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As part of ongoing research, the National Aeronautics and Space Administration (NASA) 

and LMI developed a research framework to assist policymakers in identifying impacts on 

the U.S. air transportation system (ATS) of potential policies and technology related to the 

implementation of the Next Generation Air Transportation System (NextGen). This 

framework, called the Air Transportation System Evolutionary Simulation (ATS-EVOS), 

integrates multiple models into a single process flow to best simulate responses by U.S. 

commercial airlines and other ATS stakeholders to NextGen-related policies, and in turn, 

how those responses impact the ATS. Development of this framework required NASA and 

LMI to create an agent-based model of airline and passenger behavior. This Airline 

Evolutionary Simulation (AIRLINE-EVOS) models airline decisions about tactical airfare 

and schedule adjustments, and strategic decisions related to fleet assignments, market 

prices, and equipage. AIRLINE-EVOS models its own heterogeneous population of 

passenger agents that interact with airlines; this interaction allows the model to simulate the 

cycle of action-reaction as airlines compete with each other and engage passengers. We 

validated a baseline configuration of AIRLINE-EVOS against Airline Origin and 

Destination Survey (DB1B) data and subject matter expert opinion, and we verified the 

ATS-EVOS framework and agent behavior logic through scenario-based experiments. These 

experiments demonstrated AIRLINE-EVOS’s capabilities in responding to an input price 

shock in fuel prices, and to equipage challenges in a series of analyses based on potential 

incentive policies for best equipped best served, optimal-wind routing, and traffic 

management initiative exemption concepts. 

I. Introduction 

he Airspace Systems Program of the National Aeronautics and Space Administration (NASA) is directly 

addressing the fundamental research needs of the Next Generation Air Transportation System (NextGen), a 

substantial and long-term change in the management and operation of the current version of the U.S. air 

transportation system (ATS), the National Airspace System (NAS). NextGen policies will encompass all airports, 

airspace, commercial airlines, and other aviation operators under the authority of the Federal Aviation 

Administration (FAA), the civil aviation authority body of the United States. 

The purpose of this research is to investigate system-wide ATS performance impacts due to ATS stakeholder 

behaviors—in particular, behaviors of U.S. commercial airlines—under the influences of NextGen and other 

potential future policies and technology. This task is challenging, because the ATS is a highly interdependent and 
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complex network of systems and subsystems; operators, regulators, users, and the flying public; policies, 

procedures, and rules; and facilities and resources. A change in any aspect of this system has cascading effects, 

ultimately influencing the safety, performance, environmental impact, and economics of the ATS as a whole. These 

stakeholder-level decisions and behaviors have both a tactical and a strategic perspective, and they are influenced by 

socioeconomic, technological, and policy interactions. 

The challenge of this research is to explicitly consider the behaviors of key stakeholders. This approach provides 

better insight into how NASA’s technology research and development will be incorporated into the ATS, guides 

formulation of accompanying policies and incentives to ensure system performance is balanced with stakeholder 

perspectives, and reduces risk and uncertainty. The research will ultimately provide a tool for policymakers to assess 

policies and incentives to balance the objectives of all ATS stakeholders—FAA, commercial airlines, passengers, 

and other stakeholders—to achieve a more efficient, robust, and safer ATS by incentivizing desirable airline 

behaviors. 

II. Research Approach 

In a literature search we found a number of models and approaches that addressed aspects of our task objectives, 

but none treated them comprehensively. Some models and approaches assess impacts on the ATS from flight 

activity, but do not relate those impacts to airline decisions. Others address the dynamics of airline decisions, but do 

not apply the results to an ATS-wide impact analysis. Therefore, we determined that we needed to formulate and 

develop a research framework that assessed ATS-wide performance and impacts while accounting for airline and 

passenger decisions. This framework, called the Air Transportation System Evolutionary Simulation (ATS-EVOS), 

integrates existing NASA tools and resources and a new airline behavior model, the Airline Evolutionary Simulation 

(AIRLINE-EVOS), into a single process flow. This integrated approach was designed to best simulate responses by 

U.S. commercial airlines and other ATS stakeholders to NextGen-related policies, and in turn, how those responses 

impact the ATS. Figure 1 shows a high-level integration design of ATS-EVOS and the following subsections 

describe this process flow and its model components. 

 

A. ATS-EVOS Framework and Model Components 

ATS-EVOS is modular and uses different tools to address the modeling components of demand generation, 

airline behavior, and ATS-wide simulation to assess system performance. These modeling components are 

represented by the Transportation Systems Analysis Model (TSAM),
1
 and the Airspace Concept Evaluation System 

 

 
 

Figure 1. Overview of the ATS-EVOS Framework. 
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(ACES),
2
 respectively. Demand generation in ATS-EVOS was designed to capture aspects of specific market 

demand and characteristics of that market with respect to willingness to pay (WTP), to represent passenger buying 

behavior. These market demand mechanics are necessary for AIRLINE-EVOS to properly account for market 

changes as airlines compete, adjust airfares, and modify their networks. Currently, both AIRLINE-EVOS and 

TSAM are used to generate passenger demand, with AIRLINE-EVOS generating demand and TSAM being used to 

characterize the demand population. We are currently exploring ways to increase the role of TSAM in this 

functional capacity. Running AIRLINE-EVOS then results in an output of an ATS-wide flight schedule that is based 

on airline actions in response to passenger demand. If a policy scenario experiment is being conducted, any policy 

costs and/or benefits are also accounted for in the flight schedule output by AIRLINE-EVOS. Finally, the schedule 

is run through ACES to simulate the ATS-wide performance of the AIRLINE-EVOS adjusted flight schedule. This 

completes one iteration of the ATS-EVOS process and may be repeated as necessary, with ACES providing 

feedback to AIRLINE-EVOS for additional airline agent learning to influence subsequent decision making. 

All these tools are integrated and controlled by a programmed automation script, the ATS-EVOS Integration 

Script (AIS), which executes the model components in sequence, processes outputs to be used as inputs to the next 

modeling step of the process, and cycles through any specified iterations. Any of the specific models we have 

mentioned thus far could in theory be exchanged for another that may provide some benefit to the scenario being 

investigated. 

B. Modeling Airline and Passenger Behaviors 

In the context of the ATS-EVOS framework, TSAM and ACES are established NASA models. We identified a 

gap where no existing model of airline behavior was available for integration into our approach, and developed 

AIRLINE-EVOS to fill that gap. As airlines are a driving entity in the ATS, AIRLINE-EVOS is intended to enable a 

better understanding of airline behavior and of the functional relationships airlines have to the other ATS 

stakeholders, both current (airlines, passengers, cargo carriers, FAA) and projected, such as operators of unmanned 

aircraft systems (UASs). We recognized that we also needed to model passenger behaviors, because airlines are 

profit maximizing entities and passenger decisions for ticket purchases significantly affect airline behaviors. In the 

use of AIRLINE-EVOS, we seek to explore how changes—regulatory or technological—affect the airlines, and how 

airlines, in turn, react and affect the ATS and its stakeholders. 

AIRLINE-EVOS employs an agent-based approach to simulating airline behaviors, ideal for the complex system 

interactions in the ATS. The agent-based approach naturally accommodates modeling the multiple independent, 

heterogeneous entities, or agents, within the ATS that interact in specific ways. Agents follow predefined and often 

simplified rules that are designed to emulate real-world counterparts (airlines, passengers, air traffic control, 

airports). By representing simple behaviors at the agent-level, emergent dynamics can be observed from a system 

perspective as the agents interact with each other. We identified the key behaviors that airlines could be expected to 

exhibit in response to policy changes and new technologies. At a high level, only two primary behavior responses 

are directly available to the airlines: airfare pricing strategies and schedule-based strategies. Accounting for this, 

airline agents are adaptive, making tactical and strategic changes to their airfares and schedules under the influence 

of reinforcement learning, to best enable themselves to generate profit and compete in markets. For example, airline 

agents dynamically change airfares as time gets closer to the departure date, based on the ticket purchase date, and 

seating availability at the time of purchase. They adjust the flight schedule by changing the equipment assignment, 

or in other words, swapping assigned aircraft equipment between flights. Passenger agents choose to purchase their 

most preferred ticket based on their objectives and mission, subject to some randomness, used to model non-utility 

maximizing behaviors and irrationality. 

Figure 1 illustrates, at a high-level, how AIRLINE-EVOS operates, using data inputs for airlines and passengers 

to execute a looping process within the model. This iterative process models airlines selling tickets and responding 

to both the market and competition, adjusting airfares or flight schedules to maximize profits. Iteration loops create 

as a learning opportunities; the airline agents determine the success of implemented strategies and, on the basis of 

their assessment, continue or end the strategy and try new ones. The outputs from AIRLINE-EVOS are adjusted 

flight schedules, which are used for assessing airline-specific operational performance as well as ATS-wide 

performance, and airline-specific financial metrics, which are used for assessing airfares, market trends, and airline 

financial performance. 

This research is ongoing and while the functionality exists for full execution of the ATS-EVOS process, the 

current research has been focused scenario-based experiments that were used to verify and validate the operation of 

the ATS-EVOS framework and the AIRLINE-EVOS model. The remainder of this report will focus on the 

description of AIRLINE-EVOS and how it was used in our experiments, and it does not include ACES results. 
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III. AIRLINE-EVOS Model Description 

We now describe AIRLINE-EVOS, along with its general formulation, using a standard protocol known as ODD 

(Overview, Design concepts, and Details).
3,4

 ODD was designed to create factually complete and easily understood 

model descriptions that are standardized and consistent.
5
 What we present here is an abbreviated ODD; readers 

should reference our full report to NASA for the complete ODD description.
6
 

A. Overview 

1. Model Purpose 

The purpose of AIRLINE-EVOS is to formally model airline behaviors, accounting for their response to 

passenger ticket purchasing choices and other external environmental factors—such as NextGen and FAA policy 

implementations—to enable the analysis of consequential, systemic impacts on the ATS as a whole and with respect 

to the system stakeholders. 

 

  

Table 1. Passenger agent state variables. 
 

State Variable Description 

Desired O-D travel Customers are instantiated in groups, as segmented by TSAM, each with a specific 

O-D pair. For each agent, we assign an appropriate origin airport and destination 

airport matching the O-D pair of the group they were instantiated from. 

Traveler type Decisions made by customers are motivated by the type of traveler they are, 

categorized in AIRLINE-EVOS as either business or leisure. TSAM segments 

each O-D demand forecast by the same traveler type categories, enabling us to 

assign each agent with a traveler type according to the ratio determined by TSAM, 

during the AIRLINE-EVOS instantiation. This state variable will be a factor in 

determining a customer’s advance purchase time, arrival time sensitivity, and 

airfare price sensitivity. 

Household income TSAM further segments each O-D demand forecast into five income range 

brackets. We use this segmentation of the demand to derive a specific income from 

the ranges for each customer agent. 

Value of time We quantify an approximation for perception of the value of time of each customer 

agent, to be used in the decision-making process for a customer to select an airline 

ticket to purchase. It acts as a weighting coefficient that makes more inconvenient 

itinerary options less attractive to customers (i.e., longer travel time durations, 

including distances and connecting flights). By approximating an hourly value of 

time, we can monetize the cost perception of a particular ticket in the customer 

utility function.  

Advance purchase time Tactical airfare pricing strategies by airlines are assumed to be a function of 

several factors. One significant factor is how early a customer decides to purchase 

a ticket prior to the actual departure date. This state variable for each customer is 

considered in the airline agent logic for adjusting airfare offerings for a specific 

customer. 

Departure time preference We assume that departure time preference is a factor in the customer’s ticket-

choice decision; this agent-specific value is used to evaluate ticket choices, 

weighting their preferences toward itinerary options that depart closest to the 

preferred departure time or earlier. We use this variable to capture the general 

behavior of business travelers; when leaving home, they take flights early in the 

day, and when returning home, they take flights later in the day. Leisure travelers 

are assumed to be insensitive to the travel time. 

Airfare sensitivity Airfare sensitivity reflects how significant airfare is to the customer, which is 

specific to the traveler type. Higher price sensitivity means that a customer cares a 

great deal about price and wants to spend less money. This state variable is an 

input into the customer’s determination of the most preferable ticket choice. 

Willingness to pay WTP is used in the ticket choice submodel of the customer agents to generate a 

subset of all offered tickets whose airfares are acceptable to a customer agent. 

Wealth This measure is an approximation of customer wealth, which we assume is 

separate from income, though highly correlated. Measure of wealth is used in the 

airline ticket choice submodel. 
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2. Passenger Agents and State Variables 

The model has two different entities: passengers and airlines. They are modeled as distinct agents that behave 

autonomously and interact with each other, accounting for influences and constraints introduced by specified 

external factors. We first discuss passenger agents. 

Passenger agents are modeled as heterogeneous agent populations, with a number of differentiating attributes, 

including the origin-destination (O-D) pair that defines the agent’s desired route. In the current version of AIRLINE-

EVOS, their behavior is strictly concerned with making a decision about whether to purchase an airline ticket, and 

which ticket to purchase. Modeling that behavior requires (1)  a passenger population based on forecasted demand, 

(2) relevant state variables, and (3) agent behavior logic for identifying feasible candidate ticket options and 

selecting a ticket from among those candidates based on preferences specific to the agent. After selecting airline 

tickets, the role of the customer passenger agents in the model has been satisfied 

AIRLINE-EVOS instantiates multiple passenger populations at the beginning of each model run, each unique in 

size and specific to an air travel market defined by an O-D pair. The model uses market demand curves generated 

from previous research on market elasticities
7
—specific to O-D pairs and to the type of travel, business or leisure—

which determines the number of potential passengers that may buy tickets, as well as the amount each passenger is 

willing to pay for a single ticket. Thus the passenger willingness to pay attribute is integrally linked with the size of 

a market’s demand. In this way, we approximate passenger decisions to not purchase a ticket if all of the offered 

airfares are more expensive than the maximum amount they are willing to pay. 

We use TSAM results to assign passenger agent-specific attributes, derived from how TSAM segments its 

output. In particular, we are interested in demographics of passengers in each air travel market, including leisure or 

business traveler status, and the distribution of household income among those two categories, all of which is 

provided in TSAM output. The passenger agent state variables used in AIRLINE-EVOS are described in Table 1. 

Passenger agents possess only one decision-making behavior. They select which available ticket they will 

purchase, based on a cost- and inconvenience-minimizing utility function, with some degree of randomness. We 

assume that passenger agents are not completely rational and, therefore, with some random probability, do not 

strictly maximize their utility decisions. These behaviors are discussed in more detail in the submodels section. 

 

3. Airline Agents and State Variables 

The primary entities of AIRLINE-EVOS are airline agents. Airline agents possess behavior rule-sets that 

influence how they price their airfares and adjust fleet allocation in their flight schedules. They do so through an 

iterative learning process that involves both tactical and strategic decision logic. Modeling of these behaviors 

requires (1) generation or input of the airline agents, their starting flight schedules, and an initial allocation of 

aircraft equipment across the schedule; (2) relevant state variables; and (3) decision logic for dynamic airfare 

pricing, flight schedule adjustment, and equipage of new technology for airline fleets. Our current scope of effort is 

limited to airfare pricing changes, schedule adjustment through the swapping of aircraft, and equipage decisions—

on a subfleet basis—for a given technology set with cost and benefit assumptions specific to airline and subfleet 

type. The airline agent state variables used in AIRLINE-EVOS are described in Table 2. 

Airline agent decisions are based on profit-maximizing utility functions and, as such, are dependent on ticket 

purchasing decisions by the passenger agents. That modeling enables a determination on how to allocate revenues 

and market share among the representative airlines being modeled and, subsequently, influences airline behavior 

responses for adjusting airfare or reallocating the aircraft equipment across the flight schedule. In the current version 

of AIRLINE-EVOS, these airline behaviors address the two primary responses by airlines to market forces: dynamic 

airfare pricing and strategic adjustment to the flight schedule. More specifically, airfare adjustment behaviors  

customize airfares to the specific passenger desiring travel, with respect to how close the ticket purchase is from the 

day of departure, and the number of seats available on the offered flight at the time of purchase. Schedule changes 

by the airline agents are strategic equipment gauging decisions that attempt to increase revenues by improving 

captured load factors. 

Most other airline responses are executed over extended time frames, involve high capital costs, and require 

more complicated decision making, such as deciding on new aircraft purchases, leases, or refurbishment of the 

existing fleet. These actions will be investigated in future versions of AIRLINE-EVOS. 

 

4. Model Spatial and Temporal Scale 

The spatial scale is used to measure the flying distance, in nautical miles, between origin and destination pairs. 

The spatial scale is key for calculating metrics such as fuel burn and travel time. 

Regarding temporal scales, AIRLINE-EVOS is dimensionless, meaning the duration of the time steps used 

during a model run is not specified. Time steps are required only during the learning iterations of the model run.  
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Each iteration is reflective of a process in which airlines will assess their performance and make appropriate 

strategic changes to their schedule or pricing. In an iterative way, the market is then reengaged after any changes, 

and the airlines determine success or failure of those changes with respect to profitability. The outcome of this 

assessment influences subsequent strategy decisions by the airline. Each learning iteration loop is considered the 

Table 2. Airline agent state variables. 
 

State Variable Description 

Airline We do not intend to model the behavior of a specific airline; rather, we model 

proxy airlines that are representative of similar real-world entities with respect to 

business model, network, operating costs, and aircraft fleet. Using ATS-wide 

schedule inputs, airline agents are based on real-world airlines. Business models 

are primarily full-service (FSC), low-cost (LCC), and regional carriers. 

Flight schedule Input flight schedules are a standard, real-world ATS-wide schedule, in ACES 

schedule input file format (FDS-2 or FDS-3). This input schedule includes the 

following for every flight: origin and destination airports, aircraft type assigned to 

the route, departure time, filed cruise speed and altitude, and route waypoints. 

Feasible set of flight itineraries Airline agents determine a feasible solution set of all possible itineraries for a 

specific O-D pair, constrained to the airline’s network as specified in the input 

schedule for the given airline’s real-world counterpart. Currently, our generated 

itineraries are either nonstop or have one connection. 

Fleet inventory Each airline agent is assigned an aircraft fleet based on the actual fleet inventory 

for their real-world airline counterpart, using Enhanced Traffic Management 

System (ETMS) and Aviation System Performance Metrics (ASPM) data, or for 

future time frames, projected fleet inventories. 

Fleet allocation assignment to 

the schedule 

We assign specific aircraft to the flight schedule according to the allocation 

specified in the input flight schedule. 

Fleet age Each airline subfleet is assigned an average age, based on available online data, to 

enable consideration of aircraft retirement in the model’s equipage logic. 

Subfleet categorization AIRLINE-EVOS categorizes each subfleet based on the ease with which new 

technology/avionics can be installed. In analyses for different equipage scenarios, 

these categories are associated with specific costs for each category type. 

Technological performance of 

the aircraft fleet 

Aircraft performance variables (e.g., passenger capacity of the aircraft, cruising 

altitude, speed, acceleration, and fuel burn rate during the climb, cruise, and 

descent phases of flight) are assigned to each aircraft and then applied to each 

flight accordingly. The capacity is used to track the number of available seats on 

the route. The other metrics are used to calculate the aircraft’s total fuel burn and 

total travel time in the air. Variables are derived from Base of Aircraft Data 

(BADA).8 

Hedged fuel price Due to their unique business models and corporate strategies, each airline agent 

has a different price that it pays for fuel. 

Airline-specific operating costs 

by flight 

Each airline agent is assigned a specific operating cost by flight, accounting for 

nonfuel-related and fuel-related expenses. Nonfuel-related operating costs are 

represented by operating costs per flying hour, based on Bureau of Transportation 

Statistics (BTS)9 data, which is specific to the business model of the airline and the 

aircraft type being flown. Fuel-related operating costs are based on the assigned 

aircraft type, travel time, fuel burned, and airline hedged fuel price. This is a factor 

in determining a flight’s base airfare and the airline’s profit determination. 

Airline-specific delay cost Each airline agent is assigned a specific cost of delay for each aircraft type in its 

fleet, used for calculating monetized benefits from operational savings due to 

delay reductions. 

Airline performance metrics State variables associated with airline performance metrics are dynamic and are 

continuously updated throughout the AIRLINE-EVOS model run. The airline 

performance metrics include available seat capacity by flight and load factor by 

flight. 

Airline and flight profits For a given airline, profit is determined by a straightforward calculation of the 

difference between the summed revenue and the operating costs, across every 

flight that the airline operates on its schedule. This state variable is used as a 

trigger mechanism for initiating airline behaviors. 
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next available time for the airline to publish and implement a flight schedule change; it is not a specified increment 

of time. It is also assumed that all learning iterations and the resulting model outcomes for experiment scenarios are 

within context of the same seasonal period of the starting schedule. 

 

5. Process Overview and Scheduling 

The dynamics of the model involve the processes that change the state variables of the model entities, describing 

who does what, in what order, and when the state variables are updated, specific to how time is being modeled. This 

process overview describes AIRLINE-EVOS, from the instantiation of agent populations, to their interactions, 

behavioral responses, learning iterations, and, ultimately, the generation of an adjusted ATS-wide flight schedule 

Fig. 2 shows a high-level modeling flow diagram that illustrates the AIRLINE-EVOS process, scheduling, and 

interaction points between the agents. 

The process flow shown in Fig. 2 are described in the following steps: 

 

Step 1. A passenger agent population is generated for each O-D pair based on market elasticity assumptions, 

calibrated to DB1B data,
10

 and assigned attributes based on TSAM demographics. 

Step 2. An airline agent population is instantiated, based on predetermined representative airline business 

models. Each airline agent loads an initial flight schedule, aircraft equipment-related data, and fleet 

allocation assignments. 

Step 3. Each airline generates feasible passenger itineraries for each O-D pair from the initial airline 

schedules. 

Step 4. Passenger agents request itinerary options from the airline agents based on desired travel for a 

particular O-D pair. 

Step 5. Airline agents evaluate the airfares of all the requested itineraries based on the advance purchase time 

and the remaining seat availability at time of purchase. 

Step 6. Passenger agents choose tickets by maximizing utility, though they may randomly make an irrational 

choice. Steps 4, 5, and 6 are taken for all passenger agents, one at a time, in sequential order, based on the 

passenger’s advance purchase time. 

Step 7. Passenger purchases feed back into the airlines’ airfare calculations as the supply of available 

passenger seats diminishes. 

Step 8. As passenger buy tickets, metrics like seat availability and airline market share are tracked and 

updated for each flight and for all airlines as tickets are purchased. 

Step 9. After all passenger agents have made their selection, flight level profits are calculated, and airline 

agents assess their current operational and financial state. Airlines may adjust their fleet allocation, 

including the gauging of scheduled aircraft, or change the base fare price in individual markets. New 

technology equipage decisions are also made at this point in the AIRLINE-EVOS process. 

Step 10. For each type of airline strategy implemented, a feedback loop is executed in which the same 

passenger agent population is reengaged to consider the resulting new set of itinerary and airfare options, 

and a new profit result is calculated. This is representative of an airline trying to improve its performance 

by testing new schedule and airfare strategies at the next available incremental schedule change 

opportunity. It is a “learning” process, repeated for some user-specified number of iterations. 

Step 11. The individual airline schedules are  aggregated into one consolidated flight schedule, available for 

input into ACES, to simulate and explore consequential ATS-wide impacts of airline decisions.  

B. Design Concepts 

The ODD protocol identifies 11 design concepts that are key to robustly describing the dynamics and behaviors 

of complexity models we expect to observe. The following describes how AIRLINE-EVOS exhibits these design 

concepts. 

 

1. Basic Principles 

Central to AIRLINE-EVOS are the dynamic interactions between passenger choices, airline decisions, and the 

performance of the ATS as a whole. As illustrated in Fig. 2, airline agents interact by providing airfares and 

itineraries to passenger agents, and they evolve over multiple learning iterations through strategic pricing and 

scheduling changes that allow them to better compete in the market and gain revenue. 
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2. Emergence 

Airlines dynamically modify airfares as they are purchased, based on passenger advance purchase time 

characteristics and the available seats for a given flight, and this gives rise to several emergent behaviors in 

AIRLINE-EVOS: 

 

 Market-based dynamics of passengers, with respect to purchasing behaviors over time and travel trends by 

traveler type and O-D pair (e.g., leisure travel on a decreasing trend in certain markets). 

 Competitive airline behaviors, with respect to how airfares change over time, change in profit, and the 

resulting evolution of market share. 

 Airline operations, with respect to load factor trends and equipment gauging by market, in addition to 

decisions to equip their fleets with new technology. 
 Other emergent effects at the ATS-level are expected to result after running AIRLINE-EVOS schedule 

output in ACES. These operational-related performance metrics include measures of airspace congestion, 

delay, violation of safe separation, and others. 

 

 
 

Figure 2. Overview of the AIRLINE-EVOS Process Flow. 
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3. Adaptation 

The airlines alter schedules and airfares over time to account for changes in the competitive environment and the 

resulting suboptimal schedules. 

 

 The airlines potentially sell different numbers of tickets for their flights during each iteration, which can 

result in financial losses at the flight level that can be corrected through changes to the schedule. 

 The airlines change equipment assignments and modify ticket prices based on passenger purchasing 

behavior, which is in turn a reaction to airline schedule offerings. Airlines observe which itineraries are 

selling well and which are not, and swap aircraft between flights to best match scheduled offerings to 

demand. Likewise, airlines respond to passenger demand by raising or lowering prices. Competing airlines 

also make price and schedule adjustments, to the effect that when they are responding to passenger demand 

patterns, they are also responding to the competitive actions of other airlines. 

 

4. Objectives 

Airlines have the explicit objective of maximizing short-term profit. They make changes to their schedule and to 

ticket prices, then evaluate those changes based on their effect on profit. Passengers pursue their objective of 

maximizing their utility. In every iteration of the model, passengers explicitly choose the ticket that will maximize 

their utility, taking into account their individual preferences. 

 

5. Learning 

Airline agents change their adaptive traits over time. After all passengers have made ticket purchasing decisions 

during an iteration, airlines reassess the performance and profitability of previous changes to those behaviors and 

either abandon those changes and take a different approach, or they build on the previous changes to further improve 

performance and profitability. The airlines learn to make gradual changes to airfares, both to learn the ideal airfare 

for a particular market and to allow the airfare to drift when significant changes to the market affect the pattern of 

passenger behavior. Likewise, airlines make gradual changes to the schedule to better accommodate current market 

conditions. 

 

6. Prediction 

Predictive behavior is not present in the current version of AIRLINE-EVOS although there are plans for airline 

agents to include the ability to consider the impact of forecasted competitive behavior and market reactions before 

acting themselves, in addition to the iterative learning already modeled. 

 

7. Sensing 

Airlines have imperfect awareness of their environments. They know what tickets they have sold in the current 

iteration in response to the prices they have imposed, and they keep track of the seat availability of their own flights, 

as well as the amount of time remaining until departure, but they know little else. 

 

8. Interaction 

Airlines and passengers interact directly, with the airlines offering itinerary choices and airfares and the 

passengers choosing a ticket to purchase. Airlines also interact indirectly with each other, mediated through 

passenger ticket transactions that change the remaining unmet passenger demand in a market, a shared resource for 

which airlines compete. 

 

9. Stochasticity 

Stochastic processes, based on pseudorandom numbers, are used when assigning certain state variables to 

passenger agents (e.g., preferred departure time, traveler type), and when determining whether passengers will 

choose the ticket that maximizes their utility or act irrationally and choose an alternative ticket in a random manner. 

 

10. Collectives 

The current AIRLINE-EVOS has no collectives. Airline agents cannot be grouped by common traits, and each 

market defines a different, unique passenger environment. 
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11. Observation 

AIRLINE-EVOS currently employs extensive observation into processes in the model, most prominently 

through the use of logging statements, but also through special purpose output files created to generate a more 

processed form of quantitative output, ready for analysis and a final schedule file. 

C. Details 

1. Model Initialization 

The state variables described for airline and passenger agents in Tables 1 and 2 are initialized to values derived 

from assumed distributions, point-value estimates, BTS data sources
9
, and other freely available information from 

the Internet. Please reference the full NASA report complete details of our model initialization assumptions.
6
 

 

2. Submodels 

Currently, AIRLINE-EVOS implements six submodels that enable agents to assess and interact with their 

environments. Table 3 describes the role and function of each submodel. 

 

 
The passenger ticket choice submodel, and the airline technology equipage decision submodel are worth 

discussing in more detail.  

 

Airline Ticket Choice Submodel 

Passengers choose the ticket that will minimize their disutility, although they may only purchase a ticket only if 

it is below the maximum price they are willing to pay (WTP). Passengers seek to balance the prices of fares while 

also choosing an itinerary that offers the least inconvenience in terms of its total travel time and closeness to the 

passenger’s desired departure time. When passengers choose tickets, they each first identify a subset of itineraries 

that have an airfare below the passenger’s WTP. Passengers then randomly determine whether they will rationally 

choose the ticket that would best satisfy their disutility function, given their own preference parameters , or whether 

they will instead irrationally choose an alternative with less than optimal utility. Irrational alternative choice 

probabilities are proportional to the distance (i.e., difference in utility) between the most preferable ticket and the 

worst alternative. 

For passengers making rational ticket choices, each itinerary i is evaluated by a passenger agent g, making a 

determination of the disutility value Ugi, as described in Eq. (1). This formulation was based on research by Mavris 

and Garcia.
11
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Table 3. AIRLINE-EVOS Submodels. 
 

Agent Type Submodel Description 

Customer Airline Ticket Choice Passengers decide upon a ticket to purchase tickets from flights 

matching their desired origin and destination. The Airline Ticket Choice 

submodel models the passenger decision-making process by 

mathematically modeling the utility of the individual tickets to the 

passenger evaluating them. 

Airline Flight Cost Airlines determine the operating costs of their flights, based on a number 

of factors that include the technological performance specific to the 

aircraft equipment being used on the flight. 

Profit Calculation Airlines calculate profit at the flight and airline levels, the results of 

which trigger behavioral responses by the airlines. 

Dynamic Airfare Pricing Airlines adjust offered airfares depending on the time remaining until the 

date of travel and on the number of tickets remaining to be sold for 

individual flights. 

Airline  

Equipment Swapping 

Once tickets have been sold, airlines may choose to switch equipment 

for flights to better accommodate market demand or to better match the 

equipage or performance profile to market and demand characteristics. 

Technology 

Equipage Decision 

Airlines weigh, on a subfleet basis, costs and benefits for given 

technology sets and decide if they will equip their subfleets. 
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This disutility function is a function of the ticket’s associated airfare, the duration of travel associated with 

itinerary i, and the difference in the itinerary departure time from the desired departure time. The terms inside the 

brackets of the disutility function account for the airfare and the duration of travel. The first set of these terms in the 

brackets, normalizes the fare being evaluated against the lowest fare available for travel between the desired O-D 

pair. The airfare sensitivity coefficient      
is specific to the traveler type of passenger g and to the O-D 

market for itinerary i, and is a measure of the importance passenger g places on fare in determining the best overall 

ticket. 

The second set of terms inside the brackets, concerns the total duration of travel for itinerary i. Total travel 

duration is normalized against the shortest travel duration of all itineraries of the tickets being considered. The value 

of time coefficient Tg is specific to passenger g and is estimated from the household income attribute assigned to the 

passenger at instantiation. It reflects the importance passenger g places upon total travel time in determining the best 

overall ticket. The S term is a scaling factor that equalizes the difference between the different units for price and 

duration used within the utility brackets. The outside term     acts as a penalty modifier in the calculation of 

itinerary disutility that accounts for any difference in desired arrival time and actual arrival time. In general, the 

more the arrival time of i deviates from the desired arrival time of passenger g, the harsher the penalty. 

 

Technology Equipage Decision Submodel 

This submodel logic controls the airlines’ evaluation when deciding whether to equip their aircraft with new 

technologies. The logic accounts for incentives that have varying levels of benefit depending on the amount of 

participating aircraft, and for incentives that only apply to select airports. The logic flow is as follows: 

 

Step 1. For a single airline, identify an aircraft subfleet for possible equipage. If the benefit of the technology 

to be evaluated depends on the volume of participating aircraft, identify a combination of subfleets to be 

evaluated using one of the combinations in the subfleet power set. Each subfleet in the combination will be 

analyzed individually, but all will use the benefits estimate identified for the set of subfleet types.  

Step 2. Calculate the benefit of equipage for the subfleet or subfleet combination by calculating the savings 

the aircraft would experience in terms of flight time if they were equipped. 

Step 3. If the technology benefit depends on total equipage levels, identify a single subfleet in the subfleet 

powerset to assess for equipage. 

a.  Monetize the flight-time benefit for the subfleet by comparing the flight-time benefit with the costs of 

operating the subfleet. If the technology only affects flights at certain airports, benefit minutes are 

accrued only by those flight segments that arrive at one of the airports. 

b. Calculate the network effects benefit by calculating the potential increased utilization of the network 

(the number of additional aircraft that could be fit into the airline’s schedule) from the total flight-time 

savings of the subfleet.  

c.  Calculate the equipage cost (including installation, maintenance, and training) for the subfleet. 

d. Given the total monetized subfleet flight-time and network benefit and costs, calculate the total 

savings.  

Step 4. If the benefit of the technology being evaluated depends on the total level of equipage, aggregate the 

total savings among subfleets in the subfleet combination. 

Step 5. Calculate the payback period, the amount of time before the airline sees a return on the equipage 

investment. If the total payback period is less than the airline’s payback period tolerance, and no subfleet 

being evaluated will be retired during the payback period, the airline will choose to equip. Otherwise, the 

airline will not equip the subfleet or subfleet combination. 

Step 6. Repeat step 1 for each aircraft subfleet or subfleet combination of every airline. 
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IV. Analysis Scenarios 

A series of four scenario-based analyses were conducted to verify, validate, and refine our ATS-EVOS approach 

and the functionality and operation of AIRLINE-EVOS. The scenarios were designed to demonstrate the capability 

of AIRLINE-EVOS in quantifying the effects of new technologies, and of the effects of incentive policies. 

A. Quantifying the Effects of New Technologies 

We modeled airline evaluation of new technology through experiments in which we applied varying degrees of 

fuel cost changes. Our assumption was that any new technology would influence the airline’s operating costs of 

service. By instituting changes in the fuel costs incurred, we could verify and validate the airline behavior responses 

to the associated financial impacts. 

Fuel costs may affect airlines in different ways depending on their business model and cost structure. In this 

analysis scenario, we investigated, from an economic perspective, how airlines would adjust airfares given the 

implementation of modifiers across all airlines that lower and raise fuel costs. These modifiers were applied to each 

airline-specific fuel cost per gallon derived from BTS Form 41 data.
9
 We evaluated airline response to a series of 

global fuel cost multipliers: 0, 0.5, 0.75, 1, 1.25, 1.5, 1.75, and 2. The 1 multiplier is the baseline case. Values less 

than 1 reflect drops in fuel cost, and those greater than 1 represent increases. 

This baseline case was used as our control scenario. We achieved what we deemed was sufficient validation of 

the control, against empirical data, to proceed with our initial analyses. The validation exercise found similar result 

patterns for real-world U.S. airfares and distributions of purchased ticket airfares as compared to appropriate DB1B 

data. In addition, AIRLINE-EVOS closely matched online data for the buying behaviors of passenger agents with 

respect to advance purchase time.
6
 

B. Quantifying the Effects of Incentive Policies 

The analysis of incentives examined the characteristics of human/automation and air/ground allocation of 

separation assurance and trajectory management functions, and their influences on airline behaviors. The scenarios 

we investigated modeled potential implementations of several incentives:  

 

 best-equipped best-served (BEBS) preferences for higher-equipped aircraft, 

 exemption from certain traffic management initiatives (TMIs) for aircraft equipped for self-separation, and 

 wind-optimal preflight trajectory planning for aircraft equipped for self-separation. 

 

These experiments were designed to assess airline agent decisions for equipping in response to incentive policy 

benefits. In all three of the equipage scenarios, we assumed the required technology was Automatic Dependent 

Surveillance–Broadcast (ADS-B) In/Out and Cockpit Display of Traffic Information (CDTI) to enable self 

separation by equipped aircraft. We now present a brief description of the operational benefits we assumed for each 

incentive policy concept. 

 

1. BEBS Incentive Scenario 

We defined a scenario that models the BEBS incentive using, as an example, a potential domestic airspace 

implementation of PTM-D, which is essentially pair-wise self-separation that has been initiated by the controller. 

PTM-D—as described to us by Ken Jones from NASA Langley Research Center —is an ATM concept that relies on 

both ADS-B In and Out to reduce inefficiencies in leader-follower traffic configurations in the airspace through 

delegated separation. For example, PTM-D may aid in the execution of specific miles-in-trail (MIT) initiatives, 

reduce pair-wise separation on congested air routes through specific sectors, and/or assist merging of aircraft from 

busy departure airspace into the en route environment. 

Each of these represents potential gains in efficiency to the aircraft operator, which could lead to reduced 

operational costs due to reduced flying time. From all possible benefit mechanisms of PTM-D, we selected terminal 

arrival flow management as an easily identifiable and tractable benefit to model; incentive estimates for this scenario 

will be based on efficiency gains—reduced pair-wise separation—for arrivals in the terminal airspace. 

Our modeling of the reduced pair-wise arrival spacing is indirect; that is, we model what we believe the effect of 

the technology would be on flights for this particular terminal airspace efficiency scenario. Direct modeling differs 

from the effects analysis of the indirect modeling approach and represents exploration of detailed interactions of 

reduced pair-wise arrival spacing to independently discover the impacts. In part, we chose reduced pair-wise arrival 

spacing benefits because we could base the initial value of the benefits on known impacts of tightening up an arrival 

stream using ADS-B and CDTI. Tightening an arrival stream of equipped aircraft was operationally tried at 
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Louisville, KY, using the United Parcel Service (UPS) fleet, and resulted in several minutes of reduced terminal 

delay per flight. We emphasize that we expect this to be a conservative estimate of all the effects possible under the 

PTM-D concept, and that our benefit estimates are not at the level of detail that would be required to properly 

evaluate the full merits of the PTM-D program. 

The BEBS scenario provides that the greater the level of equipage, the greater the realized benefit. When one 

aircraft in the arrival queue tightens the spacing, that aircraft saves some amount of time. If two or three aircraft are 

in direct sequence, the amount of time saved by the last aircraft is greater. If each aircraft tightens the spacing by 20 

seconds, then the third aircraft in a row arrives 1 minute earlier. So the benefit of reduced pair-wise arrival spacing 

increases as the number of aircraft equipped increases. Non-equipped aircraft will benefit to some extent, but 

equipped aircraft have greater certainty and greater ability to capture the efficiency savings. 

This scenario was evaluated for two time frames; we used input schedules and data from the year 2009 to 

represent a current time frame, and we assumed inputs projected for the year 2020 to represent a future time frame. 

The year 2020 was selected in order to avoid underestimating BEBS benefits. Pair-wise arrival spacing benefits will 

be maximized once the year 2020 has been reached, since that is the deadline for the FAA’s mandate that all aircraft 

to be equipped with ADS-B Out. Pair-wise arrival spacing benefits would be reduced in a more near-term future 

year, because of mixed equipage in the airspace. For each time frame, we conducted a cost-benefit analysis to 

estimate technology equipage costs for PTM-D enabling technology (ADS-B In and CDTI), specific to aircraft type, 

and monetized our benefit assumptions to the airline if they equipped. The benefit estimates were derived from a 

series of Monte Carlo simulations of varying equipage levels against typical traffic mixes in a previously developed 

LMI airport capacity model.
6
 The resulting equipage-to-benefit relationships were formulated into Eq. (2) and (3) to 

calculate reduced delay benefits of equipage, reflecting the current and future time frames respectively. 

                           (                  )                            
   (2) 

                           (                  )                           
  (3) 

The expected benefit from reduced delays are monetized, specific to the airline realizing the gain, providing a 

seed benefit value to emulate the airline equipage decision. Airline agents would balance their operational costs, 

profits from ticket sales, competition, and estimated capital expense to equip aircraft with the necessary technology 

to make decisions about adopting the new technology and participating in the BEBS policy. Additional patterns 

related to the equipage rates of airlines also may need to be considered, such as market share or frequency of 

service. 

None of the airline agents chose to invest in the NextGen technology under the BEBS incentive in the current 

time frame analysis; equipage costs far outweigh the average benefit to the equipping aircraft. A subset of aircraft in 

an airline subfleet may experience significant benefit from the equipment, but the airline agent equipage decision (in 

accordance with typical real-world practice) assumes that airlines will either equip an entire subfleet or will not 

equip any aircraft of that type.
6
 In the future time frame analysis, 9 of 44 airline agents choose to equip their aircraft. 

The primary impetus for this change in decision is that equipage costs decrease dramatically in the future scenario, 

to around one-fifth or one-sixth the cost of equipage in the current scenario. Also, the future scenario assumes a fuel 

price increase of 1.67 times the current airline fuel prices, which also had some impact.
6
 

 

2. TMI Exemption Incentive Scenario 

We defined a TMI exemption incentive scenario that may be enabled through various different concepts; one 

such example is the Autonomous Flight Rules (AFR)
12

 concept. Automated separation has the potential to mitigate 

some flight constraints that have been established to ensure safety in a human-centered system for traffic separation. 

The regimentation of traffic flows and limits on the number of aircraft in a sector would conceptually not be 

necessary in an automated separation system. NASA has pursued automation of the separation process at both the 

Langley and Ames Research Centers. The airborne solution studied at the Langley Research Center evolved into 

what is now called AFR. 

AFR, a concept to enable self-separation, takes advantage of the surveillance available in aircraft resulting from 

the ADS-B mandate, and places the automated separation responsibility on the aircraft. The benefit of distributed 

separation workload accrues to air traffic control (ATC). Because the equipment needed to enable distributed self-

separation through AFR needs to be purchased by aircraft owners, and because that equipment is expensive, it has 

been proposed that AFR-equipped aircraft be exempted from MIT restrictions, be given preferential ground stop 
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release, or both. The TMI exemption is an explicit-reward form of the BEBS concept, with the benefits being given 

to equipped aircraft as a reward. The benefit takes the form of reduction of variability in flight schedule delays. 

Under AFR, the aircraft are self-separating and thus the air traffic controller would not need to manually separate 

them, reducing the workload for the sector controller and increasing the sector’s capacity by the number of these 

self-separating aircraft. The self-separating aircraft would be relieved of having to follow MIT restrictions leading 

up to and through the sector. 

Our modeling of a hypothetical TMI exemption incentive is based on what we believe the effect of the 

technology would be on flights for this particular terminal efficiency scenario. It does not represent detailed 

modeling of interactions of individual flights and controller workload to independently discover the impacts. 

From sampling of more than 300,000 metering records in the TMI database at the system command center, we 

know that arrival times of traffic-metered flights are highly variable.
13

 At least 55 percent of metered flights arrive 

late from their metered required time of arrival (RTA); the mean arrival is 4.6 minutes late. Forty-nine percent of 

flights arrive more than 15 minutes late or more than 5 minutes early. This means that in addition to the delays 

imposed by the traffic system, most aircraft experience additional delays, likely caused by coordination difficulty 

related to reentering coordinated traffic flow. 

En route MIT restrictions imposed an average of 1 minute of delay per flight per year, in an FAA study of 

national MIT restrictions.
14

 Airport ground stops are less frequent and affect less than 10 percent of traffic. 

Taken together, MIT exemption and ground stop exemption—which occur randomly and with high variability 

throughout the year—affect all flights by an amount we have estimated as 2 minutes per aircraft day. We monetized 

the value of those minutes to create the benefit of TMI exemptions for the equipage decision. 

We analyzed this scenario for two time frames, one representing the current system and the other representing 

the future system. We base the current system on our reference year of 2009, and used the associated inputs for that 

year, including flight schedule, TSAM estimates, subfleet operational costs, and fuel price. We define the future 

system as representing 2020, using updated model inputs for the future time frame. We assume an explicit 2-minute 

delay savings per day under the TMI exemption. The airlines compared the aggregated and monetized savings due 

to subfleet equipage against the equipage costs in making an equipage decision.  

In the current time frame analysis, only one airline equipped any of its subfleets.
6
 The future time frame analysis 

equipment costs are approximately halved, while fuel price increases by about 67 percent, to about $1.11 on 

average. These two factors are enough to convince the airlines that the equipage required for the TMI exemption is 

worth the investment; approximately 90 percent of the system-wide fleet makes a decision to equip.
6
 

 

3. Wind-optimal Routing Incentive Scenario 

For this scenario, we considered cost savings to airlines and subsequent decisions if wind-optimal routes were 

available to suitably equipped aircraft. Our scenario assumptions were based on a previous study for NASA, in 

which LMI investigated the benefits and costs of an optimal flight routing utility that accounts for wind speed and 

convective weather.
15

 Using flight records from ETMS, we re-planned wind-assisted great circle paths of each flight 

through four dimensions (latitude, longitude, altitude, and time) above flight level 240. This flight level restriction 

was chosen to avoid over-selecting wind routes for potential benefits. We chose a clear weather day in the NAS, 

October 10, 2010, as our subject day, as it was free of significant other delays and weather activity in the NAS. 

The utility looked for the most efficient route across a Center, flight by flight, and requested flight amendments 

when the optimal routing would save an aircraft 1 minute of flight or more. We also examined the extent to which 

aircraft routes could be expected to “chase” the wind. We observed that jets would generally have to fly far off their 

intended flight path to pick up a large tailwind; generally, diversions of more than 50 miles did not result in net 

savings, demonstrating that it did not pay to tactically chase wind. Note that several flight routes exist between any 

city pair, and airlines typically request a near-optimal flight plan that takes into account the expected wind forecast 

for the day. Accordingly, we observed no changes to flight routes to account for large wind differentials, because the 

airlines had already captured any wind-related benefits. 

LMI also studied the maximum benefit obtainable from direct routing, then applied wind and convective weather 

in an optimization program to route aircraft to incorporate adjustments for wind and to avoid convective weather. 

The output of this study was a set of flight plans. We artificially created “pseudo-TZs” along each flight’s trajectory 

across Centers to provide latitude/longitude coordinates for modeling sector pierces. Those flight plans were 

available to run in ACES. 

For this scenario, we assumed that delay savings are applied to all aircraft in the system and at all airports. 

However, the benefits are largely a function of the conditions of a particular day across the airspace, which we 

account for with a benefit probability factor explained in our section on benefit assumptions. We assume a mean 

benefit of 6 minutes of delay time savings, estimated for all equipped flights on approximately 95 percent of all 
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days. This estimate comprises 2 minutes for self-separation—based on our estimates from the BEBS scenario—plus 

4 minutes for wind. Each airline used the mean benefit estimate to evaluate each of their subfleets, one at a time 

Similar to the BEBS and TMI exemption scenarios, we evaluated the scenario for two time frames, and assumed 

the enabling technology for using the optimal routes was ADS-B In and CDTI. A cost-benefit analysis was 

conducted for the wind-optimal scenario to allow airline agents to compare projected implementation costs against 

monetized benefits. We found that most subfleets would equip in both the current and future timeframes.
6
 

Our modeling of wind-optimal routing is indirect; we very approximately model what we believe the effect of 

the technology would be on all flights taking advantage of the wind-optimal routing incentive. Ideally this modeling 

would be more direct, and explicitly represent detailed interactions of aircraft with wind-optimal routing equipment 

to independently discover the impacts. We emphasize that this analysis is an order of magnitude estimate of all the 

effects possible under wind-optimal routing, and that our benefit estimates are not at the level of detail needed to 

properly evaluate the merits of a full wind-optimal routing program. 

In the current time frame scenario, nearly all airlines chose to equip all subfleets with technologies that allow 

them to make use of wind-optimal routing. All of the subfleets that were not chosen to be equipped were within 6 

months of meeting the airline’s maximum payback period of 2 years. In the future time frame scenario, all airlines 

equipped all subfleets. Although the wind-optimal route incentive generated significant savings in the current time 

frame scenario, the future scenario maintains approximately the same average benefit, while the installation costs are 

halved.
6
 

V. Results Summary 

The purpose of the four initial analyses was to generate preliminary model results, and provide insight into 

airline behavior in response to several hypothetical policy implementations. The studies were also intended to act as 

a robust V&V exercise for AIRLINE-EVOS. We believe the studies provided both insight into airline behavior in 

the face of the hypothetical policies, as well as a challenging set of questions with which to test the model. The 

studies revealed areas that could benefit from improved data or additional model sophistication. 

The fuel cost change scenarios found that model results largely followed expected trends, with airfares 

increasing as fuel costs increased. The results also helped support the theory that airlines whose fuel costs make up a 

larger proportion of their cost structure in comparison to nonfuel related costs—typically low-cost carriers—are 

affected more than airlines with a smaller proportion of fuel costs. We observed this trend through the percentage of 

passengers served, comparing it against the airline business model for all the fuel-cost multiplier scenarios. As fuel 

costs went higher, demand shifted to the full-service carriers—legacy carriers who primarily operate on a hub and 

spoke network—whose fuel costs are typically a relatively smaller component in their cost structure. 

We also found that breakdown of results by haul-length were as expected, with long-haul routes showing greater 

sensitivity to fuel cost increases compared to short-haul routes. We intend to investigate these findings in more 

detail in our continuing research, in addition to exploring other ways of interpreting the influences of changes in fuel 

costs. 

The equipage scenario studies found different results for the three potential NextGen equipage incentives: BEBS 

(using one of the benefits mechanisms expected with an implementation of PTM-D as the incentive), TMI 

exemptions (using sector count and ground stop exemptions afforded through concepts such as AFR for the 

incentive), and wind-optimal routing using assumed equipage benefits. Fig. 3 shows results for the current scenario 

(based in the year 2009), and Fig. 4 shows results for the future scenario (based in the year 2020). The results are 

shown as the number of subfleets that achieve ROI for their specific airline, binned by the number of months 

required to reach ROI. A comparison of the figures shows that the time frame scenario had a big impact upon the 

effectiveness of an incentive. Airlines chose to equip much more often in the future scenario, in which equipage 

costs were less, but fuel costs were higher. Both factors increased the profitability of equipage incentives that reduce 

total in-air flight time and, therefore, reduce operational costs. 

Wind-optimal routing was by far the most successful incentive, with nearly all airlines equipping their entire 

fleet in the current scenario and all of them equipping their fleet in the future scenario. Equipage for the BEBS and 

TMI exemption incentives cost the same or less than the wind-optimal routing equipment, but the airlines’ cost-

benefit assessment deemed that the lower associated benefits for those other incentives did not cover the cost of 

equipage.  

The TMI exemption incentive was second most effective in incentivizing airlines to equip their aircraft, although 

apart from a single airline, none chose to equip in the current time frame scenario. However, in the future time frame 

scenarios, the majority of airlines chose to equip their aircraft to take advantage of the TMI exemption incentive. 
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Although the TMI exemption 

was effective at incentivizing 

equipage in the future scenario, 

many subfleets did not result in 

benefits that meet the maximum 

payback period of 2 years, 

although it was close. In other 

words, the incentive did not result 

in the equipage of the entire 

system, but the incentive remained 

a strong economic force, pushing 

those unequipped subfleets toward 

equipage. For example, although 

the airlines might have been 

unwilling to accept only a partial 

subsidy for equipping those fleets 

without the incentive, the TMI 

incentive might cover the 

difference between the subsidy 

and the installation cost for many 

of those un-equipped subfleets. 

Likewise, anything that is 

expected to increase operational 

costs, such as increases to fuel 

price, is more likely to bring about 

equipage with that incentive in 

place. 

Airline agents may have 

chosen to not equip under BEBS 

because they are not capable of 

comprehensively evaluating the 

resulting benefit. The magnitude 

of the hypothetical BEBS benefit 

that was implemented depended 

on the frequency with which 

compatibly equipped aircraft 

encountered each other at certain 

congested airports. More equipped 

aircraft at those airports means 

more benefits, regardless of which 

airline operates those aircraft. 

Thus, airlines must be able to take 

some estimation of their 

competitors’ future actions into account to correctly estimate the percentage of equipped aircraft at the congested 

airports and, therefore, the benefit of the incentive. It is an inherently social task. Currently, the airline agents each 

assume that the world is in a steady state and make decisions in isolation; they are incapable of assessing their 

competitors. 

VI. Conclusions 

The initial studies accomplished their original goals of providing insight, assisting in validating AIRLINE-

EVOS, and providing a test environment for continuing to mature the model. They’ve also demonstrated the unique 

potential of the AIRLINE-EVOS model for providing perspective on airline behavior, and it’s affects upon the 

system. The studies have provoked a number of thoughts and ideas about the assessment and implementation of 

incentives to encourage improved system performance through NextGen equipment. Some of these ideas may point 

to future improvements to the model or to new research questions. 

 
Figure 3. Technology Equipage Results for Current Scenario (2009). 

 

 

 
Figure 4. Technology Equipage Results for Future Scenario (2020) 
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A. Significant Savings Through NextGen Incentives 

The projected monetized benefits that the NextGen equipage provides through the incentives of BEBS, TMI 

exemptions, and wind-optimal routing are potentially important. Provided that the benefits assessments of the 

incentives in the initial studies are reasonably accurate, enabling modifications to aviation procedures to achieve 

improvements like wind-optimal routes could have a significant effect upon the air transportation network in terms 

of saving money and resources and of increasing service to passengers. Theoretically, the delay reductions would 

decrease operating costs, which should enable airlines to increase profits by serving more passengers (whereas 

increases to costs generally force business strategies toward fewer enplanements at higher revenue per passenger). 

Likewise, the total flight-time reductions to the air transportation network could allow the addition of new flights to 

the schedule, further encouraging better service to passengers through additional enplanements. At some point, 

AIRLINE-EVOS could be used to verify this hypothesis. 

B. Simultaneous Implementation of Multiple Incentives 

In multiple scenarios, many of the subfleets that were not equipped by the airlines missed the return on 

investment cutoff by a small amount. One way to encourage airlines to equip those subfleets might be through 

simultaneous implementation of two or more incentives, rather than through subsidies. The advantage of such an 

approach is that in some cases, the installation cost of the combined equipment sets is much less than the sum of the 

installation costs of individual equipment sets, such as when combining incentives for our example implementations 

of BEBS and TMI exemption incentives. However, the benefit of simultaneous implementation of two or more 

incentives may not be greater than the benefit of the incentives implemented individually, since travel times can 

never be less than the unimpeded times for those routes. Nevertheless, a ROI could occur earlier using combined 

incentives and technologies given lower combined implementation costs and increased benefits over a single 

incentive, bridging the investment gap for those technologies. 

C. Implications of Current vs. Future Scenarios   

The difference in subfleet equipage frequencies between the current and future time frame scenarios is 

significant in the initial studies. In the studies, most airlines went from eschewing the new technologies in the 

current scenario, to almost universally adopting them in the future scenario. This has two key implications: 

 

 In some cases, inaction may be more effective than a subsidy, particularly because the development and 

execution of any plan of financial subsidy will take time by itself. 

 For some incentives, the airlines almost universally change their decision from not equipping in the current 

scenario, to equipping in the future scenario. In the real world, understanding the inevitability of future 

decisions affects how decisions are made in the present. It would be useful, therefore, to model how airline 

decisions would be affected by considering future responses to those same decisions. 

D. Significant Savings Through NextGen Incentives   

Some technologies or policies will inhibit NextGen equipage adoption. For example, policies enforcing higher 

standards for fuel consumption would reduce the concrete benefits of technologies and incentives that reduce flight 

time. Ultimately, the effect of incentives to encourage equipage, such as the three incentives studied in this research, 

would decrease. It may be worthwhile to conduct a mini-study to gauge the effects of competing policies and 

incentives upon each other and to investigate ways of implementing competing initiatives that take airline behavior 

into account to maximize the improvement of system behavior.  

E. Verification of the ATS-EVOS Framework 

These initial studies did not require runs through ACES, and so we did not make use of the full ATS-EVOS 

model suite for our analyses. However, using our integration script we incorporated TSAM data in an AIRLINE-

EVOS test run, and performed an automated loop in which an ACES runs took AIRLINE-EVOS outputs as an input. 

We plan to continue to develop this framework in our ongoing research and increasingly leverage this feedback loop 

to influence subsequent iterations through AIRLINE-EVOS. 
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