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The paper presents a certainty equivalence output feedback backstepping adaptive con-
trol design method for the systems of any relative degree with unmatched uncertainties
without over-parametrization. It uses a fast prediction model to estimate the unknown
parameters, which is independent of the control design. It is shown that the system’s in-
put and output tracking errors can be systematically decreased by the proper choice of the
design parameters. The approach is applied to aerospace control problems and tested in
numerical simulations.

I. Introduction

Adaptive control problems are challenging for systems with unmatched uncertainties, and the majority of
design methods is based on the backstepping technique outlined in Ref.6 They become more complex when
the whole state of the system is not available for feedback. It has been shown in Ref.6 that direct application
of the certainty equivalence principle leads to over-parametrization. To avoid it, nonlinear damping terms
were introduced in the control design, which leads to the adaptation rate to enter into the control law. This
may result in the high magnitude control signals in the case of large adaptive rates (fast adaptation), which is
desirable from the perspective of the estimation of unknown parameters. An alternative certainty equivalence
control design method for state feedback problems is presented in Ref.,1 which avoids over parametrization
for linear systems, but the method is only applicable for nonlinear systems with the relative degree not
exceeding two.

In Ref.,11 we introduced a certainty equivalence state feedback indirect adaptive control approach without
over parametrization for nonlinear systems of any relative degree. The approach was based on the state
prediction model, which is capable of providing fast estimation of unknown parameters independent of the
control design. This property is the consequence of feeding back an error term with the gain proportional to
the square root of the adaptation rate, like in the modified reference model MRAC (M-MRAC) architecture
introduced in Ref.,10 where it has been shown that the error feedback gain acts as a damping factor for the
adaptive signals, whereas the adaptation rate determines its frequency. In this paper we extend the method
to the systems in parametric output feedback form. This extension uses conventional filtering approach
to transform the system into the form suitable for the parameter estimation. The control design uses the
prediction model’s and the filter’s states, and follows the command filtered backstepping procedure from
Ref.2 It is shown that the input tracking error (difference between ideal control and command filtered
certainty equivalence control signal) and output tracking error can be regulated as desired by the proper
choice of design parameters.

The rest of the paper is organized as follows. In Section II, we give the problem statement, main
assumptions and input-output filtered transformations. In Section III, we introduce the identification model
and give its properties. The control design and performance analysis are presented in Section IV. Aerospace
applications are presented in Section V, and some concluding remarks are given in Section VI.
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II. Problem Statement

Consider an uncertain single input single output (SISO) system in the parametric output feedback form6

(p. 99)

ẋ(t) = Anx(t) + f(y) + Φ(y)θ + du(t)

y(t) = c�nx(t) , (1)

with some initial conditions x(0) = x0, where x ∈ R
n, u ∈ R and y ∈ R are the state, input and output

of the system, θ ∈ R
p is a vector of unknown constant parameters, f : R → R

n and Φ : R → R
n×p are

sufficiently smooth known functions, and An, d, cn have forms

An =

[
0(n−1)×1 I(n−1)×(n−1)

0 01×(n−1)

]
, d =

⎡
⎢⎢⎢⎢⎣

0(n−m+1)×1

dm
...

d0

⎤
⎥⎥⎥⎥⎦ , cn =

[
1

0(n−1)×1

]

It is assumed that d is unknown, dm is positive and bounded below by a known constant d∗, and the
polynomial dmsm + · · ·+ d1s+ d0 is known to be Hurwitz.

The objective is to design a control signal u(t) using only the output y(t) such that all closed-loop signals
are bounded, and y(t) tracks the output yr(t) = c�xr(t) of the reference model

ẋr(t) = Āxr(t) + b̄r(t), xr(0) = x0 , (2)

where xr ∈ R
q (q = n−m) is the state of the model, r(t) is a piece-wise continuous and bounded external

command, Ā = Aq − bqk
�, b̄ = kbq. Here we denote bq = [0(q−1)×1 1]�, and the gains k and k are chosen

to make Ā Hurwitz and meet the performance specifications.
Following the steps from Ref.6 (p.329), we transform the system (1) by means of the filters introduced

in Ref.5 In this particular case these filters take the form

ṡ(t) = A0s(t) + k0y(t) + f(y)

Ξ̇(t) = A0Ξ(t) + Φ(y)

μ̇(t) = A0μ(t) + bnu(t) , (3)

where the constant vector k0 is chosen such that the matrix A0 = An−k0c
�
n is Hurwitz. It is straightforward

to show that

x(t) = s(t) + Ξ(t)θ +

m∑
i=0

diwi(t) + δ(t) , (4)

where wi(t) = Ai
0μ(t), i = 0, . . . ,m, and δ(t) is a solution of the exponentially stable system

δ̇(t) = A0δ(t) . (5)

In Ref.,6 δ(t) was treated as a bounded external disturbance, and a nonlinear damping term was added in
the control signal to compensate for it. Here, we show that the certainty equivalent controller can achieve
the objective without extra terms or over-parametrization.

Using the representation (4) we transform the output dynamics as follows

ẏ(t) = x2(t) + f1(y) + Φ(1)(y)θ

= s2(t) + Ξ(2)(t)θ +

m∑
i=0

diwi,2(t) + δ2(t) + f1(y) + Φ(1)(y)θ

= dmwm,2(t) + f1(y) + s2(t) + h�(t)ϑ+ δ2(t) , (6)

where Ξ(2)(t) denotes the second column of matrix Ξ(t), ϑ = [dm−1 . . . d0 θ�]� is the augmented vector

of unknown parameters, and h(t) = [wm−1,2(t) . . . w0,2(t) Ξ(2)(t) + Φ(1)(y)]
� is the augmented vector of
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regressors. Combining (6) with the wm-dynamics we obtain a q-dimensional system for the control design

ẏ(t) = dmwm,2(t) + f1(y) + s2(t) + h�(t)ϑ+ δ2(t)

ẇm,j(t) = wm,j+1(t)− kjwm,1(t), j = 2, . . . , q − 1

ẇm,q(t) = u(t) + wm,q+1(t)− kqwm,1(t) . (7)

Obviously (7) is in parametric output feedback form, the states of which are available for the control de-
sign. Therefore, the state feedback M-MRAC backstepping approach from the Ref.11 can be applied. The
difference is the presence of the unknown virtual control confficient dm. Since the control law will contain
division by the estimate of dm, a projection operator can be employed to bound it away from zero using the
available lower limit d∗.

III. Identification Model

Since the uncertainties are lumped in the first equation of (7), we use a reduced order identification model
to estimate the unknown parameters

˙̂y(t) = d̂m(t)wm,2(t) + f1(y) + s2(t) + h�(t)ϑ̂(t) + λỹ(t)

ŷ(0) = ŷ0 , (8)

where ŷ(t) is the output prediction, ỹ(t) = y(t) − ŷ(t) is the output prediction error, λ > 0 is a design

parameter, d̂m(t) and ϑ̂(t) are the estimates of the unknown parameters, which are generated according to
adaptive laws

˙̂
dm(t) = γ Pr

(
d̂m(t), ỹ(t)wm,2(t)

)
(9)

˙̂
ϑ(t) = γỹ(t)h(t) ,

where γ > 0 is the adaptation rate and Pr (·, ·) denotes the projection operator (see Ref.8 for details).
The output prediction error dynamics do not explicitly depend on the control signal

˙̃y(t) = −λỹ(t) + η̃(t) + δ2(t) , (10)

where we define η̃(t) ≡ η(t) − η̂(t) = dmwm,2(t) + h�(t)ϑ − d̂m(t)wm,2(t) − h�(t)ϑ̂(t) = d̃m(t)wm,2(t) +

h�(t)ϑ̃(t) with d̃m(t) = dm − d̂m(t) and ϑ̃(t) = ϑ− ϑ̂(t) being the parameter estimation errors.
The following properties of the identification model can be established.

Lemma III.1 The error signals ỹ(t), d̃m(t) and ϑ̃(t) are globally uniformly bounded, and ỹ(t) → 0 as
t → ∞.

Proof. Consider a candidate Lyapunov function

V (t) = ỹ2(t) +
1

γ
d̃2m(t) +

1

γ
ϑ̃
�
(t)ϑ̃(t) + δ�(t)Pδ(t) , (11)

where P is the positive definite solution of the Lyapunov equation A�
0 P + PA0 = −Q for a given positive

definite matrix Q. It is straightforward to compute the derivative of V (t) along the trajectories of the
prediction error dynamics (10) and the adaptive laws (9). Using the properties of the projection operator
(see for example Ref.8) we obtain the inequality

V̇ (t) ≤ −2λỹ2(t) + 2ỹ(t)δ2(t)− δ�(t)Qδ(t) . (12)

Completing the squares we arive at

V̇ (t) ≤ −(2λ− 1)ỹ2(t)− (λmin(Q)− 1)‖δ(t)‖2 . (13)

Choosing λmin(Q) > 1 and 2λ > 1, we conclude from the LaSalle-Yoshizawa theorem (,6 p.24) that ỹ(t),
d̃m(t) and ϑ̃(t) are globally uniformly bounded, and ỹ(t) → 0 as t → ∞. In particular, there exists β1 > 0
such that |d̃2m(t)|+ ‖ϑ̃(t)‖2 ≤ β2

1 .
The next lemma gives the bound on the output prediction error.
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Lemma III.2 ỹ(t) satisfies the bound

|ỹ(t)| ≤ β2e
−ν0t +

β1√
γ
, (14)

where β2 =
√

|2V (0)− β2
1

γ | and ν0 = min(λmin(Q)− 1, 2λ− 1).

Proof. It is easy to see that the inequality (13) can be written as

V̇ (t) ≤ −ν0V (t) +
ν0
γ
β2
1 , (15)

which implies that

V (t) ≤
[
V (0)− β2

1

2γ

]
e−ν0t +

β2
1

2γ
. (16)

Recalling that ‖ỹ(t)‖2 ≤ 2V (t), we obtain

‖ỹ(t)‖ ≤
√[

2V (0)− β2
1

γ

]
e−ν0t +

β2
1

γ
, (17)

The bound (14) follows from the fact that
√
a+ b ≤ √

a+
√
b for any a ≥ 0, b ≥ 0.

When y(t) and u(t) are bounded (which will be provided by the control design), a tighter bound on ỹ(t)
can be derived through the bound on the adaptive error signal η̃(t), which is given by the following lemma.

Lemma III.3 Let the estimates ŷ(t) and ϑ̂(t) be generated by the identification model (8) and (9). In
addition, let y(t) and u(t) be bounded. Then η̃(t) and ỹ(t) satisfy the following bounds

|η̃(t)| ≤ β3e
−νt + β4√

γ (18)

|ỹ(t)| ≤ β5e
−νt + β6

λ
√
γ , (19)

where the constants βi > 0, i = 3, . . . , 6 and ν1 > 0 are defined in the proof.

Proof. Following Ref.,10 it is straightforward to show that η̃(t) satisfies the dynamics

¨̃ηi(t) + λ ˙̃ηi(t) + γρ(t)η̃i(t) = −γρ̇(t)ỹ(t) + cra(t) + ṙa(t)− γρ(t)δ2(t) , (20)

where ρ(t) = w2
m,2(t) + h�(t)h(t), ra(t) = b̃m(t)ẇm,2(t) + ϑ̃

�
(t)ḣ(t). Since y(t) and u(t) are bounded, and

f(y), Φ(y) are smooth functions, s(t), μ(t) and Ξ(t) are bounded. These imply that wm,2(t), h(t) and y(t)

are bounded. Also, it follows from (6) that ẏ(t) is bounded, which implies that ẇm,2(t), ḣ(t) are bounded
as well. Therefore, there exist positive constants c1, c2, c3 such that ‖ρ(t)‖L∞ ≤ c1, ‖ρ̇(t)‖L∞ ≤ c2 and
‖ra(t)‖L∞ ≤ c3. On the other hand δ2(t) satisfies the bound |δ2(t)| ≤ c4e

−ν1t, where c4 > 0 depends on the
initial conditions and ν1 is the decay rate of the Hurwitz matrix A0. Then, it follows from the results of
Ref.10 that choosing λ ≥ 2

√
c1γ damps the oscillations in η̃(t) and guarantees the bound

|η̃(t)| ≤ β3e
−νt + c2|ỹ(t)|+ c5√

γ
|ra(t)| , (21)

where ν = min(ν0, ν1, ν2), ν2 is proportional to
√
γ , and the positive constants β3 and c4 are independent

of γ (see details in10). Substituting (14) we arrive to (18) with β4 = c2β1 + c3c5.
A tighter bound on ỹ(t) is obtained from (10) by direct integration.

|ỹ(t)| ≤ β3

λ− ν

[
e−νt − e−λt

]
+

c4
λ− ν1

[
e−ν1t − e−λt

]
+

β4

λ
√
γ

[
1− e−λt

] ≤ β5e
−νt +

β6

λ
√
γ
, (22)

since ν1 > ν by definition and λ > ν for fast adaptation.
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IV. Control Design

In this section, we first design a conventional backstepping controller for the known system (ideal con-
troller), which is used only for analysis purposes, then design the command filtered certainty equivalence
controller, which is actually being implemented.

A. Known System

We follow the standard backstepping procedure from Ref.6 and design the ideal controller for the system
(7) ignoring the term δ2(t). The reason is that the actual control signal is defined using the identification
model, which does not evolve that term. Let the error variables be defined as

e01(t) = y0(t)− yr(t) (23)

e0i (t) = w0
m,i(t)− α0

i−1(t), i = 2, . . . , q , (24)

where the stabilizing functions α0
i (t), i = 1, . . . , q − 1 have the form

α0
1(t) =

1
dm

[−ce01(t)− f1(y
0)− s02(t)− h0�(t)ϑ+ xr,2(t)] (25)

α0
2(t) = −dme01(t)− c2e

0
2(t) + k2w

0
m,1(t) + α̇0

1(t) (26)

α0
i (t) = −e0i−1(t)− cie

0
i (t) + kiw

0
m,1(t) + α̇0

i−1(t), i = 3, . . . , q − 1 .

with ci > 0, i = 1, . . . , q− 1 being design parameters. Here and in the following derivations, the superscript
0 indicates that the variables correspond to the ideal case. We define the ideal control signal as

u0(t) = −e0i−1(t)− cqe
0
q(t)− w0

m,q+1(t) + kqw
0
m,1(t) + α̇0

q−1(t) , (27)

It is easy to see that the error system has the form

ė0(t) = Aide
0(t) , (28)

where

Aid =

⎡
⎢⎢⎢⎢⎢⎢⎣

−c1 dm 0 0 . . . 0

−dm −c2 1 0 . . . 0

0 −1 −c3 1 . . . 0
...

...
...

...
. . .

...

0 0 0 0 . . . −cq

⎤
⎥⎥⎥⎥⎥⎥⎦
.

Therefore it is exponentially stable. That is, y0(t) = yr(t) + e01(t) exponentially converges to yr(t). In
addition, from r(t) ∈ L∞ it follows that xr(t) ∈ L∞, which along with e0(t) ∈ L∞ can be used to recursively
show that α0

i (t), α̇0
i (t), i = 1, . . . , q − 1, wm,i, i = 1, . . . , q + 1 are bounded. Then, u0(t) ∈ L∞ is bounded,

and the boundedness of μ(t) and hence all closed-loop signals follow.

B. Command Filtering Certainty Equivalent Control

Here, we use command filtering approach from Ref.2 and design a certainty equivalence control for the
identification model augmented with the last q − 1 equations in (7).

The uncompensated errors are introduced as

e1(t) = ŷ(t)− yr(t) (29)

ei(t) = wm,i(t)− σi−1,1(t), i = 2, . . . , q , (30)

where σi−1,1(t) is the first state of the second order LTI system, which is used to filter the stabilizing
functions. Here, these functions are defined as

α1(t) =
1

d̂m(t)
[−ce1(t)− f1(y)− s2(t)− h�(t)ϑ+ xr,2(t)] (31)

α2(t) = −d̂m(t)e1(t)− c2e2(t) + k2wm,1(t) + ωσ1,2(t) (32)

αi(t) = −ei−1(t)− ciei(t) + kiwm,1(t) + ωσi−1,2(t), i = 3, . . . , q − 1 ,
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where σi−1,2(t) is the second state of the filter’s dynamics, which is given by the equations

σ̇i,1(t) = ωσi,2(t) (33)

σ̇i,2(t) = −2ζωσi,2(t)− ω[σi,1(t)− αi(t)]

i = 1, . . . , n− 1 ,

with the initial conditions σi,1(0) = αi(0) and σi,2(0) = 0.
The compensated errors are introduced as ec(t) = e(t)− ξ(t), where ξ(t) is dynamically defined as

ξ̇1(t) = σ1,1(t)− α1(t) + ξ2(t) (34)

ξ̇i(t) = σi,1(t)− αi(t) + ξi+1(t), i = 2, . . . , n− 1

with ξi(0) = 0 for i = 1, . . . , n − 1, and ξn(t) ≡ 0. These modifications lead to the definition of the actual
control signal as

u(t) = −eci−1(t)− cqe
c
q(t)− wm,q+1(t) + kqwm,1(t) + ωσq−1,2(t) . (35)

The resulting compensated error dynamics are given by the equation

ėc(t) = Â(t)ec(t) + λcq ỹ(t) , (36)

where Â(t) is obtained from Aid by replacing dm with its estimate d̂m(t). Obviously, the error system
(36) is asymptotically stable, since ỹ(t) → 0 as t → ∞ according to Section III. On the other hand, the
uncompensated error e(t) has dynamics

ė(t) = Â(t)e(t)− ᾱ(t) + σ̄(t) + λcq ỹ(t) . (37)

where

ᾱ(t) =

⎡
⎢⎢⎢⎢⎣

d̂m(t)α1(t)
...

αq−1(t)

0

⎤
⎥⎥⎥⎥⎦ , σ̄(t) =

⎡
⎢⎢⎢⎢⎣

d̂m(t)σ1,1(t)
...

σq−1,1(t)

0

⎤
⎥⎥⎥⎥⎦ .

The performance of the designed controller is given by the following theorem, the proof of which can be
carried out following the steps from Ref.11

Theorem IV.1 Let the controller be defined according to identification model (8), adaptive law (9), and
command filtered backstepping scheme given by (29), (31), (33), (34) and (35). Then the input and output
tracking errors satisfy the following upper bounds

|u(t)− u0(t)| ≤ β7e
−ν3t + β8√

γ +O (ε) (38)

|y(t)− yr(t)| ≤ β9e
−ν3t + β10√

γ +O (ε) , (39)

where β7, β8, β9, β10 are positive constants independent of γ, ν3 is the decay rate of the reference model,
ε = 1/ω (the proper choice of ζ and ω is discussed in Ref.2), and the notation O (ε) is adopted from Ref.4

(p. 383).

V. Aerospace Applications

A. Control of Wing Rock

We consider a wing rock motion of a slender delta wing, which is given by the equation

φ̈(t) = f(φ, φ̇) + baδa(t) .

where φ(t) is the roll angle, δa(t) is the aileron deflection and f(φ, φ̇) has the form (see Ref.9 for details)

f(φ, φ̇) = θ1φ+ θ2φ̇+ θ3|φ2|φ̇+ θ4|φ̇|φ̇+ θ5φ
3 ≡ θ�ϕ(φ, p) . (40)
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Modeling ailerons as a first order dynamics

τ δ̇a(t) = u(t)− δa(t) , (41)

where τ is the ailerons time constant, and introducing a new variable x3(t) = baδa(t), we represent the
system in the state space form as

ẋ1(t) = x2(t) (42)

ẋ2(t) = x3(t) + θ�ϕ(x1, x2)

ẋ3(t) = −kx3(t) + bu(t) ,

where x1(t) = φ(t) denotes the roll angle, x2(t) = p(t) denotes the roll rate, k = 1
τ is assumed to be known,

b = ba
τ is assumed to be unknown, and u(t) is the control signal to be designed assuming that x1(t) and

x2(t) are available for feedback.
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Figure 1. Step response to the ideal command filtered output feedback control.

The system consists of two blocks. First contains only the first equation, which is free of uncertainties,
the second consists of the last two equations, which contain unknown parameters. Since x3 is not accessible,
we transform the second block into the parametric output feedback form using a linear transformation

z2(t) = x2(t)

z3(t) = kx2(t) + x3(t) . (43)

The transformed system has a form

ż1(t) = z2(t) (44)

ż2(t) = z3(t)− kz2(t) + θ�ϕ(x1, x2)

ż3(t) = bu(t) + kθ�ϕ(x1, x2) ,

where for uniformity we also introduce z1(t) = x1(t). Using the filtered transformation (46) we write the
system as

ż1(t) = z2(t) (45)

ż2(t) = bμ2(t) + s2(t)− kz2(t) + ϑ�h(t)
μ̇2(t) = u(t)− k02μ1(t) ,
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Figure 2. Step response of the certainty equivalent control.
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Figure 3. Actual aileron deflection and certainty equivalent adaptive control signal vs ideal ones for the step
command.

where h(t) = [Ξ(2)(t) +ϕ�(x1, x2) ψ1(t) ψ2(t)]
�, and s(t), Ξ(t), μ(t) are generated according to equations

ṡ(t) = A0s(t) +

[
k0,1 − k

k0,2

]
x2(t), Ξ̇(t)A0Ξ(t) +

[
ϕ�(x1, x2)

kϕ�(x1, x2)

]
, μ̇(t) = A0μ(t) +

[
0

1

]
u(t) , (46)
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where

A0 =

[
−k0,1 1

−k0,2 0

]

The identification model is introduced for the z2-dynamics, where the uncertainties are lumped in.

˙̂z2(t) = b̂(t)μ2(t) + s2(t)− kz2(t) + ϑ̂
�
(t)h(t) + λ[z2(t)− ẑ2(t)] , (47)

where the estimates b̂(t) and ϑ̂
�
(t) are generated according to adaptive laws (9).
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Figure 4. Sinusoidal response of the ideal command filtered output feedback control.

In the first step of the control design we introduce the error e1(t) = y(t)− yr(t) = z1(t)− xr,1(t) and the
stabilizing function α1(t) = −c1(t)e1(t) + xr,2, which results in

ė1(t) = −c1e1(t) + e2(t) + z̃2(t) , (48)

where e2(t) = ẑ2(t)−α1(t). Since differentiation of α1(t) involves only linear terms, we do not use command
filtering in this step. This results into the equation

ė2(t) = b̂(t)μ2(t) + s2(t)− kz2(t) + ϑ̂
�
(t)h(t)− xr,3 − c21e1(t) + c1e2(t) + (λ+ c1)z̃2(t) . (49)

The stabilizing function α2(t) is modified to include a term −e1(t) to counteract the effect of the error term
e2(t) in (48), and has the form

α2(t) =
1

b̂(t)

[
(c21 − 1)e1(t)− (c1 + c2)e2(t)− s2(t) + kz2(t)− ϑ̂

�
(t)h(t) + xr,3

]
.

The last error signal is defined as e3(t) = μ2(t)− σ1(t), where σ1(t) is generated by the system

σ̇1(t) = ωσ2(t) (50)

σ̇2(t) = −2ζωσ2(t)− ω[σ1(t)− α2(t)] .

This reduces the error dynamics (49) into

ė2(t) = −e1(t)− c2e2(t) + b̂(t)e3(t) + b̂(t) [σ1(t)− α2(t)] + (λ+ c1)z̃2(t) . (51)
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Figure 5. Sinusoidal response to the certainty equivalent control.
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Figure 6. Actual aileron deflection and certainty equivalent adaptive control signal vs ideal ones for the
sinusoidal command.

The control signal is defined as

u(t) = −b̂(t)e2(t)− c3e3(t) + k02μ1(t)− ωσ2(t),

which reduces the dynamics of e3(t) into

ė3(t) = −b̂(t)e2(t)− c3e3(t) (52)

We test the algorithm in simulations for the wing rock model from Ref.9 with θ1 = −0.0186, θ2 = 0.0152,
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θ3 = −0.0625, θ4 = 0.0095, θ5 = 0.0215, ba = 1 and τ = 1/15. We choose k0 = [3 2]� for the filtered
input and output transformation. For the reference model we set k = [4.86 7.56 4.38]� and kr = 4.86]. The
command filtering is implemented with ω = 500 and ζ = 0.8. We run simulations from the initial conditions
φ(0) = 6deg, p(0) = 3deg/sec, δa(0) = 0deg. The adaptation rate is set to γ = 25000 with λ = 2

√
γ, and

the control gains are set to c1 = c2 = c3 = 2. The lower bound for b̂(t) is set to 0.01.
Figure 1 displays the tracking performance of the ideal command filtered output feedback backstepping

control for the bank angle step command of magnitude 15 deg, assuming that the parameters are known to
the controller. The performance of the certainty equivalence control with respect to the ideal response is
presented in Figure 2, and the corresponding aileron deflections and commands to the aileron actuators are
presented in Figure 3. It can be seen that the presented output feedback M-MRAC achieves good tracking
performance for both output and control signals.

Next set of figures (Figures 4,5 and 6) represent the systems performance for the sinusoidal external
command of magnitude 15 deg and frequency of 1rad/sec. Figure 4 displays the tracking performance of the
ideal controller with respect to the reference model, and Figure 5 displays the performance of the certainty
equivalent control with respect to ideal one. Again, it can be observed that the M-MRAC exhibits adequate
behavior as in output tracking, as well as in the input tracking which is apparent from Figure 6.

B. Control of Short Period Dynamics

As an example we consider the longitudinal control of a damaged transport class model (TCM) as defined in
Ref.3 The short period dynamics of the GTM can be represented as (see for example Ref.12 for definitions)

α̇(t) =
Zα

V
α(t) +

(
1 +

Zq

V

)
q(t) (53)

q̇(t) = Mαα(t) +Mqq(t) +Mδeδe(t) ,

where α is the angle of attack, q is the pitch rate and δe is the elevator deflection, the simplified dynamics
of which are modeled as a first order system

δ̇e(t) = ke [u(t)− δe(t)] , (54)

where u(t) is the control input to the elevator actuator, ke is the actuator’s gain. We assume that the
controlled output is the pitch rate, which is the only measurement available for feedback.

Deriving the transfer function from u to q we obtain

Guq(s) =
kes− ke

Zα

V

s3 +
(
ke −Mq − Zα

V

)
s2 +

[
Mq

Zα

V −Mα

(
1 +

Zq

V

)
− ke

(
Mq +

Zα

V

)]
s+ ke

[
Mq

Zα

V −Mα

(
1 +

Zq

V

)] ,

therefore the system can be easily transformed into the observer form

ẋ1(t) = x2(t) + θ1x1(t) (55)

ẋ2(t) = x3(t) + θ2x1(t) + b1u(t)

ẋ3(t) = θ3x1(t) + b0u(t)

y(t) = x1(t) , (56)

where the form of the unknown parameters θ1 = ke−Mq − Zα

V , θ2 = Mq
Zα

V −Mα

(
1 +

Zq

V

)
− ke

(
Mq +

Zα

V

)
,

θ3 = ke

[
Mq

Zα

V −Mα

(
1 +

Zq

V

)]
, b1 = ke and b0 = −kZα

V . Following Ref.6 (p. 421) we use the input and

output filters for the special case of linear systems

ṡu(t) = A0su(t) +

⎡
⎢⎣ 0

0

1

⎤
⎥⎦u(t) , ṡy(t) = A0su(t) +

⎡
⎢⎣ 0

0

1

⎤
⎥⎦ y(t), A0 =

⎡
⎢⎣ −k0,1 1 0

−k0,2 0 1

−k0,3 0 0

⎤
⎥⎦ (57)

to generate vectors wj(t) = Aj
0su(t), j = 0, 1, s(t) = An

0sy(t) and ξj(t) = Aj
0sy(t), j = 0, 1, 2 and the

matrix Ξ(t) = [ξ2(t) ξ1(t) ξ0(t)]. Then the system (55) can be written as

ẏ(t) = b1w1,2(t) + s2(t) + h�(t)ϑ (58)

ẇ1,2(t) = u(t) + w1,3(t)− k0,2w1,1(t) ,
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Figure 7. Ideal pitch rate response and ideal command filtered output feedback control.
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Figure 8. Pitch rate response and the corresponding angle of attack.

where h�(t) = [w0,2(t) Ξ(2) + y(t)[1 0 0]], and ϑ = [b0 θ1 θ2 θ3]
�. The system is now in the from (7),

therefore the presented output feedback M-MRAC can be applied.
For the simulation the numeric values of matrices A and B are computed using the vortex-lattice method

(see Ref.7 for details), for the straight level flight condition at an altitude of 30000ft and a cruise speed of
0.8M

The damage scenario corresponds to 60% loss of the left horizontal tail, which roughly corresponds to 59%
loss of pitch control effectiveness, 67% loss of pitch damping and 59% loss of pitch stiffness. It is assumed
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Figure 9. Actual elevator deflection and certainty equivalent adaptive control signal vs ideal ones.

that the aircraft was in steady level flight condition at an altitude of 30000ft and a cruise speed of 0.8M
before the failure.

We choose k0 = [6 11 6]� to generate A0, a unity gain second order reference model with frequency of
2.5 and damping ratio of 0.8 and implement the command filtering with a filter, which has ω = 300 and
ζ = 0.8. We run simulations from the initial conditions q(0) = 0deg/sec, α(0) = 3deg, δe(0) = 0deg. The
adaptation rate is set to γ = 15000 with λ = 2

√
γ, and the control gains are set to c1 = c2 = 0.5. The

upper bound for b̂1(t) is set to −0.01 (b1 is known to be negative). The external command is a square wave
of magnitude 5 deg/sec and of frequency π/8 rad/sec. In order to make the command differentiable, it is
filtered trough a first order filter 1

s+1 .
Figure 7 represents the tracking performance and the ideal command filtered output feedback backstep-

ping control signal. The first plot of Figure 8 displays the output tracking performance of the certainty
equivalence M-MRAC with respect to the ideal response. It can be observed that M-MRAC provides a good
output tracking. The second plot in the same figure displays the time history of the angle of attack. It
can be seen that it closely follows the one generated trough the ideal control. The corresponding elevator
deflection and the control input to the actuator are presented in Figure 9. It is seen that the output feedback
M-MRAC achieves good tracking for the control signal as well.

VI. Concluding remarks

We have presented an adaptive output feedback backstepping control method for nonlinear systems with
unmatched uncertainties that follows the certainty equivalence principle without over-parametrization. The
approach uses a fast identification model, which is independent of the control design. This separation of
the parameter estimation and control design enables the designer to achieves desired transient and steady
state properties. In the control design process we utilize the command filtered backstepping approach. The
presented method was applied to two aerospace control problems with good results.
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