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This paper examines a case observed during the 1990 Idaho Falls Test program, in which 

a wake vortex having an unusually long lifetime was observed while in ground effect. A 

numerical simulation is performed with a Large Eddy Simulation model to understand the 

response of the environment in affecting this event. In the simulation, it was found that one 

of the vortices decayed quickly, with the remaining vortex persisting beyond the time-bound 

of typical vortex lifetimes. This unusual behavior was found to be related to the first and 

second vertical derivatives of the ambient crosswind. 

Nomenclature 

bo = initial vortex separation ( = B/4 ) 

B = wingspan of generating aircraft 

IGE = in ground effect (z < B) 

OGE = out of ground effect (vortex is away from any influence of ground) 

rc =  radius of peak tangential velocity for initial vortex 

t = time coordinate 

T* = nondimensional time ( = t Vo / bo ) 

uc = ambient crosswind 

Vo = initial vortex pair descent velocity ( = 0 / (2  bo) ) 

x = horizontal coordinate in direction of flight path 

y = horizontal coordinate orthogonal to direction of flight path 

z = altitude, vertical coordinate 

zi = altitude of flight path, same as initial height of wake vortex 

ZP = altitude of port vortex 

ZS = altitude of starboard vortex 

Z* =  nondimensional height ( = z/bo ) 

∂uc/∂z = vertical shear of the environmental crosswind 

∂
2
uc/∂z

2
 = gradient of the crosswind shear 

 = vortex circulation 

0 = initial vortex circulation 

* = nondimensional vortex circulation ( =  / 0 ) 

ζc = vorticity of crosswind ( = - ∂uc/∂z) 

 

I. Introduction 

IRCRAFT wake vortices can be a threat to trailing aircraft during all phases of flight (e.g., approach, departure, 

cruise, etc.). However, current standards and guidelines ensure sufficient separation between aircraft pairs to 

minimize this risk. Current research has focused on changing separation standards to allow greater capacity gains in 

the National Airspace System, while maintaining the current levels of safety and comfort. Reported incidences of 

wake encounters indicate that they occur during all phases of flight, but the majority of reports are associated with 

approach operations within the terminal airspace.
1
 In this phase of flight it is particularly important to avoid 

encounters with wake turbulence, since aircraft are close to stall speed and have little time and airspace to recover 

from roll excursions or other unexpected accelerations. Wake encounters may be reported more frequently during 
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the final approach phase of flight because aircraft are operating along the same trajectory and wake vortices can 

rebound back into the flight corridor. 

 Decay rates of wake vortices are strongly enhanced following their maximum descent into ground effect.
2
 This 

occurs because frictional drag, acting within the vortex-induced boundary layer, generates enhanced levels of 

turbulence. The flux of drag-induced turbulence then overwhelms the magnitudes of turbulence normally found in 

the environment. Therefore, not surprisingly, vortex decay while in ground effect (IGE) seems less sensitive to the 

intensity of environmental turbulence and stratification.
3
 In the absence of environmental crosswind, Proctor et. al

2
 

has found that the conventional wake-vortex scaling rules seems to apply, and that normalized decay rates were 

insensitive to initial values of circulation, height, and vortex separation. Linear models of circulation decay based on 

ensembles of measured data do show a steeper rate of decay for IGE than for out of ground effect (OGE). As shown 

in Fig. 1, IGE wake decay rates, based on an exponential fit from Large Eddy Simulations (LES),
2
 are in line with 

measurement-driven linear models of FAA-Eurocontrol data
4
. Concerns arise though, how vertical shear of the 

crosswind may affect the robustness of these models. 

 
Figure 1. Circulation decay for a wake vortex in ground effect. Curve for exponential decay based on 

parametric numerical simulations with LES under conditions of calm mean winds.2 Linear fits based on 

FAA-EuroControl Lidar and Windline measurments.4 

 Effects from crosswind shear may occur in IGE as well as OGE, and add complexity to predicting wake vortices. 

It has been shown that wake-vortex transport and decay are affected by the 1
st
 and 2

nd
 vertical derivatives of the 

environmental crosswind.
5
 Complex and nonlinear gradients of windshear are common within the lowest elevations 

of the atmospheric boundary layer, owing to effects from surface drag and turbulence, as well as effects from 

surface heating and cooling.  

 The schematic in Fig. 2 illustrates how the tilt of a vortex pair is affected by the sign of the second derivative of 

the ambient crosswind (i.e., the vertical gradient of the crosswind shear). When the second derivative of the 

crosswind shear is negative, the clockwise-rotating port vortex (depicted by a plus sign) rises relative to the position 

of  the counter-clockwise rotating starboard vortex (depicted by minus sign). If both the crosswind and crosswind 

shear are decreasing with height, the vortex pair will decrease in lateral separation (Fig. 2A) since the tilt exposes 

the higher downstream vortex to weaker crosswind. If the crosswind is decreasing with height and the crosswind 

shear is increasing with height, as in Fig. 2D, the vortex pair will increase in lateral separation since the tilt exposes 

the higher upstream vortex to weaker crossflow. For typical boundary layer wind profiles, Fig. 2B is the more 
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common profile, and we expect the downstream vortex to remain elevated and drift with increasing separation from 

the upstream vortex, as has been commonly observed.
6
 

 
 

Figure 2. Schematic of crosswind shear effect on tilt of a wake vortex pair. Green curve represents vertical 

profile of crosswind (Uc). Wind distributions with a negative gradient of crosswind shear are shown in A) and 

B), while positive values are represented in C) and D). Wind distributions with negative values of wind shear 

(∂Uc/∂z) are represented in A) and C) while positive values in B) and D). Assuming a right-handed coordinate 

system directed along the aircraft path, the port vortex is represented by the red circle, and the starboard by 

the blue circle. 

 In addition to effects from the gradient of crosswind shear on vortex tilt, parametric studies assuming OGE 

conditions have shown that the shear of the crosswind determines whether the port or starboard vortex decays at a 

faster rate.
5
 Results from this study are summarized in Table 1, with Zs and Zp representing the altitudes of the 

starboard and port vortex, respectively. 

 

Table 1. Effect of crosswind shear on vortex pair.
5
 

Depiction in 

Figure 2 


2
uc/z

2
 uc/z Tilt Change in Lateral 

Separation (OGE) 

Longest Lived 

Vortex 

A < 0 < 0 Zs > Zp decreasing starboard 

B < 0 > 0 Zs > Zp increasing port 

C > 0 > 0 Zs < Zp decreasing port 

D > 0 < 0 Zs < Zp increasing starboard 

not shown = 0 ≠ 0 Zs = Zp constant same 

 

 Since the vorticity of the crosswind is simply, ζc = - ∂uc/∂z, it is obvious from Table 1 that the longest lived 

vortices have the same sign of vorticity as that of the crosswind shear. For example in the scenario depicted in Fig. 

2B, the port vortex tilts closest to the ground but the starboard vortex decays faster due to being immersed in 

vorticity that is countersign to its rotation. If the behavior depicted in Table 1 for OGE vortices holds during IGE, 

the scenario in Fig. 2B would result in the port (upstream) vortex descending deeper into ground effect, yet 

surviving longer than the starboard vortex. If the sign of the crosswinds were reversed (uc <0) without change in 

magnitude, then ∂uc/∂z <0, and ∂
2
uc/∂z

2
 > 0, and we would see the starboard (upstream) vortex descending deeper 

into ground effect and lasting the longest. The often used benchmark case, Idaho Falls B-757 Run 9, is a good 

example of this scenario, where the upstream vortex penetrated deepest into ground effect, yet lasted an unusually 

long time.
7,8,9,10

 

 Two examples of unusually long-lasting wakes from the 2012 FAA measurement campaign at JFK airport are 

shown in Figs. 3 and 4. Since the wake vortices from both the B-757 and the A-320 have nondimensional time units 

of ~20s, their wakes lasting longer that two minutes (i.e., T*>6) are unusual for IGE lifetimes (cf. Fig. 1). The 

environmental crosswind profiles for each of these cases is similar to that depicted in Fig. 2b, with both having 
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∂uc/∂z >0, and ∂
2
uc/∂z

2
 > 0. From Table 1 we would expect the port vortex to last longer and to descend to a lower 

altitude, as is confirmed from the measurements depicted in Figs. 3 and 4. 

 The observation of unequal vortex decay rates is not unusual during field measurement campaigns; and in some 

instances, the differential decay has led to the occurrence of solitary vortices that have prolonged lifetimes (e.g., 

Idaho Falls flight test
7,8

). A solitary vortex would occur if one of the members of a vortex pair were to decay at a 

faster rate, leaving the remaining vortex as the sole survivor. The previously mentioned B-757 Run-9 case from the 

1990 FAA-sponsored Idaho Falls tests is one example of this behavior, but other long-lived vortices have been 

observed as well. 

 In the Idaho Falls tests, B-727, B-757, and B-767 aircraft were flown at level flight upwind of a 200ft 

instrumented tower. Wake vortices were generated at ~70m altitude and quickly descended into ground effect while 

drifting through the tower. Each pass with each aircraft was given a run number, with the flights conducted for 

different aircraft configurations and for changing weather environments. Sensors for measuring wakes included 

anemometers mounted at 5ft increment on the 200ft tower, a Laser Doppler Velocimeter (LDV) Lidar, and a 

Monostatic Acoustic Vortex Sensing System.
7
 Soundings for environmental temperature and wind were obtained 

from the instrumented tower and a tethered balloon. The long-lived vortices in some of the runs have been attributed 

to the unusual environment of Idaho Falls. One particular long-lived case can be identified as B-767, Run 23. In this 

run, the upstream vortex was observed to last over 2 min and 40s, while the downstream vortex was not detected 

after 60s. Thus the upstream vortex appeared to outlast than the downstream vortex by almost a factor of three. Two-

dimensional simulations with the Terminal Areas Simulation System (TASS) have predicted a similar behavior for 

this event, including the early demise of the downstream vortex, but the reasons for the long-lived isolated vortex 

have yet to be identified.
8
 In the remainder of this paper we will address a three-dimensional numerical simulation 

using the Idaho Falls B-767, Run 23 environment, observed at 0833 MDT on 30 September 1990. We have chosen 

to initialize our study with parameters representative of a B-747 rather than a B-767, due to the availability of an 

initial turbulence field for this case. Although the B-747 has a larger wingspan and stronger initial circulation than 

the B-767, both are heavies and should react similarly to the Idaho Falls environment of Run 23. 

II. TASS Model 

 This study uses the Terminal Area Simulation System (TASS) which is a time-dependent LES model for 

simulating wake vortex and other aviation weather hazard phenomena.
8,11,12,13,14 

 The model has an initialization 

package that allows for the simulation of atmospheric wake vortices in the far-field, where environmental and 

ground surface interactions have important influences. The numerical model has: 1) a meteorological framework, 2) 

a realistic surface-stress formulation, 3) a subgrid turbulence-closure formulation with rotational damping of 

turbulence, and 4) a successful history in application to wake vortices.  

 Periodic boundary conditions are assumed for lateral boundaries, and the top boundary is selected to be 

impermeable and free slip. The bottom boundary is selected to represent a flat ground surface, with an impermeable 

nonslip velocity condition. Surface stress is modeled using Monin-Obukhov similarity theory, with ground stresses 

determined locally from the wind speed and thermal stratification. Details of the surface formulation are in Proctor and 

Han.
15

 

 The TASS model equations are discretized using quadratic-conservative fourth-order finite-differences in space 

for the calculation of momentum and pressure fields.
8
 A third-order upstream-biased Leonard scheme

16
 is used to 

calculate the transport of potential temperature and water vapor. A Monotone Upstream-centered Scheme for 

Conservation Laws (MUSCL)-type scheme after van Leer
17,18

 is used for the transport of water substance. The 

TASS computational mesh uses the Arakawa C-grid staggering
19

 for specifying velocities and thermodynamic 

quantities. The Klemp-Wilhelmson time-splitting scheme
20

 is used for computational efficiency in which the higher-

frequency terms are integrated by enforcing the CFL criteria to take into account sound wave propagation due to 

compressibility effects. The remaining terms are integrated using a larger time step that is appropriate for anelastic 

and incompressible flows. An Adams-Bashforth scheme is assumed for time differencing of momentum and 

pressure. Time steps are internally set and adjusted to meet numerical stability criteria. A sixth-order spatial filter is 

used to damp-out spurious oscillations in the velocity field that may arise due to the use of centered-differencing of 

momentum and pressure terms. Numerical tests have shown that the numerical formulation for the momentum and 

pressure equations in TASS is mass conservative and essentially free of numerical diffusion.
21

 

 Model domain parameters are listed in Table 2, and are chosen to give adequate resolution while maintaining a 

sufficiently large domain to minimize boundary influences. 
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Figure 3. Measurements with pulsed Lidar for a B-757-200 at JFK airport (08/24/2012, 4:20 UTC). Wake 

positions and circulation are derived from Lidar measurements. Lidar sensed ambient profiles of crosswind 

and eddy dissipation rate (EDR) also shown at the top right. Data from FAA Wake Turbulence Program. 

 

Figure 4. Measurements with pulsed Lidar for an A-320 at JFK airport (08/23/2012, 5:03 UTC). Wake 

positions and circulation are derived from Lidar measurements. Lidar sensed ambient profiles of crosswind 

and eddy dissipation rate (EDR) also shown at the top right. Data from FAA Wake Turbulence Program. 



 

American Institute of Aeronautics and Astronautics 
 

 

6 

III. Initial Conditions 

 The initial vortex system is representative of a post roll-up, wake-vortex velocity field and consists of a pair of 

counter-rotating vortices that have no initial variation in the axial direction. Solutions for image vortices positioned 

outside of the domain are applied to guarantee consistency with boundary conditions. Parameters for the wake vortex 

initiation are listed in Table 3. 

 
 Resolved scale turbulence with an intensity of 10

-5
 m

2
s

-3
 is generated prior to the injection of wake vortices. This 

intensity of turbulence is weak, but appropriate for the stable environment. The initial crosswinds and potential 

temperature profile were obtained from measurement near the time of Idaho Falls, Run 23, and represent the 

environment for this event (Fig. 5). Note that the magnitude of crosswind below the flight path (zi = 70m) is less than 

2 m/s (Fig. 5A), and that the crosswind shear (∂uc/∂z) and gradient of crosswind shear (∂
2
uc/∂z

2
) are both positive 

near the height of the flight path (Fig. 5B). From Table 1, we would expect the wake vortex pair to tilt upward 

toward the (upstream) port vortex, and that the port vortex should outlast the starboard vortex. The potential 

temperature profile in Fig. 5A shows the environment to be moderately stratified. An additional numerical 

simulation, described later, is initialized with a neutral lapse rate for temperature to determine what contribution the 

stable environment may have to the unusual behavior of the Idaho Falls Run 23 event. 

 

 
Figure 5. Enviornmental crosswind and potential temperature profile for Idaho Falls Run 23 case are 

depicted in (A). The crosswind shear and vertical gradient of the crosswind shear are shown in (B). 

IV. Results 

 Three simulations are performed with the three-dimensional TASS model. Most of the results focus on the first 

simulation which uses the sounding in Fig. 5 for initial conditions. The two additional simulations were conducted to 

help clarify the wake’s behavior in relation to the temperature and wind profiles. In one of the simulations, the 
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temperature is assumed to be adiabatic (constant potential temperature), and in the second, the mean crosswinds are 

assumed to be calm. 

 The vortex pair is initialized in the simulation at a height of 70m, which is near the elevation for the fly-by for 

the B-767 in the Idaho Falls Run 23. The positive vertical gradients of crosswind and crosswind shear (Fig. 5) 

affects the tilt of the vortex pair causing the port vortex (upstream) to tilt above the starboard vortex (downstream). 

From Fig. 6, we see that the port vortex descends at a slower rate and stays at a higher elevation than the starboard 

vortex. Specifically, the port vortex reaches a minimum height of 38m (Z* = 0.75) at 48s (T*=1.73), while the 

starboard vortex descends to a lower minimum height of 25m (Z*=0.50) at 43s (T*=1.55). Both vortices exhibit a 

single rebound, and then ascend through the remainder of their lifetime. The circulation of the starboard 

(downstream) vortex decays rapidly relative to the port (Fig. 7). The lifetime of the starboard vortex is about 2 

minutes, while the port vortex has a lifetime of over 4 minutes! Assuming a detection threshold of 100 m
2
s

-1
, the 

port vortex survives an additional 2min and 45s as an isolated vortex. Note that the circulation of the port vortex is 

over 400 m
2
s

-1 
at the time the starboard vortex dissipates to less than 75 m

2
s

-1
. 

 The values of circulation are re-plotted in nondimensional units in Fig. 8. Assuming a threshold for detection of 

Г* = 0.2 (~113m
2
s

-1
): the starboard vortex lifetime is T* = 2.9, while port vortex lifetime is T* = 8.8; thus, the 

duration of the port vortex is about three times that of the starboard. 

 Additional simulations were performed to verify that the long-lasting wake vortex behavior was indeed due to 

the crosswind shear. In the absence of crosswind shear, both vortices descend at the same rate, and have typical 

lifetimes for IGE vortices. In another experiment the crosswinds are retained, but the initial temperature profiles is 

changed to adiabatic. The circulation decay for this modified environment is included in Fig. 8. It shows that the 

neutral atmosphere affects the rate of decay (now even longer lasting), but still follows the same behavior as the 

original experiment. 

 

 
Figure 6. Altitude history for port and starbord vortices from numerical simulation using the sounding in 

Fig. 5 as input.  The port vortex is upstream from the starboard vortex. 
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Figure 7. Circulation history for port and starbord vortices from numerical simulation using the sounding in 

Fig. 5 as input. 

 
 

Figure 8 Nondimensional circulation vs nondimensional time. Numerical circulation histories for Run 23 

environment represented by solid line; histories from simulation with initial condition modified for adiabatic 

temperature profile shown as dashed line. Normalized 10m-average circulations from measurements of the B-

767 wake with LDV Lidar and tower are depicted as symbols. 
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 As expected the normalized values of circulation measurements obtained at Idaho Fall for a B-767 fly-by are 

close to the normalized circulation results from our numerical simulations assuming the wake of a B-747, (Fig. 8). 

Also as the model results suggest, the starboard vortex may have been detected only a limited time due to its rapid 

weakening. The LDV Lidar was able to track the downstream (starboard) vortex only until T* = 1.45. Shortly after 

this last detection by Lidar, the starboard vortex passed through the tower, where it had lost 39% of its strength (T* 

= 1.8). The apparently longer-lived upstream (port) vortex was tracked by Lidar through T* = 6.32, and showed very 

good agreement with the numerical simulation. 

 A comparison of Fig. 8 with the bounding curve representing many IGE measurements (as in Fig. 2) 

demonstrates that crosswinds can lead to abnormally long wake vortex lifetimes. It is one of the goals of this study 

to help better understand conditions that may lead to unusual events that could impact the safety of National 

Airspace Operations. 

 A visualization of the three-dimensional vortex isosurfaces (Fig. 9) illustrates the decay process for the isolated 

long-lived vortex event. Figure 9A shows the vortex pair at the time of minimum descent (T*=1.55), and just before 

the beginning of rapid decay of the starboard (downstream) vortex. Note that the vortex pair tilts upward into the 

upwind direction. Also apparent is the onset of turbulence, manifesting itself as tubes tangentially wrapping around 

the starboard vortex. By T* = 2.24 (Fig. 9B), the starboard vortex has become immersed in self-generated turbulence 

and has decayed to ~80% of its initial value. At the same time the port vortex has not yet undergone significant 

decay. By T* = 3.56 (Fig. 9C), the port vortex is undergoing a more rapid decay, and only a region of residual 

turbulence remains of the starboard vortex. 

 Summarizing the transport and decay process from this study, the positive gradient of crosswind shear causes the 

port vortex to descend slower and rebound at a slightly later time than the starboard vortex. Interaction of the 

starboard vortex with a crosswind having a positive vertical derivative causes the starboard vortex to rapidly decay. 

At some later point in time, the port vortex begins a more rapid decay. Both vortices ascend after rebound, with the 

port persisting a greater period of time. The early demise of starboard vortex, and slower decay of the port vortex, 

allows the port vortex to become an isolated long-lived vortex. 

V. Conclusion 

 A long-lasting wake vortex is simulated in ground effect using the TASS model. One of the members of the 

vortex pair decays at a much faster rate leaving a solitary vortex that persists almost three times longer than the 

shorter-lived member. The long lifetime, tilting of the wake pair, and differential decay rates can be attributed to the 

characteristics of the vertical profile for crosswinds. The second vertical derivative of crosswind affects the tilt of 

the vortex pair, while the first vertical derivative affects the decay rate. The results from numerical simulations of 

this event support the predictions in Table 1.  

 The effects from crosswind are important and should be included in wake vortex prediction models to account 

for uncertainties in vortex strength and position that may arise from crosswind shear. A technical challenge will be 

the development of sensors and sensor processing software that will detect crosswinds with sufficient resolution and 

accuracy to obtain the derivatives needed for predicting wake behavior. 
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A) 

 
B) 

 
C) 

 
Figure 9. Three dimensional visualization of simulated wake vortex pair in the Idaho Falls Run 23 

environment at three different times during its evolution: A) time when starboard vortex reaches minimum 

altitude and enhanced IGE decay begins, B) rapid decay phase for starboard vortex, C) demise of starboard 

vortex and enhanced decay of port vortex. Isosurfaces shown in the figures represent the eigenvalue of the 

velocity gradient tensor.
22
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