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Recent interest at NASA for the application of solar electric propulsion for the transfer
of significant payloads in cislunar space has led to the development of high-fidelity simula-
tions of such missions. With such transfers involving transfer times on the order of months,
simulation time can be significant. In the past, the examination of such missions typically
began with the use of lower-fidelity trajectory optimization tools such as SEPSPOT" to
develop and tune guidance laws which delivered optimal or near- optimal trajectories,
where optimal is generally defined as minimizing propellant expenditure or time of flight.
The transfer of these solutions to a high-fidelity simulation is typically an iterative process
whereby the initial solution may nearly, but not precisely, meet mission objectives. Further
tuning of the guidance algorithm is typically necessary when accounting for high-fidelity
perturbations such as those due to more detailed gravity models, secondary-body effects,
solar radiation pressure, etc. While trajectory optimization is a useful method for deter-
mining optimal performance metrics, algorithms which deliver nearly optimal performance
with minimal tuning are an attractive alternative.

Nomenclature
t Time, days
a Semi-major axis, km
e Eccentricity
i Inclination, deg
Q Right ascension of ascending node, deg
w Argument of periapsis, deg
0 True anomaly, deg
. One of the classical orbital elements
E Eccentric Anomaly
I Gravitational parameter of the central body, ks—”z‘a
m Spacecraft mass, kg
Py Spacecraft propulsion system input power, kW
n Spacecraft propulsion system efficiency
Noe Trajectory maneuver efficiency for each orbital element
Isp Spacecraft propulsion system specific impulse, s
urc Universal Time Coordinated
LEO Low Earth Orbit
GSO GeoStationary Orbit
GTO Geostationary Transfer Orbit
METL Maneuver Efficiency Threshold Limit
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I. Introduction

HE development of closed-loop guidance algorithms for low-thrust vehicles in the past decade offers the
Tpossibility of delivering near-optimal performance without the need for frequent solution updates due to
uncertainty in the perturbation models. In this paper the authors examine the performance of the Proximity
Quotient guidance law (Q-Law) developed by Petropoulos’ and a modified version of the orbital element
correction scheme developed by Ruggiero, Pergola, Marcuccio, and Andrenucci.” These control laws are
intended to provide near-optimal thrust vectors which will deliver a spacecraft from its current state to a
later state defined using classical orbital elements. Both algorithms support mechanisms for coasting during
periods where the application of thrust is relatively inefficient at achieving the desired effect; for example,
attempting to raise the apoapsis altitude when near apoapsis.

In this paper the authors discuss the implementation of the two guidance algorithms and perform a com-
parison of the two methods above in terms of robustness and performance. For consistency, the guidance laws
are implemented in a high-fidelity solar electric propulsion simulation developed at NASA Glenn Research
Center in support of the agency’s low-thrust mission efforts. This ensures that the guidance routines are
operating in a common environment with the same dynamics. The simulation is intended to operate in both
3DOF and 6DOF modes without simplifying assumptions that are often made in optimization tools, and so
offers a good examination into how the algorithms would perform on actual spacecraft. The guidance laws
are tasked to perform a set of missions common to low-thrust applications: orbit raising from low-Earth
orbit (LEO) to geostationary orbit (GEO), orbit raising from geostationary transfer orbit (GTO) to GEO,
and orbit raising from a low elliptical orbit to a lunar flyby interface. Guidance laws are compared based
on their ability to converge to the targeted states. Performance is compared on the basis of the propellant
required to deliver a payload in a given time (mass-optimal) and the minimum time required to deliver a
given payload (time-optimal). These solutions are compared with optimal solutions generated by other tools.
In addition to quantitative comparisons of performance, the authors present modifications to the guidance
algorithms which are shown to improve performance.

I1. Overview of Control Laws

A. Diretional Adaptive Guidance

Ruggiero, Pergola, Marcuccio, and Andrenucci® describe low thrust maneuvers for efficiently correcting
orbital elements; it is based on the principle of determining the thrust angles, at each epoch of interest,
that produce the highest instantaneous rate of change in the orbital elements of interest. The accompanying
thrust direction for each orbital element is determined. For a general scenario, multiple thrust directions are
combined to enable the simultaneous targeting of multiple orbital elements. The authors present, among
others, well known analytic expressions for the thrusting angles, maneuver efficiencies and an overall formula
for a combined classical orbital element correction (based on an adaptive weighting). Actual implementation
of the algorithm (i.e.“nuts and bolts”) is not shown and left up to the reader. Also outlined is a mechanism
for enforcing a threshold on maneuver efficiency to affect propellant consumption. A specific targeting
algorithm, based on a subset of the presented material, along with further enhancements has been developed
for the Directional Adaptive Guidance (DAG).

For purposes of the DAG algorithm, the thrusting angle expressions, maneuver efficiency expressions,
adaptive weighting factor and efficiency threshold concept are taken from the original reference. The DAG
targeting algorithm is implemented as a self-contained routine requiring the epoch and vehicle state vector
(orbital elements) of interest along with directional weighting factors (new addition to algorithm), desired
final targets (orbital elements), stopping tolerance (new addition to algorithm), maneuver efficiency threshold
(optional) and control rate limit (optional, new addition to algorithm). The returned parameters consist
of the unit thrust direction (RSW frame), mass flow multiplier, indicator of targets achieved (logical flag
and epoch time) and the pitch and yaw steering angles (referenced to RSW frame). Depending on specific
implementation, the unit thrust direction and mass flow multipliers can be directly used in the equations of
motion of interest, or alternatively, the pitch and yaw steering angles maybe used in place of the unit thrust
vector.

From the instantaneous vehicle state vector a set of thrusting angles are computed; « is the in-plane (i.e.
pitch) angle while 8 is the out-of-plane (i.e. yaw) angle. These angles, shown in Table 1, are those that
produce the largest rate of change (i.e. the instantaneously “optimal” search direction) in each of the five
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possible orbital elements that may be targeted: semi-major axis (sma), eccentricity (ecc), inclination (inc),
right ascension of the ascending node (raan) and argument of periapse (argp). The results make up five sets
of ‘optimal’ in-plane (pitch) and out-of-plane (yaw) angles.

Orbital Element « B

Semi-Major Axis (a) arctan (%) 0

Eccentricity (e) arctan (ﬁ%) 0

Inclination (i) 0 sgn (cos (w +0)) - 5
Ascending Node () 0 sgn (sin (w +6)) - §
Argument of Periapsis (w) arctan (;%Zzggg cot 9) arctan (sin(a—e)(el(fz(ci):(ig)(;dj—cil(a)sin(@))

Table 1: Optimal in-plane (o) and out-of-plane () thrust angles (RSW pitch/yaw) for mazimum instanta-
neous change of each orbital element, from 3

From the five sets of thrusting angles, taken from Table 1, the corresponding unit thrust directions (in
RSW frame) are computed:

) fr cos () sin («)
foe = | fs | = |cos(B)cos(a) (1)

fw sin (B)

An adaptive ratio is computed for each desired target, which quantifies the percentage of the change in
each orbital element:

Ry = L% 2)

e —

where o indicates an instantaneous classical orbital element value, cer indicates a target value and ceq
indicates the initial value. For the general case of targeting multiple elements at the same time, the reference’
multiplies each unit thrust direction component by the adaptive ratio and simply sums them to arrive at the
overall unit thrust direction; this setup usually results in achievement of the targets.

,}FT = Z(l _6oe,oeT)Roefoe (3)

oe

where: f} is the thrust vector in the RSW frame and de o, is the Kronecker delta function:

Seocop = 1,0e = cep (4)
0,0e # cer

It should be noted that a targeting algorithm is capable of achieving the targets but the resulting path
is not necessarily optimal. The combining of the unit thrust directions in reference 3 ( f}), in essence, uses a
fixed equal weighting of the thrust directions foe prior to multiplying by the adaptive ratio; this is a limitation
that does not allow for different, and perhaps more optimal, solutions to be explored. In order to generate
additional (and hopefully better) solutions, a modification of this original scheme is made whereby a set of
directional weighting factors, Wg,, . is introduced. Equation 3 is replaced with equation 5 below:

.]F”:F = Z Roerir,oefoe (5)
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where parameter Wy, o for each orbital element may be a constant (i.e.static) or time-varying control,
or a function of some set of variables in the problem. These directional weighting factors Wy, o are used
to multiply the previously computed product of the unit thrust directions and adaptive ratio. For purposes
of this discussion they are treated as constants. The sign of each directional weighting factor determines
the direction of the targeting (increasing or decreasing). The actual values of the weighting factors are not
of importance; it is their relative sizes that produce the desired tuning effect of the DAG algorithm when
multiple orbital elements are simultaneously targeted. In fact, for a single target, one can simply set the
weighting factor to any value (e.g. unity) and the algorithm will properly reach the target. Experience,
so far, has shown good results by using simple constants for the directional weighting factors, making the
tuning process, for a more optimal solution, less burdensome.

The use of the directional weighting factors Wy, o has allowed for different solutions in achieving the
targets. It should be noted that the adaptive ratio will naturally drive the unit thrust vector to a near zero
value at target achievement. However, to avoid potential numerical noise that may allow the targeting process
to continue beyond reasonable achievement, an additional mechanism is needed. The original scheme uses a
Kronecker delta function (Equation 4) to guarantee turning off the targeting for a specific classical orbital
element. The present implementation has replaced this with a stopping tolerance as follows: the magnitude
of the combined thrust direction vector fT is monitored against a stopping tolerance; when all targets are
met (within the tolerance), the simulation is stopped. Alternatively, the test for target achievement may
be skipped if a numerical optimizer is used in conjunction with the DAG algorithm. For those instances,
the stopping is achieved by the optimizer. Prior to target achievement, the present implementation of the
algorithm always unitizes the combined thrust vector fT thereby ensuring 100% of the thrust is used unless
the thruster is deactivated by other means (e.g. shadow cut out or efficiency threshold) that forces a coasting
period. The new stopping scheme is shown below where reference thrust, fin,us:, and mass flow rate, 1 fiow,
come from the propulsion model while mass, ¢ is a constant set by the DAG algorithm (default is 1.0; can
be 0.0 based on maneuver efficiency cutout when propulsion is turned off).

while || f7|| < tolerance do
compute unit thrust vector f'T
continue targeting using: f'T * fihrust and masSmuir * M 10w
end
Algorithm 1: Stopping condition for DAG algorithm.

Imposing a specific throttling profile can be achieved via modifying the propulsion model’s reference
fenrust and mfio, in the trajectory simulation code. Using the unit thrust direction f'T7 the corresponding
pitch and yaw angles are also computed (RSW frame). Propellant mass flow is controlled via a mass flow
multiplier mass.,,;: that is set to either one or zero by the targeting algorithm. This multiplier is applied
to the reference mass flow parameter ¢4, from the propulsion model.

Orbital Element Omaz Tee
Semi-Major Axis (a) 0a =0 Na = |V \/ A
Eccentricity (e) 0. =m Ne = %W
Inclination (i) sin (0; + w) = -e sin (w) N = %(\/1 — e2sin? (w) — e|cos (w)))
Ascending Node (Q) cos (B + w) = -e cos (w) o = %( 1 — e2cos? (w) — efsin (w)])
Arg of Periapsis («) cos () = Mo = Trmd T
|5+ Vi + 3] -
{_1252 + %(12;2) + 214 d _i

Table 2: Point of the orbit providing the maximum rate of change and the expression of the maneuver
efficiency, n, for each considered Classical Orbital Element, from 5. Note: corrections have been implemented
to the reference definitions of n. and cos(0,,)
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In addition to the thrust direction, maneuver efficiencies for each orbital element are also computed per
the equations from table 2.

For the targeted elements these efficiencies are combined via simple averaging. The combined efficiency is
subject to a lower threshold (defaulted to zero). The thruster is turned off when the efficiency falls below the
threshold; this introduces coasting arcs, where needed, into the trajectory. The efficiency test is as follows:

Compute 7gvg
if Navg < Nthreshold then

fr=20
massmuit = 0
end

Algorithm 2: DAG efficiency cutoff for coasting

By raising the efficiency threshold, the solution can be affected such that the propellant consumption
is reduced; this, naturally, happens at the expense of the total mission elapsed time. There will also be
a natural upper limit on how much the efficiency threshold may be increased since introducing too many
coasting periods will eventually result in the increase in mission time outweighing the potential propellant
savings or eventually not being able to achieve some or all of the targets since there is not enough propulsive
impulse being applied. There is typically a range of feasible threshold values for a given mission. As a first
targeting exercise for any mission it is best practice not to enforce any efficiency threshold (default) to derive
a baseline case; the efficiency threshold can subsequently be used to perform parametric studies of interest or
to achieve a specific mission objective. Figure 1 shows an example sweep on the combined maneuver efficiency
for a GTO to GSO example case; the specific case is not discussed in this paper. Of interest, however, is the
trade off between propellant saving and longer mission trip time. As the maneuver efficiency threshold is
increased, coasting periods are inserted into the trajectory (when the combined maneuver efficiency is below
the threshold); the impact is to lengthen the mission trip time. By forcing the propulsion to be applied more
efficiently, the amount of propellant consumed decreases (at the expense of a longer trip time). However,
beyond a certain point the increase in trip time outweighs the benefit of increased maneuver efficiency,
requiring more propellant to be used to achieve the target orbit; this is a result of the impact of additional
coasting periods on the underlying dynamics in the particular problem. An example of such a trend is shown
in the “propellant consumed” plot in Figure 1 where going beyond an efficiency threshold of approx. 0.65
for this particular case, the benefits of the increased efficiency vanish. It should be noted that the particular
shape of the curve and the crossover point location are very specific to the trajectory under examination.
Continued increase of the efficiency threshold beyond the crossover point also shows a sharp increase in trip
time. In fact, the efficiency threshold will reach a value beyond which the targets can no longer be achieved
since there is simply not enough impulse (no matter how efficient) applied.
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Figure 1: Ezxample of the effect of maneuver efficiency on flight time and propellant usage. Taken from an
internal NASA GRC analysis
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So, we observe that there are two ways to affect a different solution with this targeting algorithm: (1)
adjust the directional weighting factors Wy, . and (2) impose an efficiency threshold nipreshotd-

Finally, another addition to the algorithm is that of control rate limit. If needed, a single control rate
limit may be specified which is then applied to both pitch and yaw. This feature can be expanded to separate
control rates; however, a single rate limit has proven adequate thus far. Depending on specific simulation code
implementation, control rate limit may be available outside the targeting algorithm. The following describes
implementation of control rate inside the targeting algorithm. During the trajectory simulation the pitch
and yaw angles from the targeting algorithm are tracked between two successive complete integration steps;
this provides a control change history, which, coupled with the size of the integration step provides control
rate information (i.e. pitch and yaw rates). These are first order approximations whose quality depend on
time step and the true angular rate. If there is a rate limit specified (default is none), an allowed angular
displacement may be computed from the rate limit and the integration step size. This allowed displacement
is then compared against the actual change in the corresponding control angle. If the allowed displacement
is violated, the allowed displacement is used, along with the prior control angle to derive the new control
angle. Care must be taken when a control angle change crosses a boundary (e.g. 360 / 0 deg, or +/-
180 deg) depending on the trajectory simulation code convention; this is necessary to avoid “false” angular
displacement violations. In case any of the control angles are recomputed, based on the control rate limit,
the unit thrust direction is recomputed from the new control angles; this new unit thrust direction replaces
the original one obtained from the targeting algorithm. The impact of any potential rate limit adjustment
is then subsequently, naturally, accounted for in the simulation.

The DAG algorithm may be used with or without a numerical optimizer making it suitable to a wide
range of trajectory simulation programs.

B. Proximity Quotient

The Proximity Quotient guidance law, also known as Q-Law, was initially developed by Petropoulos of
the Jet Propulsion Laboratory in 2003” and saw significant refinements in 2005.* The Q-Law is presented in
great detail by Petropoulos, so only a brief overview will be given here. The central premise of the Q-Law
is that a candidate Lyapunov function, Q is defined:

A (ce, cer) ] ? (6)

Q:(1+WPP)ZWOESOE[ .

(Exx

The term ce represents each of the five osculating classical orbital elements (a,e,i,Q2,w). The error function
A(oe, cer) quantifies the difference between the current value of an orbital elements and the desired value.
Terms Wy, are weighting factors that indicate the relative importance of changing each element quickly.
Petropoulos used these parameters as static control parameters, though in this work we experiment with
their use as dynamic control parameters. Term ce,, is the maximum rate of change of a given orbital
element within the current orbit. Petropoulos introduced Sy, to scale the semi-major axis error and improve

convergence.
A(a,ar) 4
= 1 27
o=y [ (3] @

S.=S8=8a=58,=1 (8)

Parameters a and ar are the current and target values of semi-major axis, respectively. Similarly, the penalty
P was introduced to prevent the algorithm from seeking solutions which involve unacceptably low periapsis

altitudes.
r
P:exp{k(l— P )} (9)
Tpmin

Here k represents the strength of the penalty function, and 7py,:, is the minimum allowable periapsis
radius. The main idea behind proximity quotient is that ) represents some error from a desired state.
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Through a bit of calculus, we can analytically determine an expression for Q, which due to the Gauss form
of the Lagrange Planetary Equations, will involve thrust angles o and 8 (pitch and yaw in the Hill frame).

: 0
Q=Y %o’e (10)

It turns out that an analytic solution exists which minimizes Q by varying « and 3. By using those thrust
angles the spacecraft guidance drives @) to zero as quickly as possible at any given instant, thus driving the
orbit to the intended target orbit as quickly as possible at any given instant.

Petropoulos also introduces a relative efficiency factor for the rate of change of @), where the current best-
possible rate of Q (Qn) is compared to the minimum and maximum possible change rate within the current
orbit (QW,QM). Similar techniques have been used by several authors to find Pareto-optimal minimum
propellant solutions subject to an upper-bound on trip time or propellant expenditure.”>* %"

MNrel = M (11)
an - Qnm

Thrust is applied only when this efficiency ratio is above some efficiency threshold parameter. By nor-
malizing with respect to both the minimum and maximum rates of change of Q, the user-specified efficiency
threshold has a continuous effect as it is varied from zero to one. The spacecraft thrusts continuously (when
not in shadow) when the parameter is zero, and the thrust interval within the orbit becomes increasingly
smaller as the efficiency parameter approaches unity. This parameter, as with the weight factors, can be
used as either a static or dynamic control.

For this paper, the authors used both an averaging approach like that described in reference 8 and a
higher fidelity simulation tool (see reference 9). Determining the extremal optimal rates of change of @ within
the orbit (Q;m,Q;m) can be computationally expensive and reduce the speed of the simulation, especially
when using orbital averaging. To find approximate values for Q.,,, and Q,,, the following approach was used.
First, an interpolating polynomial is established on —7 < 6 < 7 with nodes at the Legendre-Gauss-Lobatto
points. At each node, @, is computed analytically. The extremal values of the polynomials are assessed by
forming the companion matrix to the interpolating polynomial and computing its eigenvalues. Real-valued
eigenvalues are candidates for extrema, along with the endpoints —7 and 7. Once again Q,, is computed,
this time at each candidate for the extrema, and from this Q,, and Q,, may be computed. Finally, a
polynomial is fit to the shifted efficiency at the LGL nodes:

_ Qn — Qnm
Nshifted = = -

S e 12
anann et ( )

This has the effect of normalizing the values of Q,, (which is never positive) throughout the orbit on the
range [-1,0] and shifting it upwards by the efficiency threshold 7,..;. The roots of (12) can again by obtained
from the eigenvalues of the polynomial companion matrix. These represent the approximate values of 6
at which the spacecraft passes through the relative efficiency threshold (11). Thrust arcs are those regions
where nspiftea < 0. Note that (11) and (12) are opposite in sign. In this work 7sp;rreq was left negative to
reflect the fact that Q,, is negative.

ITII. Application of Control Laws

The first two cases to be examined are LEO to GSO and GTO to GSO applications. These examples have
been used by Kluever and Oleson for the demonstration of their minimum-time control law development.'’> '
All cases assume that thrust is not available while in the shadow of the Earth.
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A. LEO to GSO Transfer

Parameter Initial Orbit Final Orbit
Semi-Major Axis (km) 6927 42164
Inclination (deg) 28.5 0

Eccentricity 0 0

Argument of Perigee (deg) 0 unconstrained
Ascending Node (deg) 0 unconstrained
Mass (kg) 1200 unconstrained
Epoch 01 Jan 2000 00:00:00 UTC | unconstrained

Table 3: Initial and final orbits for the LEO to GSO case

efficiency of 65%.

The propulsion system has a specific impulse of 3300 seconds, an input power of 10 kW, and an operating

B. GTO to GSO Transfer

Parameter Initial Orbit Final Orbit
Semi-Major Axis (km) 24364 42164
Inclination (deg) 28.5 0

Eccentricity 0.7306 0

Argument of Perigee (deg) 0.1 unconstrained
Ascending Node (deg) 179.6 unconstrained
Mass (kg) 1200 unconstrained
Epoch 22 Mar 2000 00:00:00 UTC | unconstrained

Table 4: Initial and final orbits for the GTO to GSO case

For case B the propulsion system has a specific impulse of 1800 seconds, an input power of 5 kW, and
an operating efficiency of 55%.

C. GTO to GSO (or Equatorial sub-GSO)

The next case demonstrates the benefit of selecting a longer solution to satisfy a vehicle constraint. The
case is that of a fictitious SEP spacecraft with an initial mass of 178 kg and is to, ideally, perform a GTO
to GSO transfer; however, there is a 30 kg propellant limit. If the spacecraft cannot perform the full GTO
to GSO transfer then a compromise is needed. The final GSO inclination of zero degrees and the final
GSO apogee altitude must still be achieved. However, the final perigee altitude may be reduced; it is to be
maximized such that the propellant limit is not exceeded. Additionally, care must be taken not to excessively
increase the total mission trip time. The use of the maneuver efficiency threshold is demonstrated in this
example.

This transfer is performed with the assumption that thrust is not available while in the shadow of the
Earth. The propulsion system has a specific impulse of 1300 seconds, an input power of 90 W, and an
operating efficiency of approximately 64%.
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Parameter Initial Orbit Final Orbit
Semi-Major Axis (km) 24396 42164 or adjust
Inclination (deg) 28.5 0

Eccentricity 0.7283 0 or adjust
Argument of Perigee (deg) 0.1 unconstrained
Ascending Node (deg) 179.6 unconstrained
Mass (kg) 178 unconstrained
Epoch 01 Jan 2016 00:00:00 UTC | unconstrained

Table 5: Initial and final orbits for the GTO to GSO (or Equatorial sub-GSO) case

IV. Results

The simulation method used for the targeting guidance algorithms, discussed here, is a high fidelity
trajectory simulation using Cartesian EME2000 equations of motion for examples A and B while example
C uses Modified Equinoctial Elements (MEE). Algorithm tuning for DAG is based on manual tuning of
constant directional weights while using time history plots of the targeted elements to inform the user of the
“optimality” of the solution. Depending on the numerical expense of the high fidelity trajectory simulation
program, a numerical optimizer may be of benefit in the tuning process. The Q-law algorithm tuning is
performed using orbital averaging combined with a collocation-based direct optimization approach. This
method is similar to that described in reference 8, but instead of the modified equinoctial costates being
implemented as time-varying optimal controls, the input parameters of Q-Law were treated as static optimal
controls.

The optimal reference for cases A and B were obtained using a simulation method based on an orbital
averaging technique for the equations of motion and a guidance algorithm based on optimal control theory
driven by a numerical optimizer.® '’>!!

Despite the fact that the orbital averaging approach uses simplified perturbation models, the results
obtained by it agree very well with those obtained with higher fidelity trajectory simulators. The guidance
parameters tuned in the much faster orbital averaging program yield nearly the same results as when applied
to the high fidelity simulation, significantly reducing the time spent tuning the algorithms.

A. LEO to GSO Transfer

The results of the LEO to GSO transfer cases are shown in Table 6 while Figures 2 to 3 show
corresponding plots for selected parameters.

LEO to GSO Transfer

MET | Mass sma ecc inc alt_p alt_a SEP dV | Thrusting

days kg km n/d deg km km m/sec days % on
Initial Orbit
LEO Orbit 0.00 1200.00 | 6927.00 | 0.000000 | 28.50 548.86 548.86 0.00
Final Orbit
GSO reference case | 198.99 | - 42164 0 0 - - - - -
GSO using DAG 209.11 | 997.04 | 42164.46 | 0.000110 | 0.028370 | 35781.87 | 35790.77 | 5989.55 189.24 90.50
GSO using Q-law 211.95 | 992.56 | 42154.91 | 0.001100 | 0.007720 | 35730.51 | 35823.03 | 6135.97 193.42 91.26
- = information n/a

Table 6: Summary of results for the LEO to GSO example cases
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Figure 2: Orbital element and mass time-histories for the LEO to GSO case. Optimal solutions are from
reference 8.
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B. GTO to GSO Transfer

The results of the GTO to GSO transfer cases are shown in Table 7 while Figures 4 to 5 show corre-
sponding plots for selected parameters.

GTO to GSO Transfer

MET | Mass sma ecc inc alt_p alt_a SEP dV | Thrusting

days kg km n/d deg km km m/sec days % on
Initial Orbit
GTO Orbit 0.00 1200.00 | 24364.00 | 0.730600 | 28.5 185.52 35786.20 | 0.00
Final Orbit
GSO reference case | 118.36 | - 42164 0 0 - - - - -
GSO using DAG 125.60 | 1012.37 | 42163.58 | 0.000500 | 0.028690 | 35764.16 | 35806.71 | 3000.12 123.03 97.95
GSO using Q-law 120.02 | 1020.41 | 42158.73 | 0.001800 | 0.001000 | 35704.70 | 35856.47 | 2861.10 117.76 98.12
- = information n/a

Table 7: Summary of results for the GTO to GSO example cases
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Figure 4: Orbital element and mass time-histories for the GTO to GSO case. Optimal solutions are from
reference 8.
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Figure 5: Steering time histories for the GTO to GSO case.

C. GTO to GSO (or Equatorial sub-GSO)

Table 8 shows the results of the GTO to Equatorial sub-GSO example. First, for DAG, the results of
the minimum time full GTO to GSO transfer are shown. From this case we observe that the full transfer
can be accomplished in approx. 646 days and consumes approx. 38.5 kg of propellant. The stated problem
has a 30 kg propellant limit; it is also given that the final perigee altitude may be compromised while all
other nominal targets are met and the baseline trip time is not increased excessively. In order to reduce the
propellant consumption, a combined maneuver efficiency threshold limit (METL) is implemented (note that
the baseline case does not have any limit). The result is to reduce the propellant usage at the expense of trip
time. Increasing the maneuver efficiency threshold limit on the full GTO to GSO transfer does reduce the
propellant usage; however, the trip time drastically increases compared to the baseline case; to reach the 30
kg propellant tank limit would lengthen the mission unacceptably. So, the compromise on perigee altitude is
employed. For DAG, setting the METL to 0.50, 0.52 and 0.54, respectively, and adjusting perigee altitude,
the sub-GSO-equatorial cases, shown in Table 8, are obtained. For these cases, the propellant limit of 30
kg is observed while the final perigee altitude is approx. 19k, 16k and 14k km, respectively, lower than that
for GSO. The corresponding trip times are lengthened by approx. 7.5, 49.0 and 87.0 days, respectively. It
should be noted that intermediate cases leading up to these final result are not shown; they are the result of
a rather simple iterative process where the propellant savings of the METL are used to target higher perigee
altitudes until the propellant limit is observed. Also note that these answers are not unique; i.e. further
refinements are possible depending on the trade off between higher final perigee altitudes at the expense
of longer trip times. These cases demonstrate how the maneuver efficiency threshold can be used to insert
coasting into the problem to achieve specific mission constraints; in this example notice how the percentage
of thruster "on” time during the transfer decreases from the baseline case amount of approx. 98% to approx.
75, 72 and 68%, respectively, for these particular METL cases.

The results are repeated using the Q-law algorithm and shown in the lower section of Table 8. Note
that only a single sub-GSO case was run with Q-Law, as it converged with significantly poorer performance
than DAG for this case.
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GTO to GSO (or Equatorial sub-GSO)

METL | MET | Mass | sma ecc inc alt_p alt_a SEP dV | Prop used | Thrusting
% days kg km n/d deg km km m/sec kg days % on
Initial Orbit (GTO) | 0.00 0.00 178.00 | 24396.00 | 0.728300 | 28.500000 | 250.25 35785.47 | 0.00 0.00

GSO (full transfer)

| Final Orbit - DAG

| Minimum time [ 000 64595 | 139.51 [ 42164.40 [ 0.000035 | 0.000006 [ 35784.78 | 35787.74 | 3105.92 | 38.49 l631.04 [ or69 |
Sub-GSO-Equatorial (at ~ prop limit)
Sub-GSO-Bquatorial 1 | 50.0 | 653.54 | 143.05 | 32770.64 | 0.286613 | 0.000007 | 1700002 | 35784.99 | 2347.95 | 2095 49111 75.15
Sub-GSO-Bquatorial 2 | 52.0 | 69477 | 147.40 | 34270.65 | 0.230301 | 0.000004 | 19999.96 | 35785.07 | 2404.75 | 30.60 501.68 72.21
Sub-GSO-Equatorial 3 | 540 | 73315 | 147.70 | 35270.62 | 0.195419 | 0.000004 | 21999.94 | 35785.02 | 2377.55 | 30.30 496.71 67.75
Final Orbit - Q-Law | \ \ \ \ \ \ \ \ \ \
GSO (full transfer)
METL | MET | Mass | sma ecc inc alt_p alt_a SEP dV | Prop used | Thrusting
% days kg km n/d deg km km m/sec kg days % on
Minimum time 0.00 | 646.62 | 139.45 | 42159.02 | 0.002590 | 0.001261 | 35671.70 | 35890.07 | 3111.65 | 38.55 631.69 97.69
Sub-GSO-Equatorial (at ~ prop limit)
| Sub-GSO-Bquatorial 1 | 48.6 | 850.00 | 148.60 | 35273.27 | 0.195665 | 0.001788 | 21993.39 | 35796.89 | 2301.69 | 29.40 | 481.96 56.70 |

Table 8: Summary of results for the GTO to GSO example case that uses a maneuver efficiency threshold
to satisfy a propellant limit

V. Summary and Conclusions

Two guidance algorithms have been implemented to address the need for achieving near optimal solu-
tions of low thrust trajectory transfers without the need for frequent solution updates. Additionally these
algorithms may be used without a numerical optimization package in the loop; this is especially beneficial
for use in high fidelity trajectory simulation codes where the spacecraft model and perturbation models may
be very extensive and therefore numerically impractical to solve using numerical optimization. The ability
to tune the guidance algorithms with relative ease and have the simulation achieve desired targets robustly
outweighs any somewhat “sub-optimal” solution; i.e. unforeseen perturbations may require a slightly longer
duration but the targets will still be achieved.

The example cases A and B demonstrate the effectiveness of these algorithms when compared to the result
of two published optimal guidance cases. It should also be noted that the results of the DAG and Q-law,
generated here, compare well for near-minimum time solutions. Additional features, beyond targeting, have
been build into the algorithms. Example C demonstrates the use of a lower threshold on maneuver efficiency
to trade mission trip time for additional performance; this is done to satisfy a specific mission constraint
(here, propellant tank limit). Qualitatively, the implementation of coast arcs due to maneuver efficiency is
significantly more complex in Q-Law, as no analytic solution to determine the extremal values of Q,, within
an orbit are available, and therefore must be obtained numerically.

These algorithms are readily adaptable to a wide range of trajectory simulation programs and can be
used with or without the use of a numerical optimization package. They enable the targeting of up to five
orbital elements of a closed orbit.
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