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a b s t r a c t

By adopting a concept from signal processing, instead of starting from the correlation

functions which are even, one considers the causal correlation functions whose Fourier

transforms become complex. Their real and imaginary parts multiplied by 2 are the

Fourier transforms of the original correlations and the subsequent Hilbert transforms,

respectively. Thus, by taking this step one can complete the two previously needed

transforms. However, to obviate performing the Cauchy principal integrations required

in the Hilbert transforms is the greatest advantage. Meanwhile, because the causal

correlations are well-bounded within the time domain and band limited in the

frequency domain, one can replace their Fourier transforms by the discrete Fourier

transforms and the latter can be carried out with the FFT algorithm. This replacement is

justified by sampling theory because the Fourier transforms can be derived from the

discrete Fourier transforms with the Nyquis rate without any distortions. We apply this

method in calculating pressure induced shifts of H2O lines and obtain more reliable

values. By comparing the calculated shifts with those in HITRAN 2008 and by screening

both of them with the pair identity and the smooth variation rules, one can conclude

many of shift values in HITRAN are not correct.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

In order to carry out forward modeling of atmospheric
radiative transfer processes and to obtain information on
the abundances of molecular species, temperature–pressure
profiles, and other atmospheric properties, one needs accu-
rate spectroscopic data. This includes not only line positions,
strengths, and the temperature-dependent Lorentzian half-
widths, but also pressure induced shifts. Because the

ambient atmospheric species, temperatures, and pressures
are not always amenable to laboratory measurements, or
because of the large number of transitions possible, one
often has to rely on theoretical calculations. This is espe-
cially true for the induced shift because their values are
smaller than values of the half-width so that to perform
reliable laboratory measurements becomes more difficult.

It is well known that there are formalisms available for
many years such as the Anderson–Tsao–Curnutte (ATC)
theory [1,2], the Robert–Bonamy (RB) theory [3,4] and
others with which one can calculate half-widths and
shifts of molecular spectral lines. These formalisms are
based on two basic approximations: the binary collision
and the impact approximations. With these two approx-
imations, calculations of the pressure broadened half-
widths and induced shifts of the absorber molecular lines
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are reduced to thermal averages of the ‘‘connected’’ opera-
tor Mc(o) introduced by Fano over all possible collision
processes involving a pair of molecules [5], and in compar-
ison with the time of interest, these collisions are assumed
to be completed instantaneously. In addition, both the ATC
and RB formalism are semi-classical theories. In other
words, the translational motion of the pair is treated
classically, while their internal degrees of freedom are
treated quantum mechanically. This semi-classical method
is valid in calculating molecular spectral lines for tempera-
tures of interest in atmospheric applications. However, the
current theories are also based on other assumptions.
Some of these lack sound justification and could lead to
uncertainties that affect the reliability of the calculated
results. Besides, it is commonly accepted by most research-
ers that in comparison with calculated half-widths, calcu-
lated shifts usually contain larger uncertainties. According
to our knowledge, there is lack of systematic studies to
explain why the theoretically calculated shifts are poorer
than the calculated half-widths. One possible reason could
be severe cancelations of contributions to the lineshifts
occur in calculation processes. To identify other reasons
requires individually investigating the entire calculation
processes within the specified formalisms.

With the formalism developed from the introduction
of the coordinate representation in Hilbert space, [6,7] the
usual route in calculating converged half-widths and
lineshifts consists of several steps. For simplicity, we omit
subscripts attached to following functions. First, one
calculates the irreducible correlation functions F(t) of
the Ŝ matrix based on the potential and trajectory models
selected. Then, by carrying out the Fourier transforms of
F(t), one obtains functions H(o). Next, by evaluating the
Cauchy principal integrations for H(o), one obtains I(o),
the Hilbert transforms of H(o). After these H(o) and I(o)
are available, one calculates the real part of S2, the
second-order of the perturbation expansion of the Ŝ
matrix, from H(o) and the imaginary part of S2 from
I(o) for specified lines. Finally, one derives their calcu-
lated half-widths and shifts.

Following this route, the entire process goes smoothly
until one has to do the Cauchy principal integrations.
There are subroutines available in computer libraries with
which one can carry out the Cauchy principal integra-
tions. In general, these subroutines work well for most
cases. However, it turns out their unstable performances
do happen occasionally. Given the fact that in practical
calculations one needs to evaluate a huge number of the
Cauchy principal integrations of the order of 107, even
seldom occurring performance failures could cause severe
consequences because it is not easy to identify all of them
and to make remedies accordingly. As a result, our
previous attempts to calculate converged results for line-
shift stalled at this stage. In fact, except for reporting
calculated half-widths of H2O lines [7], we have not
published any calculated shifts for H2O lines because of
the instability problem mentioned above. Even for our
calculated half-widths, in order to avoid involving I(o) we
had to follow other researchers’ assumption that the
contributions from the imaginary part of S2 can be
ignored. Fortunately, thanks to the present study the

validity of this assumption has been verified. Therefore,
within our formalism it is the Cauchy principal integra-
tion that causes more difficulty in calculating the lineshift
than the half-width. Unless we are able to find an
alternative route to reach I(o), we simply cannot provide
reliable lineshift values at all. Despite realizing this
problem for years, we had not found an effective solution
to overcome this challenge until now.

Very recently, an idea occurred that because the Four-
ier and Hilbert transforms are commonly used in many
science and engineering fields, why not pursue a search for
tools used in other disciplines? This effort paid off quickly,
and we found a useful tool that we were looking for. By
adopting the concept of the causal function from signal
processing, we have found that instead of starting from
the usual correlations which are even functions and whose
Fourier transforms are real, we can consider the causal
correlations which are neither even nor odd and whose
Fourier transforms become complex. But the most striking
feature of the latter’s Fourier transforms is that their real
and imaginary parts are simply equal to H(o)/2 and I(o)/2,
respectively. With this tool, the Cauchy principal integra-
tions are completely obviated. Meanwhile, thanks to sam-
pling theory, the Fourier transforms can be replaced by the
discrete Fourier transforms with the Nyquist rate without
any distortions [8]. Furthermore, the latter can be easily
carried out with the fast Fourier transforms (FFT) [9]. Our
numerical tests demonstrate accuracies achieved for H(o)
and I(o) derived are well satisfied. Especially for I(o),
where one is able to achieve very high accuracies in large
ranges of o. Thus, with this simple method, the challenge
has been completely overcome.

The present manuscript is organized in the following
way. In Section 2, we only outline the basic of the
modified RB formalism developed in the coordinate
representation [6,7], but we provide explanations in detail
about the correlation functions, their Fourier transforms,
and the subsequent Hilbert transforms. Section III is
devoted to the new route in which we start by introdu-
cing the concept of the causal function and its Fourier
transform. Then, we briefly explain the sampling theory
with which one is able to replace a Fourier transform by a
discrete Fourier transform. Finally, by presenting exam-
ples, we demonstrate how the new method works in
evaluating the Hilbert transform without performing the
Cauchy principal integrations and explicitly show how
high accuracies of the new method can be achieved. In
Section 4, we present our calculated shifts for H2O lines in
the pure rotational band and make comparisons with
those listed in HITRAN 2008, and other fruitful results
from the present study are also presented. The last
Section 5 consists of a brief discussions and conclusions.

2. General formalism in calculating N2 induced shifts for
H2O lines

2.1. The RB formalism applicable for complicated potential

models

Among all line shape theories available at present, the
RB formalism is one of the most widely adopted. In fact, it
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is this formalism with which theoretical calculations of
the half-widths and shifts of H2O lines have been carried
out for years [10–13] and the results have played impor-
tant roles in updating the HITRAN database [14]. We
briefly outline the formalism used to calculate the half-
widths and shifts of H2O lines.

The main computational task for calculating the Lor-
entzian half-widths and shifts is the evaluations of matrix
elements appearing in the perturbation expansion of the
Liouville operator Ŝ (¼SI � SFn, where SI and SF are scattering
matrices in Hilbert space). Usually, in practice, these
evaluations are limited to the second-orders of the expan-
sion. Within the RB formalism, the original expressions
for the pressure broadened half-width and induced shift
are given by

gRB ¼
nb

2pc

Z þ1

0
nf ðnÞdn

Z þ1

0
2pbdb

�/1�cos S1ðbÞþ ImS2ðbÞ
� �

e�ReS2ðbÞSj2
, ð1Þ

and

dRB ¼
nb

2pc

Z þ1

0
nf ðnÞdn

Z þ1

0
2pbdb

�/sin½S1ðbÞþ ImS2ðbÞ�e�ReS2ðbÞSj2
: ð2Þ

where nb is the number density of the bath molecule, f(v)
is the Maxwell–Boltzmann distribution function, S1 and S2
are matrix elements in the Liouville space associated with
the first- and second-orders of the perturbation expansion
of the Liouville operator Ŝ, and /?Sj2 means an average
over the quantum number j2 of the bath molecule.
However, we have found a subtle error in the RB formal-
ism [15]. After remedying this derivation error, the correct
expression for the half-width and lineshift in the ‘‘mod-
ified’’ RB formalism (MRB) become [15]

gMRB ¼
nb

2pc

Z þ1

0
nf ðnÞdn

Z þ1

0
2pbdb

� 1�cos½/S1ðbÞSj2
þ Im/S2ðbÞSj2

�e�Re/S2ðbÞSj2

n o
: ð3Þ

and

dMRB ¼
nb

2pc

Z þ1

0
nf ðnÞdn

Z þ1

0
2pbdb

�sinð/S1ðbÞSj2
þ Im/S2ðbÞSj2

Þe�Re/S2ðbÞSj2 : ð4Þ

We note that the essential difference between these
expressions is that in Eqs. (1) and (2) the summation over
j2 is outside of the cumulant expansion while in contrast,
in Eqs. (3) and (4) it is inside. It is worthwhile emphasiz-
ing that because the bath average is carried out in the line
space, an average over j2 must be included. Thus, by
understanding that S1(b) and S2(b) are the bath averages
associated with the first- and second-order expansions of
the Liouville operator Ŝ, one can suppress all of these
/?Sj2 in Eqs. (3) and (4). For simplicity, we will omit the
subscript MRB of g and d.

Usually, people prefer to represent S2 by three compo-
nents labeled by S2,outer,i(rc), S2,outer,f(rc), and S2,middle(rc),
respectively. In the present study, we follow the same
custom. As an example, an expression for S2,outer,i(rc) is

given by [6,7]

S2,outer,iðrcÞ

¼ 1

_2ð2jiþ1Þ
X
j2 j

0
2

rj2

X
j0it0i

X
ðmÞ

�
Z 1

�1
dt

Z t

�1
dt0e

iðojiti j
0
i
t0
i
þoj2 j

0
2
Þðt�t0 Þ

� jitimij2m29Vð R
!ðtÞÞ9j0it0im0

ij
0
2m

0
2

D E
� j0it

0
im

0
ij
0
2m

0
29Vð R

!ðt0ÞÞ9jitimij2m2

D E
, ð5Þ

where R
!ðtÞ represents the translational motion of two

interacting molecules. In the above equation, rj2
is the

density matrix of the bath molecule, (m) means summa-
tions over all magnetic quantum numbers, oj2j

0
2
¼

½EðbÞðj2Þ�EðbÞðj02Þ�=_, and 9jitimij2m24 ¼ 9jitimi4� 9j2m24
where9jitimi4 and 9j2m24 are the basis of Hilbert space
for the H2O and N2 molecules, respectively, and t is a
simple notation for ka�kc in 9jtm4 : In practical calcula-
tions, how to evaluate these three S2 terms more accu-
rately presents a big challenge.

In order to evaluate the potential matrix elements in
Eq. (5), one prefers to express Vð R!ðtÞÞ in terms of the
standard spherical expansions

Vð R!ðtÞÞ ¼
X

L1K1L2L

uðL1L2L;K1;Rðt ÞÞ

�
X

m1m2m

CðL1L2L,m1m2mÞDL1n
m1K1

ðOaÞDL2n
m20

ðObÞYn

LmðoðtÞÞ,

ð6Þ
where R

!ðtÞ is described by its polar coordinates R(t) and
o(t), and Oa and Ob are orientations of the absorber and
bath molecules, respectively. In the present study, we
adopt potential models for the H2O and N2 molecules
consisting of long-range dipole–quadrupole and quadrupole–
quadrupole interactions VdqðOa,Ob, R

!ÞþVqq ðOa,Ob, R
!Þ

and a short-range interaction Vatom�atom ðOa,Ob, R
!Þ mod-

eled by the site–site model. For Vdq and Vqq, their spherical
expansions are well known and numbers of their expan-
sion terms are very limited. For Vdq, the expansion con-
tains only one term (i.e., L1¼1, K1¼0, L2¼2, and L¼3)
which varies with R as R�4. Meanwhile, for Vqq it has three
terms (i.e., L1¼2, K1¼0,72, L2¼2, and L¼4) which vary
as R�5.

With respect to Vatom–atom, the expression for the site–
site model is given by

Vatom�atomðOa,Ob, R
!Þ¼

X
i2a

X
j2b

4eij
s12
ij

r12ij
�
s6
ij

r6ij

( )
, ð7Þ

where sij and eij are parameters and rij are distances
between the i-th atom of the absorber molecule a (i.e.,
H2O) and the j-th atom of the bath molecule b (i.e., N2). In
order to evaluate its matrix elements, one needs to
rewrite Vatom–atom in terms of the standard spherical
expansions

Vatom�atomðOa,Ob, R
!ðtÞÞ

¼
X

L1K1L2L

X
nfijg

X
wq

UðL1K1L2L,nfijg,wqÞ
RL1 þL2 þqþ2wðtÞ

�
X

m1m2m

CðL1L2L,m1m2mÞDL1n
m1K1

ðOaÞDL2n
m20

ðObÞYn

LmðoðtÞÞ, ð8Þ
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where n{ij} runs over all pairs of atoms in Eq. (7), q¼6 or
12, w is an integer index from 0 to infinity, and the
definitions for U(L1K1L2L,n{ij},wq) can be found in the
literature [16].

As shown in Eq. (8), when one evaluates the matrix
elements of Vatom–atom(t), there would be a lot of summation
indices. In order to evaluate S2,outer,i(rc), one needs to con-
sider the products of two potential matrix elements. Thus,
the total number of summation terms in Eq. (5) becomes so
large that the evaluations are intractable unless cut-offs are
enforced. It turns out that there are two kinds of cut-offs
associated with the summation indices in Eqs. (8) [6,7]. The
first is a cut-off to limit the set of irreducible tensor ranks L1
and L2 and the second is to set an upper limit for the index
w. In the literature, if one chooses 8 as the maximum of 2w,
the cut-off is said to be the 8-th order. It is the introduction
of these two cut-offs that opens the possibility that the
results derived are not converged. We have provided in
detail analyses on the convergence problems existing in this
method and we do not repeat them here. Readers interested
in this subject are referred to our previous works [6,7].

2.2. Irreducible correlation functions of the Ŝ matrix in the

coordinate representation

In order to overcome the convergence problem, we
introduce the coordinate representation [6] whose basic
idea is briefly outlined here. It is well known from quantum
mechanics that one has the freedom to choose different
representations in Hilbert space. The state representation
that is commonly used consists of the basis set 9jitimi4 �
9j2m2S which are eigenfunctions of the Hamiltonian of the
molecular pair. On the other hand, one can select the
orientations of the pair of molecules as the basis set in
Hilbert space; i.e., 9dðOa�OaaÞ4 � 9dðOb�ObaÞS where
Oaa and Oba represent orientations of H2O and N2 specified
by a, respectively. By choosing the coordinate representa-
tion, the potential becomes a diagonal operator and can be
treated as classical functions [6,7]. Then, by introducing the
correlation functions described later, one is able to calculate
the half-widths with high accuracy, no matter how com-
plicated the potential models are and no matter what kind
of trajectories are chosen. In any case, the convergence of
the calculated results is always guaranteed.

We will not provide a detailed development of the new
formalism here and readers can find its derivations from
our previous works [6,7]. We only present some important
formulas here. The correlation functions are defined by

FL1K1K
0
1L2

ðtÞ ¼
Z 1

�1
dt0GL1K1K

0
1L2

ðt0 þt=2,t0�t=2Þ, ð9Þ

where GL1K1K
0
1L2

ðt,t0Þ is given by

GL1K1K
0
1L2

ðt,t0Þ ¼ 1

4p_2ð2L1þ1Þ2ð2L2þ1Þ2

�ð�1ÞK1 þK 0
1

X
L

ð�1ÞðL1 þ L2 þLÞð2Lþ1Þ

�uðL1L2L;K1;RðtÞÞuðL1L2L;K 0
1;Rðt0ÞÞPLðcosYtt0 Þ:

ð10Þ
In Eq. (10), the factor ð�1ÞðL1 þ L2 þLÞ ¼ 1 because the summa-
tion index L must satisfy L1þL2þL¼even, and Ytt0 are

angles between two vectors R
!ðtÞ and R

!ðt0Þ: The set of
indices used to label the correlation functions consist of one
tensor rank L1 with two subsidiary indices K1, K1

0 related to
H2O and another tensor rank L2 for N2. Because N2 is a
diatomic molecule, L2 must be even. If one chooses the II R
representation to develop the H2O wave functions where
two H atoms are symmetrically located in the molecular-
fixed frame, values of K1 and K1

0 must also be even.
In the standard method, the functions required to be

evaluated are the resonance functions and their total number
depends on how many combination choices of summation
indices L1, K1, L2, L, and q, n(ij), w are used in Eq. (8) with the
restrictions enforced by the two kinds of cut-offs. As these
two cut-offs increase, the number of resonance functions
increases very quickly and to evaluate all these resonance
functions become formidable. On the other hand, with the
new method, the functions required to be evaluated are the
correlation functions and their total number is determined
only by the upper limits of L1 and L2 restricted by the first
kind of cut-off [6,7]. This means that no matter how high the
second kind of cut-off is, the number of correlation functions
remains unchanged. In addition, because Vatom–atom becomes
ordinary functions, one can choose any order cut-off one
wants. No matter how high this cut-off order goes, there are
only small differences determined by the needed computa-
tional resources. As a result, we can use both cut-offs which
are sufficiently high to guarantee full convergence in practical
calculations. It is easy to show that if one sets 2 as the
maxima for both L1 and L2, the number of correlations is 20.
Meanwhile, if one increases the maximum for L1 from 2 to 3
or 4, the number of correlations increases from 20 to 38 or
88, respectively. Finally, by setting 4 as the maxima for both
L1 and L2, the number becomes 132.

Then, in terms of the correlations, one is able to
rewrite Eq. (5) as

S2,outer,iðrcÞ ¼
X

L1K1K
0
1L2

Z 1

0
dtW ðaÞ

L1K1K
0
1
ðtÞW ðbÞ

L2
ðtÞFL1K1K

0
1L2

ðtÞ:

ð11Þ
In deriving the above expression, two functions which are
independent of the potential and trajectory models are
defined by

W ðaÞ
L1K1K

0
1
ðtÞ ¼

X
j0it0i

ð2j0iþ1ÞDðjitij0it0i; L1K1Þ

�Dðjitij0it0i; L1K 0
1Þ e

iojiti j
0
i
t0
i
t
, ð12Þ

where D(jtj0t0;L K) is defined by

Dðjtj0t0; LKÞ �
X
k

ð�1ÞkUj
ktU

j0
k�Kt0Cðjj

0L,kK�kKÞ, ð13Þ

and

W ðbÞ
L2
ðtÞ ¼

X
j2j

0
2

ð2j2þ1Þð2j02þ1Þrj2
C2ðj2j02L2,000Þe

ioj2 j
0
2
t
, ð14Þ

respectively. In Eq. (13), Uj
kt are expansion coefficients of

the H2O wave functions in the II R representation over the
symmetric top wave functions 9jkmSwith k¼� j, � jþ1,?,

j such that

9jtm4 ¼
X
k

Uj
kt9jkm4 : ð15Þ
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2.3. Fourier transforms of the correlations and subsequent

Hilbert transforms

As further steps in developing S2outer,i(rc) from Eq. (11),
we apply two tools, i.e., the Fourier transform and the
Hilbert transform. First of all, by introducing HL1K1K

0
1L2

ðoÞ,
the Fourier transforms of the correlation functions,
defined by

HL1K1K
0
1L2

ðoÞ ¼ 1ffiffiffiffiffiffi
2p

p
Z 1

�1
eiotFL1K1K

0
1L2

ðtÞdt, ð16Þ

one is able to obtain an expression for the real part of
S2,outer,i(rc) as

ReS2,outer,iðrcÞ ¼
ffiffiffiffi
p
2

r X
L1K1K

0
1L2

X
j0it0i

ð2j0iþ1Þ

�Dðjitij0it0i; L1K1ÞDðjitij0it0i; L1K 0
1Þ

�
X
j2 j

0
2

ð2j2þ1Þð2j02þ1Þrj2
C2ðj2j02L2,000Þ

�HL1K1K
0
1L2

ðojiti j
0
it0i
þoj2j

0
2
Þ: ð17Þ

Secondly, by introducing IL1K1K
0
1L2

ðoÞ, the Hilbert trans-
forms of HL1K1K

0
1L2

ðoÞ, defined by

IL1K1K
0
1L2

ðoÞ ¼ 1

p
P

Z þ1

�1
do0 1

o�o0 HL1K1K
0
1L2

ðo0Þ, ð18Þ

where P means the principal part, one is able to obtain an
expression for ImS2,outer,i(rc) which is the same as ReS2,ou-
ter,i(rc) except for a replacement of HL1K1K

0
1L2

ðojiti j
0
it0i
þoj2j

0
2
Þ

by IL1K1K
0
1L2

ðojiti j
0
it0i
þoj2j

0
2
Þ in Eq. (17). With respect to

expressions for ReS2,outer,f(rc) and ImS2,outer,f(rc), they are
same as their corresponding partners except for the
replacement of the initial quantum numbers ji ti, j0i, and
t0i by the final ones jf tf, j0f, and t0f. Meanwhile, the
expression for S2,middle(rc), which is real, is given by

S2,middleðrcÞ ¼
ffiffiffiffiffiffi
2p

p X
L1K1K

0
1L2

fð�1ÞL1 ð2jiþ1Þð2jf þ1Þ

�Wðjijf jijf ;1L1ÞDðjitijiti; L1K1ÞDðjf tf jf tf ; L1K 0
1Þg

�
X
j2j

0
2

ð2j2þ1Þð2j02þ1Þrj2
C2ðj2j02L2,000Þ

�HL1K1K
0
1L2

ðoj2j
0
2
Þ: ð19Þ

After all these expressions are available, we have obtained
two basic formulas,

ReS2ðrcÞ ¼ ReS2,outer,iðrcÞþReS2,outer,f ðrcÞþS2,middleðrcÞ, ð20Þ

and

ImS2ðrcÞ ¼�ImS2,outer,iðrcÞþ ImS2,outer,f ðrcÞ, ð21Þ

where the minus sign of ImS2,outer,i(rc) results from the
fact that S2(rc)¼S2,outer,i(rc)

nþS2,outer,f(rc)þS2,middle(rc) [10].
It is worth mentioning that the relationship among

these functions is that HL1K1K
0
1L2

ðoÞ are the Fourier trans-
forms of FL1K1K

0
1L2

ðtÞ, meanwhile IL1K1K
0
1L2

ðoÞ are the Hilbert
transforms of HL1K1K

0
1L2

ðoÞ: In addition, because FL1K1K
0
1L2

ðtÞ
are even functions, their Fourier transforms HL1K1K

0
1L2

ðoÞ
are real and even, and the subsequent Hilbert transforms
IL1K1K

0
1L2

ðoÞ are real and odd. Finally, we note that all these
functions FL1K1K

0
1L2

ðtÞ, HL1K1K
0
1L2

ðoÞ, and IL1K1K
0
1L2

ðoÞ are
associated with specified trajectories. As a result, all of

them depend on rc. For simplicity, we have omitted the
argument rc in their notations.

In practice, however, this two steps method may not
be the best way to follow. For the first step, usually the
continuous Fourier transforms are replaced by the dis-
crete Fourier transforms with proper samplings. The latter
can be easily derived with the FFT algorithm [9] which is
cited as one of the most significant contributions to
numerical analysis of the 20-th century [8]. As a result,
there is no obstacle in carrying out this step. However, the
second step requires one to evaluate the Cauchy principal
integration. Although subroutines for carrying out the
Cauchy principal integration are available in main com-
puter libraries, their performances are not always satis-
factory. In general, these subroutines work well for most
of cases. However, their unstable performances do happen
occasionally. There are a lot of independent Hilbert trans-
forms IL1K1K

0
1L2

ðoÞ and if one considers 132 correlations
this number is 39. In addition, all these functions have
two dimensions. In order to depict each of them well, one
has to use high resolutions by selecting several hundred
points for each of its two variables such that the corre-
sponding range is well covered. As a result, in practical
calculations sometimes one needs to evaluate a huge
number of the Cauchy principal integrations in the order
of 107. An obstacle here does not result from the compu-
tational burdens, but from unstable performances of the
subroutines occasionally happening because one is not
able to pick up all unstable results from such huge data
pool and to make modifications accordingly. As a result,
the ability to derive reliable two dimensional profiles of
IL1K1K

0
1L2

ðoÞ becomes a big challenge. In fact, in spite of
that the formalism in calculating the half-widths and the
lineshifts based on the coordinate representation has
been developed several years ago, [6] we have not
reported any calculated results involving evaluations of
IL1K1K

0
1L2

ðoÞ: We have presented calculated half-widths for
the H2O–N2 system [7], but we have assumed there that
contributions from ImS2(rc) to calculated half-widths can
be ignored. Meanwhile, we have not reported any calcu-
lated shifts at all. In summary, in order to make progress,
to find an alternative way to evaluate IL1K1K

0
1L2

ðoÞ becomes
mandatory. Recently, we began to wonder whether taking
the two steps is the only way to find IL1K1K

0
1L2

ðoÞ or can
one derive them directly from FL1K1K

0
1L2

ðtÞ:

3. Causal correlation functions and Fourier transforms

3.1. Causal correlation and Fourier transform

We briefly explain a concept about the causal function
and related topics which have been widely used in signal
processing and many other engineering and science dis-
ciplines. First of all, let us assume F(t) of interest is an
even function. We want to find its Fourier transform H(o)
together with the subsequent Hilbert transform I(o). The
usual route which is depicted in Fig. 1 is to carry out the
Fourier transform of F(t) first, then one performs a sub-
sequent Hilbert transform of H(o) to derive I(o). A
question arises that is there a way to establish a direct
link between F(t) and I(o)?
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Because the Hilbert transform including the Kramers–
Kronig relations associated with it has been applied in
solving many engineering and science problems, we
believe that by searching tools used in other disciplines,
one may be able to find a useful one. Fortunately, the
useful tool does exist in other fields such as signal
processing [17]. By adopting this method, instead of
starting from the function F(t) itself one defines its causal
function denoted by ~F ðtÞ as
~F ðtÞ ¼ FðtÞyðtÞ, ð22Þ
where y(t) is the unit step function (the Heaviside step
function) defined by

yðtÞ ¼ 1 tZ0,

yðtÞ ¼ 0 to0:
ð23Þ

Then, one considers the Fourier transform of the causal
function ~F ðtÞ which can be expressed by a convolution of
the Fourier transforms of its products, i.e., H(o) andY(o),

~HðoÞ ¼ 1ffiffiffiffiffiffi
2p

p
Z 1

�1
~F ðtÞeiotdt¼ 1ffiffiffiffiffiffi

2p
p

Z 1

�1
Hðo0ÞYðo�o0Þdo0:

ð24Þ
It is worth mentioning that because ~F ðtÞ is neither even
nor odd, ~HðoÞ is a complex function. On the other hand,
the Fourier transform of y(t) is well known and can be
expresses as

YðoÞ ¼ 1ffiffiffiffiffiffi
2p

p ðpdðoÞþ iP
1

oÞ, ð25Þ

where P means to take the Cauchy principal value upon
integration. With Eq. (25), one can rewrite Eq. (24) as

~HðoÞ ¼ 1

2p

Z 1

�1
Hðo0Þ pdðo�o0Þþ iP

1

o�o0

� �
do0

¼ 1

2
HðoÞþ i

1

p
P

Z 1

�1

Hðo0Þ
o�o0 do

0
� �

: ð26Þ

With Eq. (26), one can conclude that H(o) and I(o), the
Fourier transform of the function F(t) and the subsequent
Hilbert transform, equal to twice the real and imaginary
parts of the Fourier transform of the causal function ~F ðtÞ,
HðoÞ ¼ 2Re ~HðoÞ,
IðoÞ ¼ 2Im ~HðoÞ: ð27Þ
As a result, by just taking one step, one is able to derive
H(o) and I(o) simultaneously. In comparison with the

usual method, the new method enables one to reduce two
steps to one. But the most important advantage of the
new method is its ability to evaluate Cauchy principal
integrations without carrying out these integrations
themselves at all. As mentioned above, thanks for the
powerful FFT, the remaining step can be well accom-
plished. In fact, the computer codes used here are the
same as those used in completing the first step of the
previous method.

Of course, the success in applying the new method here
depends on how accurately the Hilbert transform I(o) can
be obtained. Before we present test results to demonstrate
accuracies of this method could achieve, we briefly explain
a technique used to derive the Fourier transform of a
function F(t). This technique has been successfully used to
derive H(o) in our previous half-width calculations [6,7]
and will be used in calculating ~HðoÞ here.

3.2. Sampling the correlations and calculating the Fourier

transforms

The method used to derive the Fourier transform of a
function is based on the sampling theory. Readers can find
detailed explanations about this technique in the book by
Weaver [8]. The basic idea is by sampling, one converts a
function of interest to a sequence, calculates its discrete
Fourier transform, and then relates this transformed
sequence to the Fourier transform of the original function.

When one samples a function F(t) with a sampling rate
Dt, one converts F(t) to a sequence {F(n)} whose terms are
values of F(t) at the discrete locations t¼nDt. According to
the Whittaker–Shannon sampling theorem, if the function
F(t) is band limited with handwidthOf and the sampling rate
is chosen such that Dt¼1/(2Of) called as the Nyquist rate,
then F(t) can be recovered uniquely and exactly from the
sampled sequence {F(n)}. We note that a function is called
‘‘band limited with bandwidth Of’’ if its Fourier transform
H(o) has bounded support over the interval [�Of, Of].

Usually both the frequency f and the angular frequency
o are referred by people as the frequency. In order to
avoid confusion, we use the notation Of to indicate the
one associated with the frequency f, but not the angular
frequency o. However, because many spectroscopists
prefer to use the angular frequency o in their studies,
we follow their preferences here. Then, the interval
should be understood as [�2pOf, 2pOf].

One assumes the function F(t) has bounded support
over the time domain [�T, T] and as well as being band
limited over [�2pOf, 2pOf]. Because the correlation
functions introduced in calculating the half-widths and
lineshifts are smooth functions and their magnitudes
decrease very quickly to zero as t increases, we believe
this assumption is applicable for all of them. First, one
samples F(t) with the Nyquist rate Dt¼1/(2Of) and
chooses the number of samples such that NDtZ2T and
obtains a sequence {F(n)}. According to the sampling
theory, the original function F(t) can be completely
recovered from {F(n)} such that

FðtÞ ¼
XN�1

n ¼ 0

FðnÞsincð2pOf ðt�nDtÞÞ: ð28Þ

Fig. 1. A diagram to show the usual route to derive the Fourier transform

H(o) from the function F(t) and a subsequent Hilbert transform I(o) of

H(o). Is there a way to establish a direct link between F(t) and I(o)?

Q. Ma et al. / Journal of Quantitative Spectroscopy & Radiative Transfer 113 (2012) 936–950 941



Then, by taking the Fourier transform both side of the
above equation, one can obtain

HðoÞ ¼ 1

2Of

XN�1

n ¼ 0

FðnÞe�ionDt : ð29Þ

Next, one samples H(o) with Do¼2p/(2T) (i.e., with the
Nyquist rate Df¼1/(2T)¼2Of/N) and obtains another
sequence in the frequency domain

HðmÞ ¼ 1

2Of

XN�1

n ¼ 0

FðnÞ e�imnDoDt ¼NDtU
1

N

XN�1

n�0

FðnÞ e�2pimn=N

( )

¼NDtUF fFðnÞg, ð30Þ
where F {F(n)} denotes the discrete Fourier transform of
{F(n)}. With Eq. (30), one can conclude that the sequence
{H(m)} are equal to the discrete Fourier transform of the
sequence {F(n)} multiplied by NDt. Meanwhile, because
one chooses the Nyquist rate in deriving the sampling
sequence {H(m)}, it is guaranteed by the sampling theo-
rem that the Fourier transform H(o) can be derived from
{H(m)} without any distortions. Now, we have completed
a brief explanation about how to effectively and accu-
rately derive the Fourier transform for the function F(t).

In our formalism to calculate the half-widths and line-
shifts, instead of t and o we prefer to use the dimension-
less arguments z and k as the argument of the correlation
functions, and the argument of their Fourier transforms
and the subsequent Hilbert transforms. According to our
numerical tests, magnitudes of the correlation functions
could decrease by about 5–7 orders as z changes from 0 to
12.8. In fact, when z increases from 0 to 12.8, the distance
between two interacting molecules have increased from
the closest distance rc to 12.8� rc. Roughly speaking, the
latter is at least about 40 Å and at this distance interaction
between the two molecules is almost negligible. Therefore,
we can consider the correlation functions are limited in the

range [�Z, Z]¼[�12.8, 12.8]. In practice, it is better to use
finer sampling rates Dz and larger numbers N such that
NDz42Z. In the Section 3.3, we will present several
samples to show how this method works. Finally, it is
worth mentioning that the range of k accessible from this
method is [�p/Dz, p/Dz] and one has to make sure that the
Dz is small enough that this range would be larger than the
whole k range of interest.

3.3. The accuracy check of calculated Hilbert transform

As the first example, we consider the function F(t) to
be a Gaussian

FðtÞ ¼ e�ðt2=2Þ, ð31Þ
because its Fourier transform H(o) is also a Gaussian

HðoÞ ¼ e�ðo2=2Þ, ð32Þ
and the subsequent Hilbert transform I(o) is well known.
In fact, the Hilbert transform of a Gaussian is a function
called as the Dawson’s integral and it can also be related to
the imaginary error function. In applying the new method,
one can introduce the corresponding causal function

~F ðtÞ ¼ e�ðt2=2ÞyðtÞ: ð33Þ
Then, after carrying out the Fourier transform of ~F ðtÞ with
the technique described above, the Hilbert transform of
H(o) can be obtained from the imaginary part of this
Fourier transform. Because values of the Dawson’s inte-
gral are known, by comparing calculated values from ~F ðtÞ
with them, one can check how accurate the calculated
values are.

By setting T¼12.8 and NDt¼8T, we have calculated
the Fourier transform of ~F ðtÞ and obtained I(o) in the o
range of [0,1000] with several different choices of N and
we list some of the results in Table 1 together with the

Table 1
Values of I(o) derived from using different sampling number N.

o Dawson’s integral Calculated I(o)

N¼2097152 N¼131072 N¼65536

Dt¼0.1�2�11 Dt¼0.1�2�7 Dt¼0.1�2�6

1.0 0.578290Eþ00 0.578290Eþ00 0.578290Eþ00 0.578290Eþ00

10.0 0.806116E�01 0.806116E�01 0.806118E�01 0.806124E�01

20.0 0.399947E�01 0.399947E�01 0.399951E�01 0.399963E�01

30.0 0.266258E�01 0.266258E�01 0.266264E�01 0.266282E�01

40.0 0.199596E�01 0.199596E�01 0.199604E�01 0.199628E�01

50.0 0.159641E�01 0.159640E�01 0.159651E�01 0.159681E�01

60.0 0.133018E�01 0.133017E�01 0.133029E�01 0.133066E�01

70.0 0.114007E�01 0.114006E�01 0.114020E�01 0.114063E�01

80.0 0.997512E�02 0.997502E�02 0.997664E�02 0.998152E�01

90.0 0.886648E�02 0.886639E�02 0.886821E�02 0.887369E�02

100.0 0.797964E�02 0.797954E�02 0.798156E�02 0.798765E�02

200.0 0.398952E�02 0.398940E�02 0.399344E�02 0.400566E�02

300.0 0.265964E�02 0.265964E�02 0.266571E�02 0.268412E�02

400.0 0.199472E�02 0.199475E�02 0.200285E�02 0.202755E�02

500.0 0.159578E�02 0.159581E�02 0.160596E�02 0.163708E�02

600.0 0.132981E�02 0.132985E�02 0.134206E�02 0.137978E�02

700.0 0.113984E�02 0.113989E�02 0.115416E�02 0.119870E�02

800.0 0.997357E�03 0.997419E�03 0.101378E�02 0.106537E�02

900.0 0.886539E�03 0.886610E�03 0.905067E�03 0.964032E�03

1000.0 0.797885E�03 0.797964E�03 0.818543E�03 0.885226E�03
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values of the Dawson’s integral. As shown in the table, the
method works excellently. In general, the smallero is, the
higher the accuracy of I(o). In addition, the larger the N is,
the higher the accuracy. For the highest choice of
N¼2097152 (¼221) and Dt¼0.1�2�11, the error is
always less than 0.01% in the whole o range. With the
choice of N¼262144 (¼218) and Dt¼0.1�2�8 whose
results are not listed here, the errors at o¼10, 100, and
1000 are 0.0002%, 0.005%, and 0.64%, respectively. With
the moderate choice of N¼131072 (¼217) and
Dt¼0.1�2�7, the errors at o¼10, 100, and 1000 are
0.0002%, 0.024%, and 2.59%, respectively. Finally, using
the lowest one of N¼65536 (¼216) and Dt¼0.1�2�6,
these errors become 0.001%, 0.1% and 11%. With respect
to H(o), our tests show that the calculated results can also
match the exact Gaussian function of exp(�o2/2) very
well. More specifically, as magnitudes of H(o) reduce by 5
orders from its maximum (i.e., 1 at o¼0), the errors still
remain less than 1%.

As a second test, we consider a more realistic problem.
There are many early studies of broadened half-widths
and induced shifts for two interacting molecules [16,20].
In these works, by considering simple potential models
consisting of only electric multipole interactions and
choosing simple trajectory models, such as the straight
line or the parabolic trajectory, people have introduced
resonance functions and developed methods to evaluate
these functions. Thanks to their contributions, those
resonance functions associated with the dipole–dipole,
the dipole–quadrupole, and the quadrupole–quadrupole
interactions are available in the literature [18–22]. With
our formalism, we consider a pair of two linear molecules,
choose the parabolic trajectory model and a simple
potential model consisting of only the dipole–dipole, the
dipole–quadrupole, and the quadrupole–quadrupole
interactions. In this case, the correlation functions have
simple properties. There is no interweaving between their
distance dependence and their internal degree depen-
dence. Besides, the multipole-moments can be simply
factored out from their expressions. By exploiting these
properties, one is able to introduce simplified correlation
functions F11(z), F12(z), and F22(z) which are common for
all trajectories and are independent of the multipole
moments. Then, with the new method, by introducing
the corresponding causal partners ~F11ðzÞ, ~F12ðzÞ, and
~F22ðzÞ, one can find out their Fourier transforms and
obtain H11(k), I11(k), H12(k), I12(k), H22(k), and I22(k)
accordingly. It turns out that the latter should match the
corresponding resonance functions exactly. Therefore, we
can use these resonance functions as benchmarks to
check how accurate our results are.

Starting from the causal functions of ~F 11ðzÞ, ~F 12ðzÞ, and
~F22ðzÞ, we have calculated their Fourier transforms with
the choice of N¼262144 and Dt¼0.1�2-8 and the latter’s
real and imaginary parts are our calculated H11(k), I11(k),
H12(k), I12(k), H22(k), and I22(k). Based on the fact that
HL1L2 ðkÞ are even functions of k and IL1L2 ðkÞ are odd ones,
one only needs to plot half of them along the positive k

axis. Meanwhile, because magnitudes of IL1L2 ðkÞ decrease
more slowly as k increase than magnitudes of HL1L2 ðkÞ do,
in order to present their profiles more completely one has

to plot IL1L2 ðkÞ in a larger range of k. We present calculated
H11(k), H12(k), and H22(k) together with the corresponding
resonance functions in Fig. 2(a), (c), and (e). Meanwhile,
we present calculated I11(k), I12(k), and I22(k) together
with the corresponding resonance functions in Fig. 2(b),
(d), and (f) where the k axis is given on a logarithmic
scale. As shown in Fig. 2(a)–(f), these HL1L2 ðkÞ and IL1L2 ðkÞ
derived from the causal correlations ~FL1L2 ðzÞ match the
corresponding resonance functions very well. Finally,
there is a small structure of the resonance function
associated with the quadrupole–quadrupole interaction
appearing at around k¼7.5 in Fig. 2(f). This minor
structure indicates the formula used to represent this
resonance function contains a small error.

3.4. Samples of HL1K1K
0
1L2

ðkÞ and IL1K1K
0
1L2

ðkÞ derived from the

causal correlations ~F L1K1K
0
1L2

ðzÞ

First of all, we would like to emphasize that when the
potential models contain the atom–atom component, the
distance and the internal degree dependences of the
correlations become interweaving. As a result, the corre-
lations FL1K1K

0
1L2

ðzÞ and their associates depend on the
parameter rc used in labeling collision trajectories. For
simplicity, we have often omitted this argument rc in
expressions for these functions, but we will add it in here.
Base on the potential model used in updating HITRAN
2008 [14], choosing the 20-th cut-off, including 132
correlations, and selecting the ‘‘exact’’ trajectory model,
we have derived functions of HL1K1K

0
1L2

ðk,rcÞ and
IL1K1K

0
1L2

ðk,rcÞ from all the causal irreducible correlations
~FL1K1K

0
1L2

ðz,rcÞ with L1r4 and L2r4 which are indepen-
dent. Because magnitudes of IL1K1K

0
1L2

ðk,rcÞ decrease more
slowly as k-N than those of HL1K1K

0
1L2

ðk,rcÞ do, one needs
to use larger scales of k in plotting them.

In order to shorten the manuscript, we only present
H1002(k,rc) and I1002(k,rc) derived from the most important
causal correlation ~F 1002ðz,rcÞ associated with the leading
dipole–quadrupole interaction of the H2O and N2 pair and
other terms with the same symmetry in the spherical
expansion of the atom–atom interaction in Figs. 3 and 4.
Because H1002(k,rc) is an even function of k and I1002(k,rc)
is an odd one, one only needs to plot a half part for each of
them. More specifically, the range of k used in plotting
I1002(k,rc) in Fig. 4 is [0,120] which is 5 times the range of
k (i.e. [0,24]) used in plotting H1002(k,rc) in Fig. 3. With
respect to the range of rc, because the minimum of the
closest distance rc,min derived from the ‘‘exact’’ trajectory
model at 296 K is 3.5224 Å and the dipole–quadrupole
potential component represents a long-range interaction,
we have chosen the plotting range of rc is [3.525 Å,
5.025 Å]. By adopting these range choices, the most
important parts of H1002(k,rc) and I1002(k,rc) are covered
in plotting.

As shown in Figs. 3 and 4, profiles of H1002(k,rc) and
I1002(k,rc) in the region of rc44.0 Å somehow resemble
those provided in Fig. 2(c) and (d). This implies that in
this region they are mainly determined by the dipole–
quadrupole interaction and their magnitudes would
vary as rc

�8
as rc-N. On the other hand, in the region

of rco4.0 Å their profiles contain more structures.
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These structures represent combinations of contribu-
tions, not only from the dipole–quadrupole interaction
and the related terms in the spherical expansion of
the short-range atom–atom interaction, but also cou-
plings between them. In comparison with H1002(k,rc)
shown in Fig. 3, magnitudes of I1002(k,rc) decrease more
slowly such that one have to use a larger scale in
plotting Fig. 4.

4. Calculated N2 induced shifts of H2O lines in the pure
rotational band

In the present study, we consider H2O lines in the pure
rotational band. By making an approximation to replace
the integration over the velocity by the averaged velocity
n ð ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8kT=pm

p
Þ and changing the integration variable

impact parameter b to the closest distance rc of the

Fig. 2. Calculated H11(k), I11(k), H12(k), I12(k), and H22(k), I22(k) from the causal correlations ~F 11ðzÞ, ~F 12ðzÞ, and ~F 22ðzÞ: They are presented in (a)–(f) by red

dotted curves. Meanwhile, the corresponding resonance functions available in literary are given by black solid lines.
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trajectories, one can obtain simplified expressions for the
half-width and the lineshift

g¼ nbn
2pc

Z þ1

rc,min

2pb db

drc

� �
1�cosðImS2ðrcÞÞe�ReS2ðrc Þ� �

drc ,

ð34Þ

and

d¼ nbv

2pc

Z þ1

rc,min

2pbðdb
drc

Þsin ImS2ðrcÞ½ � e�ReS2ðrc Þdrc , ð35Þ

respectively, where rc,min is the minimum value of rc
corresponding to strictly head-on collisions. After ReS2(rc)
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Fig. 3. Fourier transform H1002(k,rc) (in ps�2) at T¼296 K for a molecular pair of H2O–N2 as a two dimensional function of k (dimensionless) and rc (in Å).

As rc-N, magnitudes of H1002(k,rc) vary with rc as rc
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. This function is derived from the real part of the Fourier transform of the causal correlation
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Fig. 4. Same as Fig. 3 except for the Hilbert transform I1002(k,rc) derived from the imaginary part of the Fourier transform of the causal correlation
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and ImS2(rc) of lines of interest are available, one can
easily derive their half-widths and shifts from the above
two expressions.

4.1. Contributions from ImS2(b) to calculated half-widths

Usually, people assume that effects from the ImS2(rc)
term can be ignored in calculating the half-width and
Eq. (34) can be simplified as [3]

g¼ nbn
2pc

Z þ1

rc,min

2pb db

drc

� �
1�e�ReS2ðrc Þ� �

drc : ð36Þ

In order to justify this assumption, we have calculated the
N2-broadened half-widths for all 1639 H2O lines in the
pure rotational band listed in HITRAN from both
Eqs. (34) and (36) and made comparisons in Fig. 5. Both
these two calculations are made based on the potential
model used in updating HITRAN 2008 [14] and with the
20-th order cut-off, including 132 correlations, and adopt-
ing the parabolic trajectory model. As shown in the figure,
the differences between these two results are very small.
More specifically, among all the 1639 lines there are only
12 lines with their relative errors above 3% and the
maximum one (happening for the transition of 177,10’
174,13 at 410.205 cm�1) is 5.1%. Given the fact that the
formalisms (i.e., the original and modified RB formalisms)
themselves contain other uncertainties larger than the
differences reported above and there is an obstacle to
accurately derive the ImS2(rc) term, to ignore contribu-
tions from ImS2(b) to calculated half-widths is an accep-
table and justified approximation. Of course, if one knows
how to accurately evaluate ImS2(rc) which are necessary
for calculations of the lineshifts, it is better to take into
account of contributions from ImS2(rc) to the half-widths
using the Eq. (34).

4.2. Calculated induced shifts

Based on the potential model used in updating HITRAN
2008 and with the 20-th order cut-off, including 132
correlations, and adopting the parabolic trajectory model,

we have calculated N2 induced shifts for the H2O lines in
the pure rotational band. We present our results in Fig. 6
together with those listed in HITRAN 2008. As shown in
the figure, there are significant differences between ours
and that listed in HITRAN. More specifically, among the
1639 lines there are 649 lines with the relative differences
above 50%, 746 lines with the differences between 10%
and 50%, and only 244 lines with less than 10%. It is worth
mentioning that most of the values in HITRAN 2008 come
from theoretical calculations [14]. It implies that these
two theoretical calculations with the same potential
model differ markedly from each other.

We would like to emphasize that in order to make
comparisons more meaningful, we assumed the same
potential model used in updating HITRAN 2008. Because
this potential model is poor [6], we do not think our
current calculated shift values are good. Therefore, read-
ers should not consider the predicted results in Fig. 6 as
reliable ‘‘true’’ values.

At this stage, we would like to take this opportunity to
demonstrate the importance to use the modified RB
formalism instead of the original RB one. We present

Fig. 5. Comparisons between the calculated N2-broadened half-widths

obtained from excluding and including contributions from ImS2(rc). They

are plotted by D and � , respectively. The 1639 lines in the H2O pure

rotational band are arranged according to the ascending order of the

calculated half-width values without contributions from ImS2(rc).

Fig. 6. A comparison between the induced shifts listed in HITRAN 2008

and our calculated values. They are plotted by D and � , respectively.

The 1639 lines in the H2O pure rotational band are arranged according to

the ascending order of the calculated shift values.

Fig. 7. Comparisons between the calculated N2 induced shifts obtained

from the original RB formalism and from the modified version. They are

plotted by D and � , respectively. The 1639 lines in the H2O pure

rotational band are arranged according to the ascending order of the

calculated shift values with the modified RB formalism.
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comparisons between calculated N2 induced shifts of the
1639 H2O lines derived from the RB and the modified RB
formalisms in Fig. 7. As shown in the figure, differences
between them are pretty large. There are 384 lines with
relative errors above 30%, 767 lines with 5–30%, and 488
lines with less than 5%. Because both these calculated
shift values could be equal to or closer to zero, in order to
avoid artificially enlarging error values we define the
relative error here by choosing the one with larger
magnitude as the denominator. Thus, one can conclude
that the effects from the modification on the calculated
shifts are significant.

4.3. Applying the two rules to calculated lineshifts

Recently, based on the properties of the energy levels
and wave functions of H2O states, we have established the
pair identity and the smooth variation rules applicable for
H2O lines involving high j states within individually
defined groups such that all their spectroscopic parameters
(i.e., the transition wavenumber, intensity, pressure broa-
dened half-width, induced shift, and temperature expo-
nent) must follow them [23,24]. We present our calculated
shift values of H2O lines in three groups of {j00,j0’j001,j00,
j01,j0’j000,j00}, {j0j0 ,0’j00j00 ,1, j0j0 ,1’j00j00 ,0}, and {j03,j0-2’j000,j00,
j02,j0 �2’j001,j00} in the R branch, two groups of {j0j0 ,0’j00j00 �1,1,
j0j0 ,1’j00j00-1,2} and {j02,j0-2’j001,j00-1, j03,j0 �2’j002,j00 �1} in the Q
branch, and one group of {j02,j0 �2’j001,j00 and j03,j0 �2’j000,j00}
in the P branch in Fig. 8(a)–(f), respectively. Meanwhile,
corresponding lineshift values listed in HITRAN 2008 are
also presented there. According to our previous studies
[23,24], the higher the j00 is, the better the rules hold. For
convenience, one can introduce jbd, a low boundary of j00,
for a specified group as a numerical measure that the two
rules are applicable for lines in this group whose j00 values
are above the boundary. For the six groups considered
here, their suggested boundaries are 7, 3, 13, 5, 13, and 14,
respectively [23,24]. In Fig. 8(a)–(f), we present the calcu-
lated shifts of lines whose j00 values start from these jbd or a
little below and up to the highest ones appearing in the list
of the pure rotational band in HITRAN 2008.

As shown in Figs. 8(a) and (b) for the first two groups
in the R branch, the calculated shifts with j00Z jbd follow
the pair identity and the smooth variation rules very well.
On the other hand, with respect to those listed in HITRAN
2008, values of two paired lines with j00Z jbd are almost
identical, but they could scatter widely from one pair to
its successive pair. This implies that these values follow
the first rule, but severely violate the second rule. We
note that according to the reference sources in HITRAN
2008, all of them come from the same source code 37
denoted as recent theoretical calculations [14].

Then, we consider shifts of lines in the third group of
the R branch plotted in Fig. 8(c). In general, the calculated
shifts follow the two rules well. But, it seems they begin
to follow the first rule with a slight delay, starting from
j00Z14 instead of the suggested j00Z13. We will explain
why this delay could happen later. Concerning values
provided in HITRAN 2008, some come from measure-
ments and others from theoretical calculations. In Table 2,
we list their reference sources provided by HITRAN 2008.

As shown in Fig. 8(c), except for four pairs of lines with
j00 ¼16, 18, 19 and 20, those values with j00Z jbd in HITRAN
2008 violate the pair identity rule. In addition, especially
those with j00Z17 do not follow the smooth variation rule
as well. Given the fact that usually the lineshifts are very
small, of the order of only a few percent of the half-
widths, to measure lineshifts are more difficult than half-
widths. In addition, the lines with high j00 are very weak,
and to perform lineshift measurements becomes a bigger
challenge and, therefore, measured values contain large
uncertainties. As a result, it is understandable that mea-
sured data do not follow the rules well. Besides, mixtures
of different sources within the same groups also play a
role to make the violations even worse here. It is better to
adopt values from the same sources, as much as possible,
for the spectroscopic parameters of lines within the same
groups in developing databases.

Next, for lines in the first group of the Q branch plotted
in Fig. 8(d), the calculated shifts follow the two rules
starting from j00Z5 as expected. In this group, all the
values listed in HITRAN 2008 come from the same source
[14], i.e., the reference code 37. As shown in the figure,
these values follow the pair identity rule, but somehow
violate the smooth variation rule. More specifically, it
seems that as j00r10, the values in HITRAN 2008 follow
the same trend as ours, but the values with j00410 behave
strangely.

Finally, for lines in the second group of the Q branch
and lines in the group of the P branch, results are
presented in Fig. 8(e) and (f). As shown in these two
figures, the calculated shifts follow the two rules. How-
ever, they begin to follow the pair identity rule with a
delay, i.e., roughly speaking starting from j00Z16 instead
of j00Z13 and j00Z14, respectively. Regarding the second
rule, there is no such delay appearing here. With respect
to the values listed in HITRAN 2008, in general they follow
the first rule, but fail to follow the second one. We note
that similar to Fig. 8(a), (b), and (d), all these values come
from the reference source 37.

In summary, the presented calculated shifts follow the
two rules well. However, passing this test does not mean
our calculated values are correct. In fact, unless one has
made mistakes in deriving energy levels and wave func-
tions for the H2O molecule or made inconsistent errors
somewhere else in calculations, calculated results from
any self-consistent theories should automatically follow
these rules. In contrast, those shift values listed in HITRAN
2008 sometimes fail to follow the two rules, especially the
second one. It is worth mentioning that except for several
values in the third group of the R branch, all others come
from the same theoretical calculations (i.e., the source
code 37). As explained above, due to containing large
uncertainties, measured data usually do not follow the
rules well. However, for theoretically calculated shifts of
lines involving high j states, their failure to follow the
rules is fatal because usual approximations introduced in
calculations such as simplified potential and trajectory
models, lower order cut-offs, and so on would not cause
the failure. Therefore, one should consider the failure as a
clear and strong warming sign of existing inconsistent
mistakes in formulas used or bugs in computer codes.
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Before ending this section, we would like to say a few
words about the applicability of the rules. In general,
based on the black box theory introduced in our previous
study [23], one should expect that all the spectroscopic
parameters of H2O lines involving high j states follow

these two rules. However, how high is high enough to
guarantee the applicability of the two rules could differ
slightly between the two rules themselves and among the
different spectroscopic parameters of interest. As a con-
venient numerical measure, the so called boundary jbd is

Fig. 8. Induced shifts for three groups of paired lines {j00,j0’j001,j00 , j01,j0’j000,j00}, {j0 j0 ,0’j00 j00 ,1 and j0 j0 ,1’j00 j00 ,0}, and {j03,j0-2’j000,j00 and j02,j0-2’j001,j00} in the R

branch, two groups of {j0 j0 ,0’j00 j00-1,1 and j0 j0 ,1’j00 j00-1,2} and {j02,j0-2’j001,j00-1 and j03,j0-2’j002,j00-1} in the Q branch, and one group of {j02,j0-2’j001,j00 and

j03,j0 �2’j000,j00} in the P branch. They are presented in Fig. 8(a)–(f), respectively. In these plots, the calculated results are given by þ and & and they are

connected by two solid color lines. Meanwhile, the values listed in HITRAN 2008 are plotted by � and D.
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estimated from the identity between two wave functions
associated with paired H2O states in the same category. As
a result, there is room to adjust jbd slightly. In addition, with
the black box theory, one focuses attentions only on the
relations between the inputs and outputs and does not
address what really happens inside the box. Therefore, one
has to consider conclusions draw from the black box theory
to be taken in a general sense. In other words, slightly
different behaviors to follow the general rules among
different spectroscopic parameters are well expected. It
turns out that spectroscopic parameters with higher
accuracies follow the rules better than those with poorer
accuracies. In fact, the transition positions follow these
rules the best because this parameter is completely deter-
mined by the identity and similarity of the energy levels of
the H2O states without involving their wave functions.
Meanwhile, in comparison with the calculated half-widths,
the calculated shifts begin to follow the pair identity rule
slightly later. A theoretical explanation about this is that
there are larger cancelations among contributions from
different correlations to the ImS2(rc) terms than those to
ReS2(rc). As a result, relative differences between ImS2(rc)
associated with two paired lines are enhanced. The above is
a brief theoretical explanation why there are delays of the
pair identity rule happening in Fig. 8(c), (e), and (f).

5. Discussions and conclusions

As discussed in our previous paper [23], all the spectro-
scopic parameters of H2O lines involving high j states, no
matter if they are measured data or theoretically calcu-
lated values, must follow the pair identity and smooth
variation rules. In addition, calculated values from any
self-consistent theories should automatically follow the
rules. Thus, these rules can be used to check whether the
theory used in calculations contains fatal mistakes or not.
Our calculated half-widths follow the rules very well as
demonstrated by our previous works [23,24] and mean-
while, as shown in Fig. 8, our calculated shifts follow the
rules also. In contrast, some of calculated shift values in
HITRAN 2008 fail to follow the rules. A question arises that
how this could happen and where the mistakes could be?

We would like to note that this question differs from
answering why usually the accuracy qualities of calculated
shifts are poorer than those of calculated half-widths. The
former is searching for mistakes made by people in their
calculations and the latter is explaining different natures

between the half-width and the lineshift. However, the
ways to solve the problems are the same: one has to
investigate the entire process within the specified formal-
ism to figure out the answers. Because the formalism used
in our calculations differ from the one used in calculating
theoretical results in HITRAN 2008 [14] and because we
have no access to their codes, we do not know exactly the
answers at this point. But, based on our experiences, we do
know where to search for them and we would like to
provide some suggestions here. The first place required to
check is the energy levels and wave functions of H2O
states, especially those associated with high j values. If
calculated energy levels are not accurate enough, one
should replace them by more accurate ones available in
literature [25]. With respect to the wave functions, one
should pay attention to their symmetries associated with
the four sub-blocks (i.e., Eþ , E� , Oþ , and O�) [23,24]
because violations of these symmetries are not allowed. In
addition, we would like to note that by selecting the
representation alone, the orientation of H2O in the mole-
cular-fixed frame has not been uniquely determined. For
example, in the I R representation where the principle
inertial axis b of H2O is coincided with the x axis of the
molecular fixed frame, the dipole moment could still be
either positive or negative because the O atom can be
located at either the negative or the positive sides of the x

axis. Therefore, one has to make sure the choices of the O
atom location are the same both in developing the wave
functions and in describing the interaction potentials of the
H2O–N2 pair. Given the fact that subroutines used in
calculating the wave functions may come from other
people, it becomes necessary to check these to avoid any
inconsistency.

Meanwhile, one should check the resonance functions
carefully. As long as potential models contain the short-
range atom–atom component, one has to evaluate two
sets of resonance functions consisting of huge members.
The one set used in calculating ReS2(rc) consists of
resonance functions whose magnitude decrease very
quickly as their arguments increase. In contrast, the other
set used in calculating ImS2(rc) consists of resonance
functions whose magnitudes decrease very slowly as their
arguments go to infinity. This implies that one has to
evaluate them over wider ranges. As a result, to evaluate
the second set of the resonance functions is a big
challenge. We suspect that not enough attention has been
paid to the different behaviors between these two sets of

Table 2
Reference sources of the third group in the R branch.

Lines Sourcesn Lines Sourcesn Lines Sourcesn

123,10’110,11 37 163,14’150,15 29 203,18’190,19 37

122,10’111,11 29 162,14’151,15 29 202,18’191,19 37

133,11’120,12 29 173,15’160,16 6 213,19’200,20 37

132,11’121,12 6 172,15’161,16 6 212,19’201,20 37

143,12’130,13 6 183,16’170,17 6

142,12’131,13 29 182,16’171,17 6

153,13’140,14 29 193,17’180,18 37

152,13’141,14 29 192,17’181,18 37

n 6: R. A. Toth, ‘‘Linelist of water vapor parameters from 500 to 8000 cm�1,’’ measured values, see http://mark4sun.jpl.nasa.gov/data/spec/H2O. 29: R.

A. Toth, ‘‘Air- and N2-Broadening parameters of water vapor: 604 to 2271 cm�1,’’ J. Mol. Spectrosc. 201, 218–243 (2000). 37: Ref. [14].
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resonance functions and that the second set has not been
well depicted over their whole ranges which could intro-
duce significant errors for calculated shifts.

Now, we summarize the salient features of the present
study. By adopting the concept of the causal function from
signal processing and relying on the sampling theory to
replace the continuous Fourier transform by the discrete
Fourier transform, we have discovered powerful tools
which work excellently in evaluating the Hilbert trans-
forms without performing the Cauchy principal integra-
tions. With this new method, we are able to effectively
and accurately calculate converged values of the N2

induced shifts of H2O lines. Thus, the challenge to calcu-
late converged lineshifts with our formalism developed
using the coordinate representation has finally been over-
come. As a result, one is able to calculate both pressure
broadened half-widths and pressure induced shifts to the
accuracy of the approximations in the interaction-poten-
tial and trajectory models without containing conver-
gence errors within the current frameworks of the
original and the modified RB formalism.

Furthermore, after we were able to derive the Hilbert
transforms, we have achieved fruitful results by finding
answers to several longstanding questions. By comparing
our results with those listed in HITRAN 2008, most of
which are theoretically calculated values using the same
potential model, one can judge how large their differences
are. Then, by screening both calculated results with the
two rules, one can clearly identify which ones contain fatal
errors. Secondly, we are able to demonstrate significant
effects on calculated shifts from the modification of the
original RB formalism. Finally, we are able to verify the
validity of the assumption with which one calculates the
half-widths without including contributions from ImS2(rc).

The next step necessary to improve theoretically calcu-
lated results is using a properly selected set of the most
accurately measured experimental values of the half-width
to refine the potential parameters and then calculate
calculated half-width values for comparison. Based on
the new optimized potential model, one can then calculate
theoretical values of half-widths and shifts for spectral
lines of interest. Meanwhile, one has to keep in mind that
some fundamental problems are required to address in the
current RB formalism, such as how to consider the cou-
plings between the translational and internal motions and
so on. Therefore, there are new challenges ahead.
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