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Flying near the edge of the safe operating envelope is an inherently unsafe proposition.
Edge of the envelope here implies that small changes or disturbances in system state or
system dynamics can take the system out of the safe envelope in a short time and could re-
sult in loss-of-control events. This study evaluated approaches to predicting loss-of-control
safety margins as the aircraft gets closer to the edge of the safe operating envelope. The goal
of the approach is to provide the pilot aural, visual, and tactile cues focused on maintaining
the pilot’s control action within predicted loss-of-control boundaries. Our predictive archi-
tecture combines quantitative loss-of-control boundaries, an adaptive prediction method
to estimate in real-time Markov model parameters and associated stability margins, and
a real-time data-based predictive control margins estimation algorithm. The combined
architecture is applied to a nonlinear transport class aircraft. Evaluations of various feed-
back cues using both test and commercial pilots in the NASA Ames Vertical Motion-base
Simulator (VMS) were conducted in the summer of 2013. The paper presents results of
this evaluation focused on effectiveness of these approaches and the cues in preventing the
pilots from entering a loss-of-control event.

I. Introduction and Background

Loss-of-control (LoC) events are typically triggered when flying near the edge of the safe operating
envelope due to uncertainties and non-linear nature unknown to the pilot. Edge of the envelope here implies
that small changes or disturbances in system state or system dynamics can take the system out of the safe
envelope in a short time and could result in catastrophic events. Figure 1 illustrates the concept of edge of
the flight envelope as defined in this paper. Essentially at the edge, normal piloting actions (inputs) lead to
abnormal flight (outputs) due to lack of robustness, unmanaged uncertainties, failures, etc.

LoC events have been the number one contributing factor to fatal airline accidents, and have resulted in
more fatalities than any other factor during the past ten years (see for example Ref.1). Generally, LoC is
characterized in Ref.2 as motion that is:

• outside the normal operating flight envelopes

• not predictably altered by pilot control inputs

• characterized by nonlinear effects, such as kinematic/inertial coupling, disproportionately large re-
sponses to small state variable changes, or oscillatory/divergent behavior

• likely to result in high angular rates and displacements
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Figure 1. Conceptualization of flying on the edge.

Figure 2. Quantitative LoC Criteria and flight data from Ref.2

• characterized by the inability to maintain heading, altitude, and wings-level flight.

Historically, LoC has been determined to be a factor in an accident by qualitative judgment based upon
accident investigation experience. Quantitative LoC criteria (see Ref.2 for details) have been created to
define LoC events. These criteria are in the form of boundary boxes on combinations of system states and
control inputs, as seen in Figure 2. These boundaries are based on a set of historical LoC events. The authors
of Reference proposed that violation of any three of the quantitative LoC criteria constitutes LoC, violation
of any two boundaries is borderline LoC, and typical aggressive flight test maneuvers typically violate at
most one boundary. Our work evaluated in this paper combines multiple of the Quantitative LoC criteria
into a single composite predictive boundary that aids the pilot in avoiding LoC scenarios. Particularly, the
evaluation of the pilot feedback cues as detailed in Section D combines elements of the Pitch Attitude, Bank
Angle, Dynamic Pitch Attitude, Dynamic Roll Attitude, Percent Pitch Control, and Percent Lateral Control
criteria into a one two-dimensional display (discussed in Section D). Details of the algorithms evaluated can
be found in an earlier paper referenced in Ref.3

In the rest of the paper, we discuss the following: (1) the cueing architecture; (2) simulation evaluation
description; (3) VMS pilot-in-the-loop evaluation results and discussion; and (4) conclusions and recommen-
dations based on this study.
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Figure 3. The Predictive Architecture.

II. LoC Cueing Architecture

The LoC detection and prevention technology is a plug-in type architecture that can work parallel to
the on-board computing devices without interfering with the flight control system, the schematics of which
is shown in Figure 3. The black boxes and signals form the baseline aircraft control architecture, and are
unmodified for this work. The baseline flight control system represents the manufacturer’s original design
that meets all of the stability and performance requirements as mandated by the certification criteria. The
predictive architecture includes the red boxes, which are the prediction model, the adaptive law, the control
deficiency/stability margin estimates, the data based predictive control law (DBPC), the LoC boundary
estimates, and the pilot aid. This architecture uses data available from the real time measurements, including
pilot command r(t), aircraft control signal u(t), and available sensed aircraft state x(t). The prediction model
along with the adaptive law use the available data to produce estimated aircraft dynamics in the form of
linear time varying system and the estimate of the control deficiency. The DBPC algorithm utilizes the
pilot’s inputs, aircraft state time histories recorded over a time window, and the estimated dynamics to
produce the pilot’s maneuverability margins in the form of two dimensional visual cue. The magnitude of
the control deficiency estimate (CDE) is used to trigger the display of the box to the pilot, thus indicating
the safe operational region in both longitudinal and lateral directions. In addition, there is a force feedback
mechanism associated with the bounding box that can be applied to the pilot’s stick to increase the stick
resistance as it moves toward the box boundary. For more details of this aspect of the study, please see
Reference.4 For more details of the LOC Cueing architecture, including the theoretical analysis, please see
References.3,5–7

III. Simulation Evaluation Description

A. Transport Class Aircraft Model (TCM)

For this simulation study, a generic, non-proprietary, twin-jet, under-the-wing, transport class aircraft model
(TCM) was used, which was developed at NASA Langley Research Center (LaRC).8 It is based on a 5.5%
sub-scaled model of a twin-jet generic transport aircraft (GTM) developed at LaRC to collect wind tunnel
aerodynamic data (see Refs.9,10 for details).

These data were later modified to include potentially extreme attitudes (the angle of attack ranging
from −5 to 85 degrees, and the sideslip angle ranging from −45 to 45 degrees) to address transport aircraft
safety issues such as loss-of-control due to inadvertent stalls, environmental disturbances, or aircraft system
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failures. The modifications also included appropriate scaling of the GTM dimensions to produce TCM values
for wing span and surface area, wing chord length, CG location, and engine location. The TCM weight and
moments of inertia were selected to be representative of a mid-weight, twin-jet transport aircraft. In addition,
Reynolds number adjustments to the data were made to account for the air flow differences between the
GTM and TCM.8

The engine model used for the TCM simulation was developed at Glenn Research Center (GRC) and is
representative of a turbofan jet engine with a maximum sea-level thrust of approximately 40,000 lbs. It is
modeled as a first-order system of the engine fan speed with a time constant depending on the altitude. It
also includes time delays that vary as a function of fan speed, altitude, Mach number, and throttle command,
and is subject to a variable rate limit.

The TCM surface actuator models representative of hydraulic actuators, which have response times and
non-linear characteristics that are typical for full-scale transport aircraft, such as variable rate limiting and
variable position blow-down limits.

The original TCM model was equipped with an auto-throttle control block, and a nonlinear dynamic
inversion based proportional-integral attitude-hold flight control that was developed in-house for this simu-
lation study.

The TCM damage models were approximated using a modified vortex-lattice code developed at the
Ames Research Center.11 Detailed geometric models of the aircraft were generated for various damage
configurations, including losses of portions of the wing, horizontal tail, and vertical tail.12 These geometric
models were then used to generate estimates of the aircraft aerodynamic coefficients, stability derivatives
and inertia data for the various damage models.

B. VMS Facility

The Vertical Motion Simulator (VMS) is the ideal facility to simulate LoC scenarios and to test the cueing
technology’s effectiveness because of the VMS’s large motion envelope. The VMS motion system, shown in
Figure 4, is an uncoupled, six-degree-of-freedom motion simulator. It is located in, and partially supported
by, a specially constructed 120 ft tower.

The VMS is the ideal facility to simulate LoC scenarios and to test the cueing technology’s effectiveness
because of the VMS’s large motion envelope. The VMS motion system, shown in Figure 4, is an uncoupled,
six-degree-of-freedom motion simulator. The VMS system motion capabilities are provided in Figure 5.
Included in the table are two sets of limits: system limits that represent the absolute maximum levels of
attainable under controlled conditions; and operational limits that represent attainable levels for normal
piloted operations.

The cab, shown in Figure 6, serves as the aircraft cockpit. The evaluation pilot occupied the right seat,
with an optional test engineer in the left. A computer image generation system creates the out-the-window
visual scene for the six-window collimated display with the head-up display superimposed on the center
window. Additional aircraft information was provided on three head-down displays at both pilot stations.

C. LoC Scenarios

We consider two failure scenarios leading to TCM loss-of-control. First is the abrupt change in stability and
control derivatives as the aircraft flies at 1500 ft altitude with calibrated airspeed of 175 kts. This change
was generated by the 25% loss of left wing tip and 100% loss of left aileron effectiveness. The failure was
randomly introduced during a 30 sec period starting after a minute of flight with the nominal TCM. Neither
the failure parameters nor the failure time was available to the TCM flight control system. Second failure
scenario is the gradual change of the aerodynamics of TCM over a 10 sec time period starting at 80 sec flight
of the nominal TCM. This change mimics asymmetric wing icing, when one of the wings has an excess drag
and reduced lift, which also create additional yawing and rolling moments respectively. The resulting model
has reduced stability margins in pitch and roll axes. In addition, pitch-yaw coupling effect is generated,
when the aircraft is banked to the affected wing.

D. Cueing Technologies

Aural, visual and tactile cues were given to the pilot. The aural cue was an alert triggered once per test run by
the control deficiency estimate (CDE) crossing a predetermined threshold (see Figure 7). Once the alert was
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Figure 4. VMS facility.

triggered, it sounded continuously until canceled by the pilot. The visual cue was a dynamic stick position
indicator and a dynamic loss-of-control boundary, which were overlaid on the heads-up display (HUD) (see
Figure 8). The boundary was calculated by the data-based predictive control margins estimation algorithm.
For this experiment, color was used to distinguish the loss-of-control visual cues from the baseline HUD,
however further work is needed to determine appropriate symbols and placement for cueing with mono-color
HUD and cockpit displays. The tactile cue was a force applied through the flight controls. The high-
fidelity flight controls are heavily modified and optimized McFadden hydraulic force-loader systems, and a
custom digital-control interface allows for comprehensive adjustment of the controller’s static and dynamic
characteristics. The tactile cue was calculated by the STI force-cueing algorithm (see Ref.4 for details), and
applied as an additive force, while leaving the baseline force curves unmodified.
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Degree 
of 

Freedom 

Displacement Velocity Acceleration 
System 
Limits 

Operational 
Limits 

System 
Limits 

Operational 
Limits 

System 
Limits 

Operational 
Limits 

Longitudinal ± 4 ft ± 4 ft ± 5 ft/sec ± 4 ft/sec ± 16 ft/sec2 ± 10 ft/sec2 
Lateral ± 20 ft ± 15 ft ± 8 ft/sec ± 8 ft/sec ± 13 ft/sec2 ± 13 ft/sec2 
Vertical ± 30 ft ± 22 ft ± 16 ft/sec ± 15 ft/sec ± 22 ft/sec2 ± 22 ft/sec2 
Roll ± 0.31 rad ± 0.24 rad ± 0.9 rad/sec ± 0.7 rad/sec ± 4 rad/sec2 ± 2 rad/sec2 
Pitch ± 0.31 rad ± 0.24 rad ± 0.9 rad/sec ± 0.7 rad/sec ± 4 rad/sec2 ± 2 rad/sec2 
Yaw ± 0.42 rad ± 0.24 rad ±0.9 rad/sec ± 0.8 rad/sec ± 4 rad/sec2 ± 2 rad/sec2 �

Figure 5. Table of VMS Motion System Performance Limits.

Figure 6. VMS Cab.

E. Simulation Tasks

The tasks for this study were based on standard approaches to SFO, which were slightly different for the
two failure scenarios. For the first LoC scenario, the task was a left hand approach pattern beginning at
1500 ft with a heading of 55 deg and a velocity of 175kts. The approach was directed by a prerecorded
air traffic controller’s audio heading command, the details of which are illustrated in Figure 9. For the
second scenario the task was a right hand approach pattern with an initial heading of 145 deg or a left hand
approach pattern with an initial heading of 35 deg both at the altitude of 5000 ft and velocity of 200 kts,
depending on which wing has been affected by the simulated icing condition. In both cases the approach was
directed by the prerecorded heading command. The right pattern with the detailed heading commands are
illustrated in Figure 10 with the left pattern being the mirror image of it. For both tasks the voice command
was synchronized with the task at hand.
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Figure 7. Aural cue.

Figure 8. Visual cue.

F. Experimental Procedure

Pilots were presented with the technologies in five combinations: no cues, aural cue only, aural cue with
visual cue, aural cue with visual and tactile cue together, and aural cue with tactile cue. The tactile and
visual cues were never presented to the pilot without the aural cue.

The tasks and failures were presented to the pilot in a pseudo-random order, while making sure that the
pilot has seen each combination of task, failure and technology at least twice. The tasks were further grouped
by technology combination so that all scenarios for a given technology combination were given together, after
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Figure 9. Simulation task for failure 1.
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Figure 10. Simulation task for failure 2.

which the pilot was asked to fill out a questionnaire and provide comments. The technology combinations
were also presented to the pilots in order of increasing complexity, beginning with no cues, followed by aural
cue only, aural cue with visual cue, aural cue with visual and tactile cue together, and aural cue with tactile
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cue, in that order. This was done to decrease the learning curve for the more complex technologies, as well
as to help the pilot correctly interpret the tactile cue.

Each pilot was in the cockpit for 1 to 1.5 hours at a time, then out of the cockpit for the same amount
of time while a second pilot was rotated in for testing. The use of two pilots allowed increased use of the
VMS without overburdening the pilot.

G. Collection of objective and subjective Data

Both objective and subjective data were gathered during and between runs. Objective data were collected
digitally and stored on a hard drive for non-volatile storage. At the beginning of each run in the form of
all setup parameters for the cueing technologies and aircraft model, as well as initial aircraft states and
trim values. During the runs, all model and cueing technology outputs were collected at 100 hz and screen
captures were made of the in-cockpit attitude indicator and the out-the-window view. Subjective data was
collected during the runs via video and audio recording of the pilot inside the cockpit during flight. After
each set of runs, the pilots were asked to fill out a questionnaire and provide any additional comments, and
the audio and video recording were continued to capture any verbal comments. Finally, after all tests were
complete, each pilot was debriefed for overall comments and feedback.

IV. Evaluation Results and Discussion

A. Subjective Evaluation Summary

For the subjective evaluation, each pilot was asked to respond to a questionnaire with enough room for extra
comments. The questionnaires for the aural and visual cues are presented in Figures 11 and 12.

Figure 11. Pilot Feedback Questionnaire for the warning tone aural cue.

The comments received were very positive. Some of these are:

• ”Once I was accustomed to the box it helped significantly.”

• ”Excellent tool to know the parameters ?”

• ”As an a/c damage cue, it is very helpful.”

• ”I was mesmerized by the box and I dropped the other parts of the instrument check.”

• ”The bounding box significantly reduces the training curve. ”
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Figure 12. Pilot Feedback Questionnaire for the bounding box visual cue.

Overall, the pilots perceived the warning tone alone not to be very useful. The ratings for the bounding
box visual cue were overwhelmingly positive as shown in Table 1.

Table 1. Pilot Scoring: 0 (Strongly Disagree) - 4 (Strongly Agree)

Pilot A B C D E F G H J

Visual 3 4 4 3 3 4 4 4 4

B. Objective Evaluation

1. Quantitative Validation of Aural Cue Algorithm

One of the objectives of this study was the validation of the detection capabilities of CDE. For this purpose
we analyze the test results with respect to three criteria:

1) False alarm - when the magnitude of CDE exceeds the preset threshold for the nominal aircraft.
There were a total of 31 runs with the nominal aircraft. CDE was computed as a three dimensional

signal representing the deficiency in aileron, elevator and rudder deflection commands to the corresponding
actuators in degrees. Its magnitude was recorded and compared to the threshold of 1.5 deg for each of
these runs. The audio warning signal was associated with this threshold. In 25 cases, CDE magnitude was
below the threshold, and no warning was triggered, indicating that the aircraft is functioning as it supposed
to. In 6 cases, there was a false alarm, that is the audio warning went off, implying that CDE magnitude
was exceeding the threshold. The analysis of the pilot’s input and the aircraft’s state shows that in all
these cases the aircraft was at an unusual bank angle exceeding the normal envelope, or the pilot’s lateral
input rate was too high for the actuator’s bandwidth. The representative time histories of CDE magnitude,
bank angle, roll rate and the pilot’s lateral stick command are displayed in Figures 13 and 14. It can be
observed from the Figure 13 that the peak value of CDE at time 304 sec corresponds to the bank angle’s
peak value of 51 deg, which exceeds the nominal bank angle envelop of 45 deg. On the other hand, Figure 14
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Figure 13. Control deficiency estimate, bank angle, roll rate and pilot’s lateral stick command time histories
in the case of false alarm associated with the large bank angle.

shows that the lateral stick’s high rate at 62 sec generates the large value for CDE, thus triggering the alarm.

2) Missed alarm - when the magnitude of CDE stays below the preset threshold in the failure case.
There were total of 145 runs for the first failure scenario, and in all cases CDE exceeded the preset

threshold, thus indicating that the aircraft is off nominal.
For the second failure scenario, there were a total of 175 runs. In all but two cases, the aircraft had

crashed before the failure were introduced, CDE magnitude bound was higher than the threshold thus send-
ing a right signal to the audio warning console.

3) Failure detection time lag - the difference between the audio alarm start time and failure start time.
We separately analyze the detection time for the first and second failure scenarios due to differences in

the way they are introduced.
In the case of the first failure scenario, when the start time was randomized over a 30 sec window, CDE

almost immediately jumped over the threshold in all 145 runs. The average detection lag time was 0.3 sec
withe variance of 0.009 sec. The distribution of the time lag vs run number index is presented in Figure 15.
This implies that the prediction algorithm was promptly triggered in the first failure case.

In the case of second failure scenario, the dynamics of the aircraft was changing gradually over a 10 sec
time window, which causes CDE magnitude to change gradually from zero. Therefore the resulting detection
time is larger than in the first case and averages to about 8 sec with the variance of about 1.5 sec. The
distribution of the detection time lag is displayed in Figure 16. It can also be observed that for almost all
runs the failure was detected before it was completely built up at 90 sec.
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Figure 14. Control deficiency estimate, bank angle, roll rate and pilot’s lateral stick command time histories
in the case of false alarm associated with the high stick rate.

From this part of analysis we conclude that CDE performed well as a failure detection signal and as a
trigger to LoC prevention algorithm.

2. Quantitative Validation of Visual Cue Algorithm

We examined two aspects in regards to validation of the algorithm: (1) Effectiveness of the visual cue in pre-
venting LoC incidents; (2) Influence of pilot aggressiveness to the prediction algorithm.

Visual Cue Effectiveness
We present in Table 2 an analysis of time history data for the visual cue effectiveness. Four possible cases

are explored for approximately 1.6 million time history data points recorded during the simulation study.
The analysis examined for every time stamp if the pilot control activity was inside or outside the cue followed
by examining the aircraft states after 4 seconds (prediction window) to record if the states were inside or
outside of the LoC boundaries defined in Section I. Of the four cases shown in Table 2, Cases 1 and 2 show
the effectiveness of the cue in preventing an unsafe situation. With a very high Case 1 percentage, it is clear
that the cue was consistent with the expectation. The non zero Case 2 percentage is an undesirable result,
and based on pilot feedback, it was determined that this was mainly caused by the algorithms inability to
handle aggressive pilot actions. In the next subsection, we analyze the reasons behind this phenomenon.

Cases 3 and 4 document percentage of cases in which pilot control was outside of the cue. As expected,
some of the flights exited the LoC boundaries (Case 3) and some did not (Case 4).

Influence of Pilot Aggressiveness
We used a simple measure of pilot aggressiveness. After the uncertainty is introduced, we measure the
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Table 2. Visual Cue Effectiveness Analysis.

Cases Control activity inside the cue LoC Boundaries violated (after 4sec) % of flight data

1 YES NO 93.8 %

2 YES YES 3.3 %

3 NO NO 1.7 %

4 NO YES 1.2 %

rate of change of stick position as an indication of pilot aggressiveness. Using a threshold value for pilot
aggressiveness (rate = 1 stick unit/sec), we examine the magnitude of CDE as computed by the algorithm.
This magnitude is an indication of the inability of the aircraft to provide the requested control activity. We
choose a threshold of 4.5 degrees for CDE for this analysis based on data for when the stick rate is less
than 1 (see Table 3). If the algorithm is consistent with expectations, higher stick rate should lead to higher
control deficiency for cases in which the aircraft violates the LoC boundaries leading to a total loss of the
aircraft. This is illustrated in Table 3. For flights within the LoC boundaries (Safe flight), this correlation
does not exist.

Table 3. Influence of the pilot aggressiveness

Safe flight Loss of aircraft

CDE < 4.5 CDE > 4.5 CDE < 4.5 CDE > 4.5

Stick rate < 1.0 99% 1 % 95% 5%

Stick rate > 1.0 42% 58 % 28% 72%

Based on the analysis presented above, it is concluded that Case 2 in the previous section was mainly
caused by pilot’s demand not being met by the aircraft’s available control as perceived by the prediction
algorithm. A big factor for this erroneous signal is the assumption in the prediction algorithm of near
constant pilot control input (small stick rate) for the next 4 seconds. Future designs of this algorithm will
consider this effect and adjustments to the prediction performance measure will be considered.

V. Conclusion

In this work, we have shown that usable controllability margins can be computed in real-time using
predictive technologies and used as feedback cues to the pilot. Using ten pilots with varying experiences
we have documented the efficacy of using simple cues to help prevent LoC incidents. This simulation study
was conducted using the NASA Ames Vertical Motion Simulation facility. Our next step is to improve on
the algorithm to better accommodate pilot aggressiveness in our predictive capabilities and evaluate these
technologies using commercial airline pilots.
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