clear by MYD09/MYD35
while MAIAC classified them as cloudy, whereas the blue line shows
cases where MYD09/MYD35 classified a pixel as cloudy while MAIAC
did not.

3.2. Aerosol optical depth

To illustrate differences in aerosol optical thickness between the
MAIAC and operational MODIS aerosol retrievals (MYD04), we
contrasted the distribution of AOT for a seasonal (northern) and a
non-seasonal (southern) region of the study area using the year
2005 as an example; a year that saw a significant drought with asso-
ciated intense biomass burning (Fig. 6). The selected areas corre-
spond to the top left (Fig. 6A and C) and bottom left regions (Fig. 6B
and D) shown in Fig. 2. To account for difference in resolution
(1 km in MAIAC vs 10 km in MYD04), data were averaged over a
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larger area of 500×500 km2. The top row in Fig. 6 illustrates MAIAC
aerosol optical thickness at 0.47 μm, the bottom row shows the
corresponding MYD04 AOT at 0.55 μm. In the northern region (left
column), AOT was relatively stable throughout the year with most
observations around 0.2–0.3 and much less frequent higher AOT
values. In the southern region (right column), AOT showed a clear
seasonality with low values during the wet season and high average
AOT related to biomass burning during the dry season. A somewhat
lower MYD04 AOT is mostly explained by the wavelength difference
of the AOT product (Levy et al., 2007; Lyapustin & Wang, 2009).
While MAIAC and MYD04 exposed similar patterns for both regions,
the MAIAC AOT product shows a smoother frequency distribution
over time (y-axis), in part due to higher spatial resolution. Fig. 7
shows a direct comparison between AOT derived from MAIAC and
MYD04 across the entire study area (the two tiles), resampled to
100 km2 to account for the difference in spatial resolution existing
between the two products. AOT derived from MAIAC shows a good
correspondence to that derived from MYD04 throughout the study
period (data shown between 2002 and 2010). The relationship was
not significantly biased with an r2 of 0.84 at pb0.01.

3.3. NDVI

To analyze the implications of the observed differences in cloud
masking and AOT on vegetation studies, we assessed the spatial and
temporal variability in NDVI using the same northern and southern

sample areas shown in Fig. 2. Figs. 8 and 9 present NDVI estimates
(along z-axis) as a function of time during 2002–2010 (x-axis).
The y-axis shows the spatial variability of NDVI when averaged over
different areas, from 2×2 to 50×50 km2. The color represents the
standard deviation (σ) of the spatially averaged NDVI estimates.
Since the tropical landscape is fairly homogeneous (particularly in
the south), σ mostly characterizes processing errors from clouds
and aerosols, at least over smaller areas (up to~100 km2). The color
bar shows that at these scales the MAIAC NDVI uncertainty is small,
about 0.01–0.02, which represents the total retrieval error (Figs. 8A
and 9A). The uncertainty increases to about 0.04–0.05 at larger scales
(≈30–50 km2) reflecting the landscape spatial variability. The vege-
tation signal in the north was strongly driven by seasonal effects
(Fig. 8A), while in the south, almost no temporal or spatial changes
were observed (Fig. 9A). Despite the differences in AOT, cloud cover
and vegetation dynamics found between the northern and southern
study area, MAIAC produced a highly consistent and reproducible
NDVI time record.

Compared to MAIAC, σ of MYD09GA-based NDVI estimates
was about 10-fold higher and ranged between 0.15 and 0.20 (>0.25
in several areas) even when aggregating relatively few pixels
(≈100 km2) (Figs. 8B and 9B). Results for the southern site show
that the uncertainty in NDVI remained high at all spatial scales,
indicating that the algorithm errors are significantly higher than
spatial variability of the vegetation. This increased uncertainty in
the MYD09 estimates compared to MAIAC can be attributed to both

Fig. 2. Monthly observations of NDVI from MYD09GA (1 km daily surface reflectance), MYD09A1 (8-day composites), MYD13A2 (16-day vegetation index product) and MAIAC
obtained over a 50×50 km area as indicated in the map. The errorbars represent the mean spatial variability over the 50×50fkm subset (Please note that the points and errorbars
of the products are slightly offset from each other for purposes of readability).
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cloud masking and aerosol correction errors. The low AOT found at
the northern site and also at the southern site during the wet season,
at least in 2005, suggests that this variability is mainly due to the
cloud masking errors. To assess the contributions of AOT and cloud
masking in more detail, we repeated the same analysis as shown in
Figs. 8B and 9B but using MYD09GA product filtered by the MAIAC
cloud mask. The results of these analyses are shown in Figs. 8C
and 9C, for the northern and southern study area, respectively. The
resulting NDVI values were notably smoother and had a much more
consistent time record approaching the MAIAC results (shown in

Figs. 8A and 9A). This confirms that most of the MYD09GA errors
were due to cloud masking. Compared to Figs. 8B and 9B, σ was re-
duced to 0.02 and 0.1, respectively, suggesting that cloud contamina-
tion was responsible for about 80% of uncertainties seen in these
Figures. Nonetheless, even with the MAIAC cloud filter applied, the
MYD09GA NDVI uncertainty was about twice that of MAIAC.

The MYD09A1 and MYD13A2 compositing (Figs. 8D and 9D, and
Figs. 8E and 9E, respectively) had only limited effects on improving
the uncertainties of the conventional NDVI product. For the northern
study area, σ ranged between 0.03 to 0.1 for the MYD09A1 product,

Fig. 3. Comparison of MYD09/MYD35 and MAIAC cloud mask. (A) False color infrared image acquired over the study area on July 16, 2002. (B) MYD09/MYD35 derived cloud mask
overlaid on top of the same image (C) MAIAC derived cloud mask.

Fig. 4. Comparison between the fraction of cloud free pixels acquired throughout the study period from MAIAC (black) and MYD09/MYD35 (red). MYD09/MYD35 was consistently
more conservative than MAIAC, cloud cover was heavily dependent on season.
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while for the 16-day MYD13A2 product, σ was reduced to 0.025 and
0.09 compared to MYD09GA. Similarly, for the southern area, σ
ranged between 0.02 and 0.1 for MYD09A1, and between 0.01 and
0.05 for MYD13A2 products. Residual cloud contamination was ap-
parent in the composite products, especially in the south, showing

inconsistent annual patterns and frequent spatial outliers (compare
also Fig. 2).

The results presented in Figs. 8 and 9 are consistent with the find-
ings presented in Fig. 10, which shows a direct comparison of NDVI
obtained from MAIAC and MYD09GA across the entire study area.

Fig. 5. Errors of omission and commission for cloud and non cloud pixels acquired from confusion matrices of each acquisition date comparing MYD09/MYD35 cloud mask to
MAIAC. One minus the red line represents the fraction of cases where MYD09/MYD35 classified pixel as cloudy, whereas MAIAC found this pixel to be cloud free. One minus the
black line represents the fraction of cases, in which MAIAC identified a pixel as being cloudy, while MYD09/MYD35 marked it as cloud free. The green line shows the percentage
of cloud free pixels found by MYD09/MYD35 but marked as cloudy in MAIAC, whereas the blue line shows cases in which MAIAC had identified a pixel as cloud free but not
MYD09/MYD35.

Fig. 6. Variation in aerosol optical thickness (AOT) over a northern (7°30’ N, 70° W , Figure A) and a southern (7°30′ S, 70° W , Figure B) subset of the study area (size 500×500 km2

each). The x-axis represents the time (year 2005), the y-axis shows AOT bins (width 0.01) and the z-axis represents counts per AOT bin (as fraction of total number of observation at
a particular time). The color corresponds to the total number of observation at a particular time. Figures C and D show the same AOT estimates, but derived from MYD04 at 10 km
resolution.
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Shown NDVI values were accumulated over an eight day period of
DOY 356–364, 2010 to collect more observations, and were placed
on a regular grid using 3D spline interpolation. While the MAIAC
(Fig. 9A) and MYD09GA (Fig. 9B) processed NDVI data both captured
the phenological differences between the seasonal (north) and the
non-seasonal (south) forest, a much higher spatial variability of
NDVI was observed from MYD09GA (Fig. 10B) compared to MAIAC
(Fig. 10A). This spatial variability is not supported by changes in the
land cover type (Fig. 2) or heterogeneity in tropical vegetation and
is therefore indicative of the noise level discussed above. While this
Figure shows only one 8-day period, we created a movie file covering
the entire study area for a two-year period. This movie, which is
available in the supportive online material, provides a visual demon-
stration of algorithm differences in assessment of the temporal vari-
ability of NDVI.

The increased noise levels limited the ability of MYD09 observa-
tions to describe shifts in vegetation greenness. This can be demon-
strated when comparing the distributions of NDVI observations
across a latitudinal gradient from 10°N to 10°S by binning NDVI
values into strata (based on a bin width of 0.01) and counting the per-
centage of observations per bin and latitude (i.e. aggregating across
all longitudes). For the non-seasonal tropical forest, the vast majority
of NDVI observations are expected to be at the higher end of the scale
(0.8–0.9) with little variability likely across southern latitudes,
whereas seasonal vegetation in the north should show clear shifts in
NDVI distributions when comparing dry and wet seasons. Fig. 11 pre-
sents NDVI distributions for one day in the northern tropics wet
season (Figure A and B) and a northern tropics dry season (Figure C
and D). Rather than absolute counts of observations, percentages of
total cloud free observations are shown along the z-axis in order to
normalize for latitudinal variations in cloud cover (as cloud cover
drives the number of clear pixels that can be aggregated across each
longitude). MAIAC observed NDVI distributions where highly consis-
tent across all southern latitudes with values ranging between 0.7
and 0.9 (left column). A slightly lower range of NDVI values was
found in the northern latitudes, due to lower vegetation cover in
the tropical savannah regions (Fig. 11A, compare Fig. 1). In the
north, a clear reduction in NDVI values was observed during the dry
season (Fig. 11C) while distributions in the south showed little or
no change. The distribution of MYD09GA data (Fig. 11B and D) was
in both cases more skewed towards lower NDVI values and the

relative number of high NDVI values was lower and less equally dis-
tributed across latitudes.

MYD09 processed NDVI observations were also mostly distributed
around 0.7 and 0.9 across southern latitudes, however, the distribu-
tion was notably wider and skewed towards the lower range (b0.7),
likely because NDVI observations were depressed by the cloud and
aerosol contamination. In addition, the NDVI distribution varied
strongly even across southern latitudes, which is not supported by
latitudinal changes in landcover and can therefore be attributed to
variations in cloud and aerosol contamination. Similarly, the shifts
between dry and wet season the northern latitudes are much less ap-
parent in MYD09 compared to MAIAC, thus showing a more limited
ability of MYD09 to detect seasonal changes in greenness in condi-
tions of high cloudiness.

Finally, we also analyzed the dependence of NDVI on AOT directly,
by using the two 10×10 km2 sample areas earlier presented in Figs. 7
and 8. In order to eliminate potential differences due to cloud
masking and quality screening and to single out the aerosol effect,
data shown in Fig. 12 were filtered using both MAIAC and MYD09/
MYD35 cloud mask and quality flags. Data points acquired between
2002 and 2010 are shown; the color of the data points corresponds
to the respective month of acquisition. MYD09 processed data
showed a statistically significant relationship with both MAIAC and
MYD04 derived AOT (r2=0.2 pb0.05, Fig. 12B and D and r2=0.15
pb0.05, Fig. 12C and E), as high AOT values depressed NDVI observa-
tions in both northern and southern sites. The random distribution of
the color codes shows that this dependence cannot be explained by
seasonality of NDVI and AOT, suggesting a relatively high aerosol
effect on MYD09 NDVI. MAIAC NDVI showed only a weak AOT depen-
dence in both regions, which was not, however, statistically signifi-
cant at pb0.05 (Figures A and D).

4. Discussion

This study presented a comparative analysis between the current-
ly operational and a new atmospheric correction algorithm MAIAC to
monitor the vegetation status in tropical regions from MODIS data.
We have shown that cloud screening and correction for aerosols are
critical for reducing uncertainties of remote sensing of vegetation
over tropical regions which confirms results obtained by other groups
(Di Rosa et al., 2009). For instance, Figs. 8 and 9 suggest that cloud
leakage was the single most important factor driving high spatial
and temporal variability in MYD09GA derived NDVI. The time series
approach implemented in MAIAC helped to significantly reduce
these uncertainties as it was able to detect clouds more reliably
while providing a significantly larger amount of cloud free observa-
tions. This resulted in MAIAC showing stable and well-reproducible
patterns in vegetation greenness with errors and uncertainties re-
duced by a factor of up to ten compared to current state-of-the-art
retrievals.

While we did not conduct a detailed analysis here, the main im-
provement in MAIAC cloud screening is probably achieved for low
and thin or small (sub-pixel) clouds, which are partly captured by
the MAIAC aerosol retrievals (Lyapustin et al., 2011b, 2012) but oth-
erwise are hard to detect using conventional spectral or brightness
temperature tests. It has been a common land community practice
to mitigate the effect of missed clouds by compositing data over
8-day (MYD09A1) or 16-day periods (MYD13A2). This effectively im-
plements an additional cloud filter, as values with lower reflectance
are preferred over higher reflectance values, thereby eliminating
data with a higher potential for cloud contamination. Our results
presented in Figs. 2, 8 and 9, show that while this technique helped
to reduce σ somewhat, the composited data still showed high levels
of uncertainties over the study area, making analysis of vegetation
greenness or trend predictions over Amazônia challenging. For in-
stance, obtaining accurate results from conventional MODIS products

Fig. 7. Comparison between MAIAC AOT and MYD04 for the entire study area (MAIAC
data were resampled to 10 km2 to match the MYD04 resolution) between 2002 and
2010, filtered by both, the MYD35 and MAIAC cloud masks.
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(MYD09GA, MYD09A1, MYD13) requires large statistics and very
skillful and sophisticated data filtering approach (e.g., Samanta et
al., 2012).

While additional data quality analysis and filtering may improve
the results, it also substantially reduces the amount of information.
For instance, composited data yielded better results than the daily
MODIS products (Figs. 2, 8, 9, A1, A2) but less than half as many pixels

were observed over a 16 day period than observed by MAIAC (see for
instance Fig. A3) over the same period of time, not including the
higher number of MAIAC observations for the same pixels during
the compositing period. Compared to the standard product outputs,
the MAIAC derived cloud mask yielded on average about 25% more
cloud free observations, which is a significant gain considering that
between 75% and 99% of the images was covered by clouds at any

Fig. 8. Comparison between MAIAC (A) and MYD09 (B) derived NDVI values aggregated over a range of different area sizes from 4 to 2500 km2 for the northern subset of the study
area (7°30’ N, 70° W). The x-axis shows the size of the aggregated area (pixel), the y-axis represents the time (2002–2010) the z-axis shows the corresponding NDVI value. The
color of the surface corresponds to the standard deviation obtained from averaging over different areas. Figure C shows MYD09 derived data, but using the MAIAC cloud mask.
Figure D shows the same product derived from the 8 day MYD09A1 composite, Figure E represents the MYD13A2 16 day product. Please note that the number of observations for
these composites is less compared to the daily products.
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given time. The potential for increasing the number of cloud free ob-
servations is an important finding, as it can help to enhance the fre-
quency of satellite based assessment of forest loss and landscape
disturbance over tropical regions (Hansen et al., 2008, 2009) and
allow more timely and accurate predictions of the status of the
remaining tropical forest.

Consistent with previous work, our results have shown that atmo-
spheric effects can depress NDVI observations (Myneni & Asrar, 1994;
Xiao et al., 2003). The relationship between AOT and MYD09 NDVI
presented in Fig. 12 suggest that MYD09GA collection 5 surface re-
flectance contained residual atmospheric effects as both northern
and southern study sites showed a noticeable AOT-dependence of

Fig. 9. Comparison between MAIAC (A) and MYD09 (B) derived NDVI values aggregated over a range of different area sizes from 4 to 2500 km2 for the southern subset of the study
area (7°30′ S, 70° W). The x-axis shows the size of the aggregated area (pixel), the y-axis represents the time (2002–2010), the z-axis shows the corresponding NDVI value. The
color of the surface corresponds to the standard deviation obtained from averaging over different areas. Figure C shows MYD09 derived data, but using the MAIAC cloud mask.
Figure D shows the same product derived from the 8 day MYD09A1 composite, Figure E represents the MYD13A2 16 day product.
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Fig. 10. Spatial distribution of NDVI over the entire study area using NDVI observations processed with MAIAC (A) and MYD09 (B) acquired over a 10 day period between DOY 355
and DOY 364, 2010. The x‐ and y-axis represent geographical longitude and latitude, respectively, the z-axis shows NDVI. A three dimensional spline function has been fitted
through all valid NDVI observation acquired by either algorithm over the 10 day period to obtain a continuous surface from the discrete observations.

Fig. 11. Distribution of NDVI across a latitudinal gradient from 10°S to 10°S for a day in late northern latitude summer (top row) and late northern latitude winter (bottom row). The
x-axis represents NDVI bins (bin size=0.01), the y-axis shows the latitudinal range. The z-axis represents NDVI observations per bin (aggregated across all longitudes, data are
shown as fraction of the total number of observations at a particular latitude). The left column (Figure A and C) shows MAIAC derived data, the right column (Figures B and D)
shows MYD09 derived observations. The total number of observations per bin is indicated by the color.
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Fig. 12. Relationship between NDVI and MAIAC derived aerosol optical thickness (AOT) at a northern (7°30′ N, 70° W) and a southern (7°30′ S, 70° W) subset of the study area (size
100 km2 each). The left column (Figure A and D) shows MAIAC processed observations, the central column (Figure B and E) shows NDVI obtained from MYD09 and AOT derived
from MAIAC. The right column (Figure C and F) shows MYD09 derived NDVI compared to MYD04 derived AOT. Data acquired over the full 8 year period are shown (2002–2010).
The marker color corresponds to the month of acquisition as indicated by the bars on the right.

Fig. A1. Monthly observations of NDVI from MCD43A4 (1 km 16-day NBAR view angle normalized), and MAIAC BRFn obtained over a 50×50 km area as indicated in the map. The
errorbars represent the mean spatial variability over the 50×50 km subset (Please note that the points and errorbars of the products are slightly offset from each other for purposes
of readability).
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MYD09 NDVI. Partly, it can be explained by the Lambertian surface as-
sumption used in MYD09, which does not discriminate between the
direct and diffuse irradiance, the effective surface reflectance for
which is different. The relative amount of direct vs. diffuse radiative
flux at the surface depends on the aerosol amount and path through
the atmosphere (solar and view zenith angle). This causes biases in
the surface reflectance which are dependent on the viewing geometry

and AOT even with perfect knowledge of AOT (Lyapustin, 1999; Wang
et al., 2010).

This study has shown that MAIAC algorithm can yield dramatically
enhanced estimates of commonly derived vegetation indices such as
NDVI over tropical regions. As a result, MAIAC may allow new oppor-
tunities for re-assessing the state of terrestrial ecosystems even in
very cloudy regions like the Amazon and could ultimately help to

Fig. A3. Comparison between the fraction of cloud free, high quality pixels, acquired from MAIAC (black) and MCD43A4 (red). MAIAC observations have been aggregated to 16 day
periods to meet the temporal scales of MCD43A4.

Fig. A2. Comparison between MAIAC BRFn (left column A, C) and MCD43A4 (right column B,D) derived NDVI values aggregated over a range of different area sizes from 4 to
2500 km2 for the northern (7°30′ N, 70° W, top row) and southern subset of the study area (7°30’ S, 70° W, bottom row). The x-axis shows the size of the aggregated area
(pixel), the y-axis represents the time (2002–2010) the z-axis shows the corresponding NDVI value. The color of the surface corresponds to the standard deviation obtained
from averaging over different areas.
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reduce uncertainties of terrestrial vegetation products globally. It
should be noted that differences between MAIAC and MODIS stan-
dard processing will likely be considerably smaller in temperate eco-
systems, as cloudmasking is most challenging in tropical regions with
warm, low clouds that are difficult to detect using conventional tech-
niques. More research will be required to determine the magnitude of
this effect in other regions of the globe. Nonetheless, the quality of
MAIAC demonstrated in tropical ecosystem clearly demonstrates its
potential for accurate cloud detection and aerosol correction.

As cloud cover is seasonally dependent, it seems plausible that
previously reported increases in Amazon greenness during a drought
could, at least in part, result from reduced cloudiness, rather than
from a change in vegetation status. More research will be required
to investigate this possibility but considerable uncertainties in stan-
dard products found in this study highlight the need for alternative
processing techniques over tropical regions (Zelazowski et al.,
2011). The results of this study suggest that MAIAC could provide
an alternative for reassessment of biophysical changes over tropical
rainforests.
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Appendix A. Comparison of BRDF normalized products

In order to investigate the effect of BRDF onMODIS derivedNDVI, we
compared directionally normalized NDVI from the MODIS standard
product and MAIAC for the same two MODIS tiles (h11v09 and
h11v08) and time period (2002–2010) (Fig. 1). For that, we used
MAIAC normalized reflectance BRFn and MODIS NBAR (nadir
BRDF-adjusted reflectance) product. The BRFn is normalized to the
fixed geometry of solar zenith angle (θs) of 45° and nadir view using
the RTLS model:

BRFn ¼ BRF� RTLS θs; θv;Δφð Þ
RTLS θs ¼ 45∘; θv ¼ 0∘;Δφ ¼ 0∘ð Þ ;

where θv and Δφ are view zenith and relative azimuth angle,
respectively.

The MCD43A4 product is a 16 day composite product which pro-
vides level-3 gridded surface reflectance at a 0.5-kilometer resolution
adjusted for view angle effects using the bidirectional reflectance dis-
tribution function (BRF). MCD43A4 data and corresponding quality
flags (MCD43A2) were obtained from the EOS data gateway and qual-
ity filters were applied as stated in Table 1. While MCD43A4 and
MAIAC BRFn are both BRDF normalized datasets, there are two differ-
ences between them: First, MCD43A4 is normalized in the view angle
only, while MAIAC BRFn is normalized in both view and solar zenith
angles. Second, MCD43A4 is a 16-day composite product based on
both Terra and Aqua MODIS data, while MAIAC BRFn is daily reflec-
tance, here from the Aqua platform only. Fig. A1 shows NDVI time
series from the same 50×50 km2 subsets as used before but compar-
ing MCD43A4 to MAIAC BRFn at monthly time steps. As for the
non-normalized data, we computed monthly mean values for each
pixel by averaging all valid (that is cloud screened, and quality
filtered) pixels acquired during that month and obtained mean and
standard deviation by averaging these monthly values across each
50 x 50 km2 block. Differences observed between the 16 day product
MCD43A4 and daily MAIAC BRFn were moderate for the most part,
however, cloud cover caused residual outliers in the 16 day product,
with some areas more affected than others. As opposed to conven-
tional composite, MCD43A4 reflectance relies on daily MOD09 obser-
vations to retrieve BRDF and is also affected by undetected clouds,

especially if the total number of observations is low. Overall the per-
formance of the 16 day NBAR composite product was similar to that
of the 16 day VI product (MYD13).

Fig. A2 shows NDVI estimates (along z-axis) as a function of time
during 2002–2010 (x-axis). The y-axis shows the spatial variability of
NDVI when averaging over different areas, from 2×2 to 50×50 km2.
The color represents the standard deviation (σ) of the spatially aver-
aged NDVI estimates, the areas correspond to the non-normalized
data presented in Figs. 8 and 9. MAIAC BRFn observations are shown
in Figures A (northern, seasonal region), and Figure C (southern,
non- seasonal part), the corresponding MCD43A4 observations are
given in Figures B and D. Compared to the non-normalized MAIAC
product, MAIAC derived BRFn observations showed similar levels of
uncertainty indicating only a limited effect of BRDF on NDVI reflec-
tance (compare Figs. 8A and 9A). The MODIS NBAR product yielded
comparatively overall larger uncertainties across the examined scales
with individual dates showing considerable offsets, which were likely
driven by undetected clouds.

The number of observations shown for the NBAR product was con-
siderably lower than for MAIAC observations. Fig. A3 shows the pro-
portion of cloud free pixels from MCD43A4. To match the temporal
scale of MCD43A4, MAIAC data were aggregated over 16 days.

In summary, this analysis showed little difference between MAIAC
BRDF normalized and non-normalized NDVI which agrees with re-
sults from Lyapustin et al. (this issue). MAIAC NDVI obtained from
BRF and from BRFn were found to be very similar with only slight re-
duction in variability. As NDVI is typically high in tropical forests, the
red reflectance constitutes only a small fraction of the NIR signal,
thereby canceling most of the anisotropy in NDVI (but not so in the
reflectance). In addition, the anisotropy gets reduced as the surface
becomes brighter due to multiple scattering and consequently the
relative anisotropy of the NIR reflectance is lower than that of the
red reflectance.

The results presented in Figs. A1 and A2 show that despite addi-
tional BRDF-based cloud masking in MCD43A4, cloud leak remains
problematic in this product. While the BRDF retrieval in MCD43
helped filter residual clouds, when enough clear sky observations
for reliable BRDF inversion were available, this method does not
allow the cloud mask error to be separated from the total error bud-
get. In cases of high cloudiness, residual clouds can lead to wrong
BRDF retrievals, and, as a result, the MCD43A4 BRDF-normalization
may increase the total error of surface reflectance (or NDVI) rather
than decreasing it. It should also be noted that the results presented
in Fig. A1 show monthly-mean values over large areas (2500 km2).
Acquisitions at finer temporal or spatial scales using MCD43A4
would be problematic due to a lack of sufficient observations (see
for instance Figs. A2, A3).

Appendix B. Supplementary data

Supplementary data to this article can be found online at http://
dx.doi.org/10.1016/j.rse.2012.08.035.
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