

Conducting Research on the International Space Station using the EXPRESS Rack Facilities

29th American Society for Gravitational and Space Research and 5th International Symposium of Physical Sciences in Space November, 2013

Sean W. Thompson EXPRESS Rack Project Manager NASA Marshall Space Flight Center sean.thompson@nasa.gov

Robert E. Lake EXPRESS Rack Lead Systems Engineer NASA Marshall Space Flight Center robert.e.lake@nasa.gov

EXPRESS Rack

Conducting Research on the ISS using the EXPRESS Rack

Expedite the PRocessing of Experiments to Space Station (EXPRESS) Rack is a multi-use facility which provides standard interfaces and resources for 8 locker-type and 2 drawertype payloads

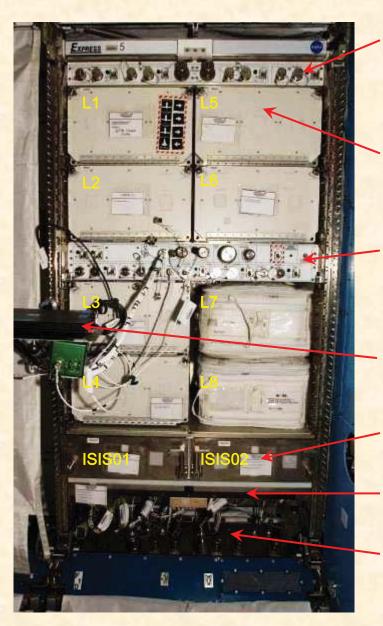
> Payload Interfaces

Power: 28 Vdc

 Data: Ethernet, RS-422, Analog, Discrete

Video: NTSC

- Cooling: Air (all locations) and Water (2 locations per rack)
- Vacuum Exhaust (1 location per rack)
- Nitrogen Supply (1 location per rack)
- Active Rack Isolation System (ARIS)
 - Isolates vibration between ISS and EXPRESS


EXPRESS Rack 1, 7/9/13

EXPRESS Rack Front View

Conducting Research on the ISS using the EXPRESS Rack

Upper Connector Panel

Lockers (8 locations)

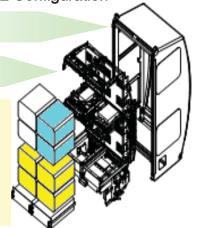
Lower Connector Panel

EXPRESS Laptop Computer (ELC)

ISIS Drawers (2)

Utility Drawer

Utility Interface Panel


Payload configuration options:

- Insert into a NASA-provided ISS Locker
- Integrate into an International Subrack Interface Standard (ISIS) Drawer
- Design single unit to replace
 1, 2, or 4 lockers.

EXPRESS 8/2 Configuration

International Standard
Payload Rack
Secondary Structure
& Subsystems

8/2 Payload Configuration (8 Middeck Lockers, 2 ISIS Drawers)

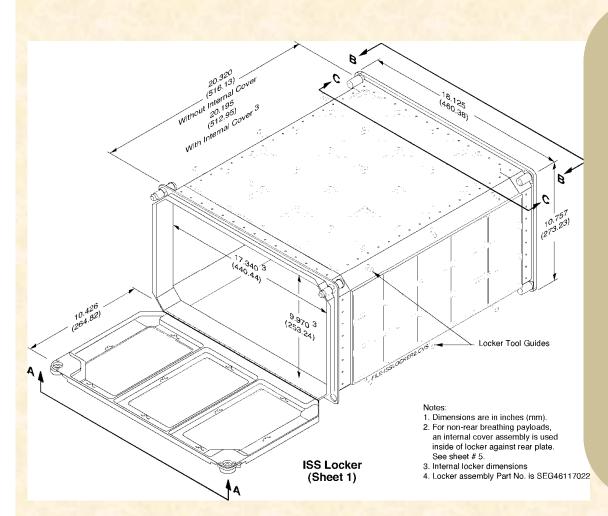
EXPRESS Racks

Conducting Research on the ISS using the EXPRESS Rack

- > 8 flight racks on-orbit (4 ARIS, 4 non-ARIS)
- > First launched April 19, 2001
- > Trainer Racks at JSC and MSFC to support crew and ground training
- > Functional Checkout Unit (FCU) at MSFC to support payload testing

Rack	Location (Lab, Bay)	Launch (Flight, Date)	Sep. 2013 Operating Hrs	Total Operating Hours
EXPRESS Rack #1	US Lab, O2	6A, 4/19/01	720	91,133
EXPRESS Rack #2A	US Lab, O1	6A, 4/19/01	720	59,294
EXPRESS Rack #3A	Columbus, P2	UF2, 6/5/02	717	24,458
EXPRESS Rack #4	JEM, F5	7A.1, 8/10/01	720	86,015
EXPRESS Rack #5	JEM, F1	7A.1, 8/10/01	0	844
EXPRESS Rack #6	US Lab, O4	ULF2, 11/14/08	720	42,659
EXPRESS Rack #7A	US Lab, P2	19A, 4/5/10	0	3,645
EXPRESS Rack #8A	US Lab, P4	ULF5, 2/24/11	720	4,604

Total: 312,652


Operational Hours through 9/30/2013

EXPRESS ISS Locker Details

Conducting Research on the ISS using the EXPRESS Rack

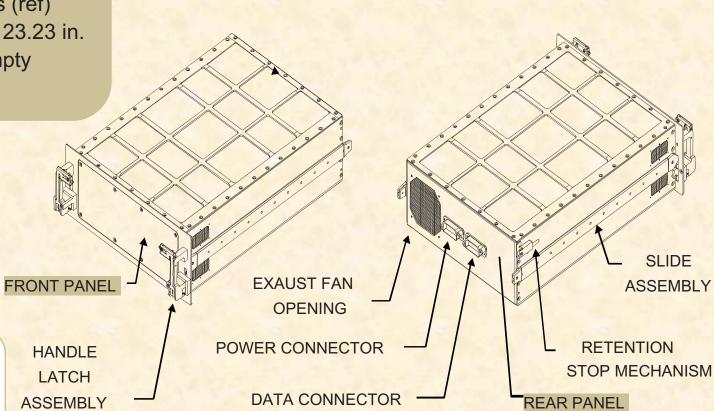
Features

- 4 rear captive fastener attachments
- Installation tool guides on 4 corners
- Friction hinge
- Dual door locks
- 3 removable panels on door
- Rear internal closeout removed for active payloads
- Internal dimensions (ref)
 - Width 17.340 in.
 - Height 9.970 in.
 - Depth 20.320 in.
- Weight 13 lbs. empty
- Internal Volume 2 ft³

Payloads can either be locker "inserts" or locker "replacements"

EXPRESS Powered ISIS Drawer

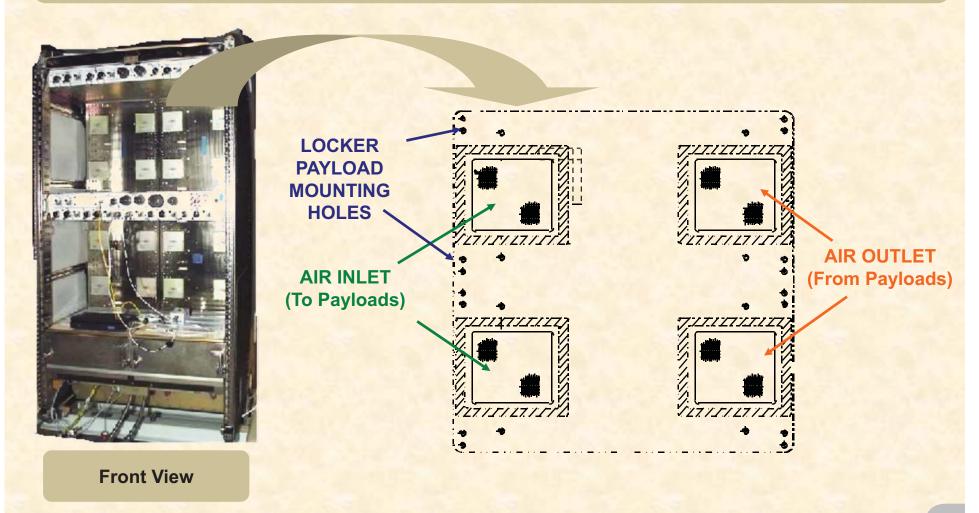
Conducting Research on the ISS using the EXPRESS Rack


- Blind-mate connectors
- Locking handles
- Internal dimensions (ref)

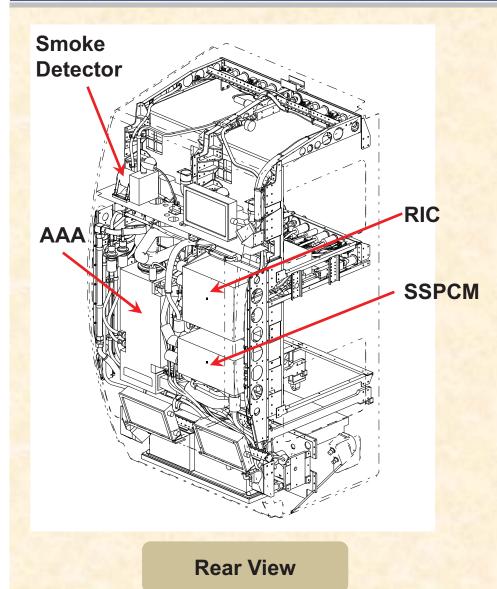
■ Weight – 26 lbs empty

■ Volume – 1.26 ft³

NASA provides a powered ISIS drawer for ground integration of powered payloads



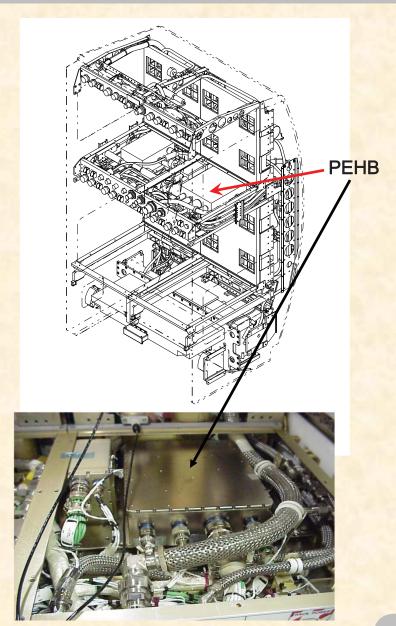
EXPRESS Subrack Payload Mounting



Conducting Research on the ISS using the EXPRESS Rack

- Mounting for 8 single ISS lockers (or equivalent) and 2 ISIS drawers
- Subsystem equipment located behind connector panels or mounting plates

> RIC: Rack Interface Controller


- Provides command and control of rack subsystems and payloads and interfaces with the ISS Payload MDM.
- Collects health and status from rack subsystems and payloads.
- SSPCM: Solid State Power Control Module
 - Receives ISS main power and provides power to rack subsystems and payloads.
 - Provides discrete and analog I/O to payloads and rack subsystems.
- > AAA: Avionics Air Assembly
 - Provides air cooling to payloads and exchanges heat with the Moderate Temperature Loop.
 - Circulates air for smoke detection.

> PEHB: Payload Ethernet Hub Bridge

- Provides primary means of communication between EXPRESS rack, the payloads, and the ISS.
- Provides 10 Mbps Ethernet data packet transfer between payloads, laptops, and the RIC and provides a bridge to the ISS LANs for telemetry downlink.
- Command and data interface to EXPRESS laptop.
- > PEHG: Payload Ethernet Hub Gateway
 - Will replace PEHB in 2015 (est.)
 - 100 Mbps Ethernet

ELC: EXPRESS Laptop Computer

- Dedicated to EXPRESS rack operations
- Crew can view rack displays
- Crew can command rack and payloads
- Payload can have applications installed
- Lenovo T61p
- Windows XP SP2 operating system
 - Upgrade to Windows 7 within 2 years

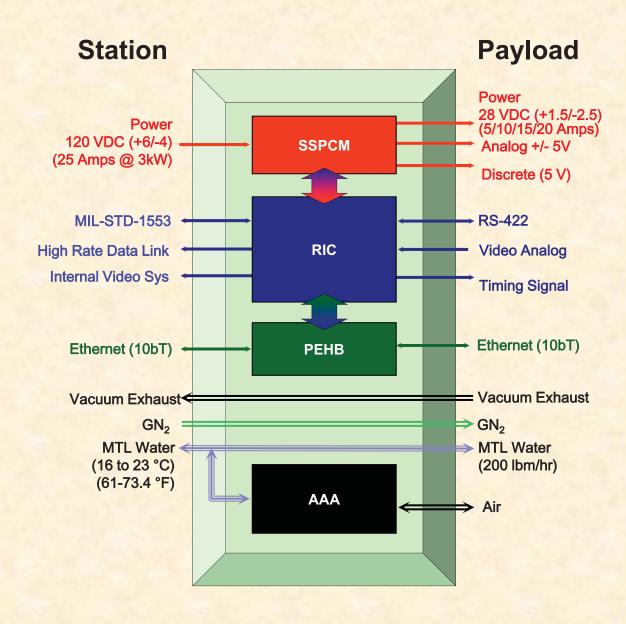
Payload Cooling

- Moderate Temperature Loop (MTL)
 - MTL circulates water through rack
 - Payloads have MTL cooling access at the upper and lower connector panels
 - 500 W per payload position x 2 positions per rack
- AAA "Rear Breather" payloads (1200 W total rack)
- Cabin Heat Load "Front Breather" payloads (very limited)

> Thermal Shutdown

- RIC monitors 2 internal sensors that are configured by the PRO (usually a flow sensor and a temperature sensor)
- RIC will shut down all active payloads and rack if both sensors are out of limits

Fire Detection System (FDS)


- Provides fire detection for the rack
- Payload Rear Breathers
 - ISS/EXPRESS-provided by smoke detector within rack
- Payload Front Breathers
 - Payload-provided parameter monitoring delivered through health & status data to PL MDM

EXPRESS Functional Interfaces

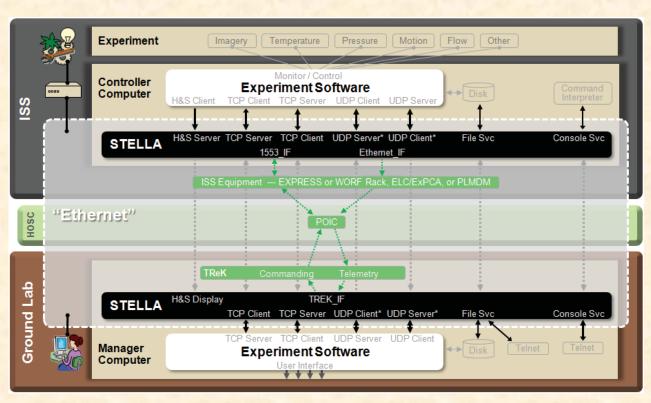
Conducting Research on the ISS using the EXPRESS Rack

EXPRESS Payload Resources

Conducting Research on the ISS using the EXPRESS Rack

D	Amount per Payload Position			
Resource	Locker	ISIS Drawer		
Structural Attachment	Attachment to Rack per IDD •Mass constraint launch vehicle dependent	Attachment to Rack per ISIS Spec •64 lb within cg constraints		
Power	5, 10, 15, or 20 Amp at 28 VDC	5, 10, 15, or 20 Amp at 28 VDC		
Thermal Control Air	Nominal 150 W (1200 W rack maximum)	Nominal 150 W (1200 W rack maximum)		
Thermal Control Water	500 W Heat Rejection per position (2 positions per rack)	500 W Heat Rejection per position (2 positions per rack)		
Data	•1 - RS-422 •2 - +/- 5 Vdc Analog •1 - Ethernet •3 - 5 Vdc Discrete (bi-dir)	•1 - RS- 422 •1 - +/- 5 Vdc Analog •1 - Ethernet •2 - 5 Vdc Discrete (bi-dir)		
Video	NTSC/RS 170A feed from payload source (Shared)	NTSC/RS 170A feed from payload source (Shared)		
Venting	1 payload interface per rack (Shared)	1 payload interface per rack (Shared)		
Nitrogen	1 payload interface per rack (Shared, 12 lbm/hr)	1 payload interface per rack (Shared, 12 lbm/hr)		

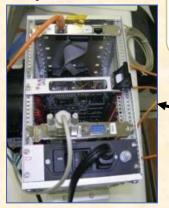
Reference: EXPRESS Rack Payloads Interface Definition Document, SSP 52000-IDD-ERP



Software Toolkit for Ethernet Lab-Like Architecture (STELLA)

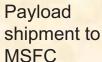
Conducting Research on the ISS using the EXPRESS Rack

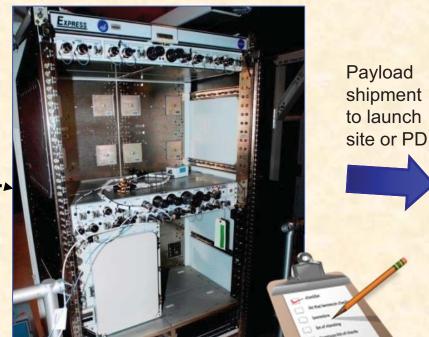
- Developed by Boeing, STELLA provides a generic software toolkit for Payload Developers to accommodate all of the unique software formatting required to communicate with the ISS.
- STELLA easily adapts Ethernet-based (TCP/UDP) software used in ground laboratories to software for conducting research on ISS; it enables a command and telemetry environment from ISS that is analogous to a terrestrial laboratory's control and data acquisition environment.
- > STELLA functionality highlights:
 - Payload commanding and payload file uplink
 - Remote console access to flight payload computer
 - Payload telemetry downlink and file downlink via the ISS Ethernet LAN
 - Payload health and status data routing to the Payload Operations Integration Center
- Boeing assists Payload Developers with STELLA software integration as a standard ISS integration service


Payload Testing for EXPRESS Rack

Virtual Private Network

Conducting Research on the ISS using the EXPRESS Rack


Payload


Rack simulator s/w provided for development

C&DH remote test possible using VPN

yload

EXPRESS Rack Functional Checkout Unit

Off-gas

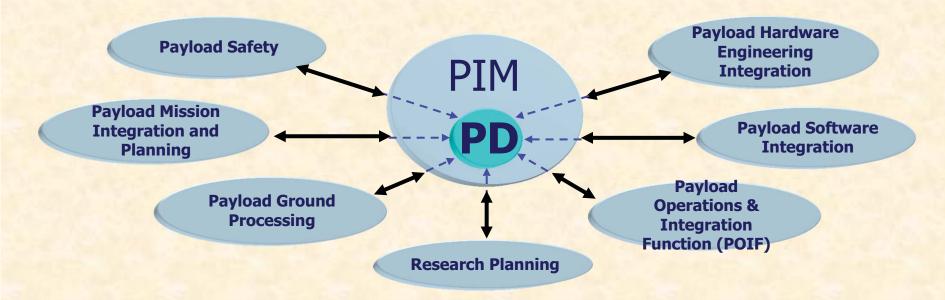
Vibration

EMI/EMC

Additional Services
Available

Acoustics

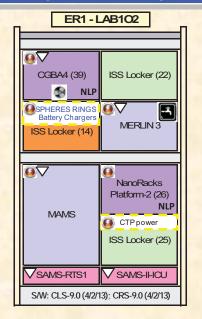
- Payload to rack interfaces verified efficiently for both Payload Developer and ISS
- End-to-end data flow from payload to rack to HOSC to PD ground station.
- Human Factors Team evaluates hardware locally
- Payload operations flight controller familiarization
- Validation of crew procedures

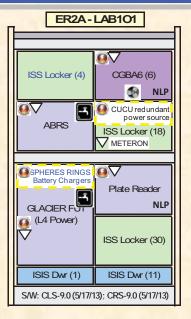

Payload Integration Manager

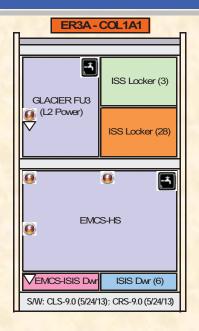
Conducting Research on the ISS using the EXPRESS Rack

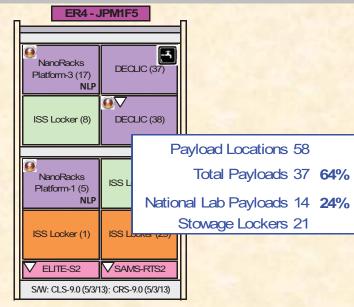
NASA Payload Integration Manager (PIM)

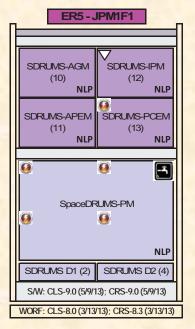
- Functions as the Payload Developer's primary interface to the ISS Program
- Serves as payload advocate while protecting ISS Program Requirements

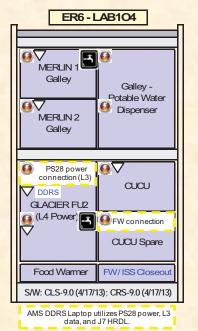

- Ensures payload requirements are accurately defined and documented
- Facilitates payload integration product development, delivery schedules, and communications with the ISS Program

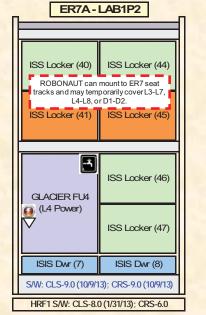


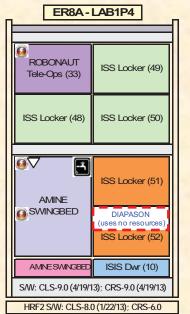

EXPRESS Topology - 10/15/13

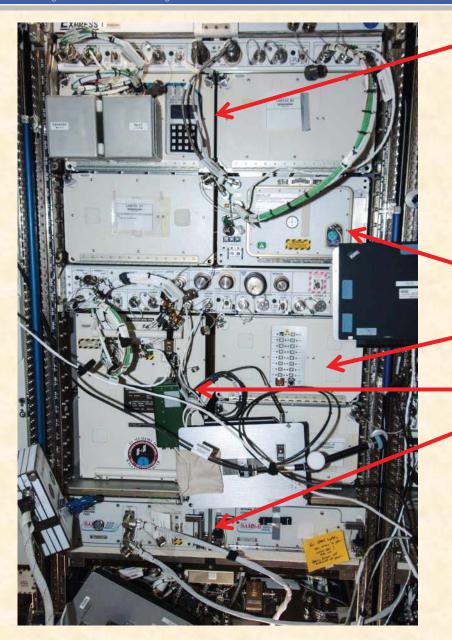



Conducting Research on the ISS using the EXPRESS Rack









EXPRESS Rack 1 (Inc 35)

Conducting Research on the ISS using the EXPRESS Rack

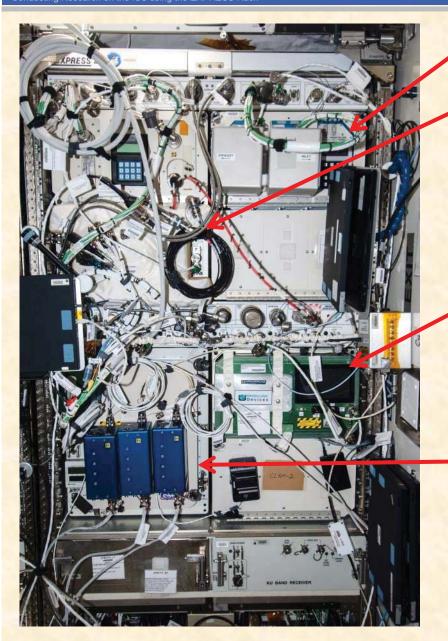
Commercial Generic Bioprocessing Apparatus (CGBA) 4

- Provides programmable, accurate temperature control for applications ranging from cold stowage to customizable incubation for experiments on cells, microbes, and plants.
- http://www.nasa.gov/mission_pages/station/research/experiments/CGBA.html

Microgravity Experiment Research Locker/INcubator (MERLIN) 3

NanoRacks Platform 2

Microgravity Acceleration Measurement System (MAMS) & Space Acceleration Measurement System-II (SAMS-II)

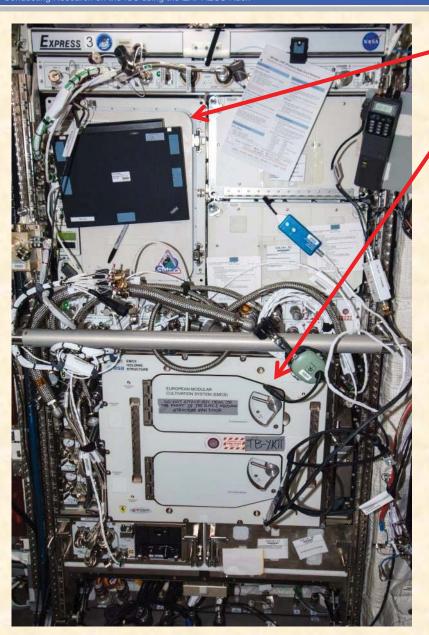

- Studies the small forces, or vibrations and accelerations, on the ISS that result from the operation of hardware, crew activities, dockings and maneuvering.
- http://www.nasa.gov/mission_pages/station/research/experiments/914.html

EXPRESS Rack 2 (Inc 35)

Conducting Research on the ISS using the EXPRESS Rack

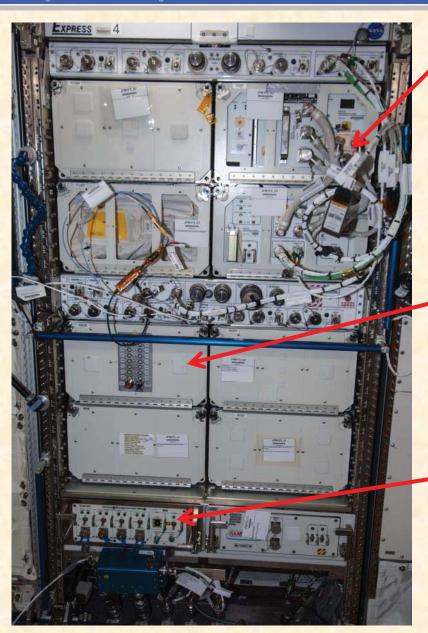
- Commercial Generic Bioprocessing Apparatus (CGBA) 6
- Advanced Biological Research System (ABRS)
 - Two growth chambers independently controlling temperature, illumination, and atmospheric composition to grow a variety of biological organisms.
 - http://www.nasa.gov/mission_pages/station/research/experiments/MERLIN.html

NanoRacks Plate Reader


- Instrument designed to detect biological, chemical or physical events of samples in microtiter plates.
- http://www.nasa.gov/mission_pages/station/research/exper iments/542.html
- General Laboratory Active Cryogenic ISS Experiment Refrigerator (GLACIER) 1
 - Ultra-cold freezers that will store samples at temperatures as low as -160 °C (-301 °F).
 - http://www.nasa.gov/mission_pages/station/research/experiments/GLACIER.html

EXPRESS Rack 3 (Inc 35)

Conducting Research on the ISS using the EXPRESS Rack


- General Laboratory Active Cryogenic ISS Experiment Refrigerator (GLACIER) 1
- **European Modular Cultivation System** (EMCS)
 - Large incubator that provides control over the atmosphere, lighting and humidity of growth chambers to study plant growth.
 - Contains two centrifuges whose speed can be set to exert a gravitational force ranging from nearly 0 to 2 g on four samples.
 - Developed by the European Space Agency (ESA)
 - http://www.nasa.gov/mission_pages/station/research/experiments/542.html

EXPRESS Rack 4 (Inc 35)

Conducting Research on the ISS using the EXPRESS Rack

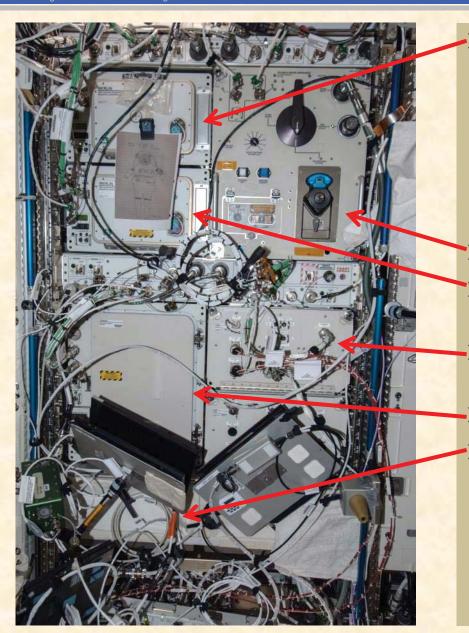
DEvice for the study of Critical Liquids and Crystallization (DECLIC)

- Multi-user facility utilized to study transparent media and their phase transitions in microgravity.
- Established the precise temperature (373.995 °C) at which water becomes supercritical.
- http://www.nasa.gov/mission_pages/station/research/exper iments/203.html

NanoRacks Platform 1

- NanoRacks Platforms provide power and data transfer capabilities for NanoRacks Modules, which function as experiment platforms for a wide range of disciplines.
- http://www.nasa.gov/mission_pages/station/research/experiments/829.html

ELaboratore Immagini TElevisive - Space2 (ELITE-S2)


- Investigates the connection between brain, visualization and motion in the absence of gravity.
- http://www.nasa.gov/mission_pages/station/research/exper iments/78.html

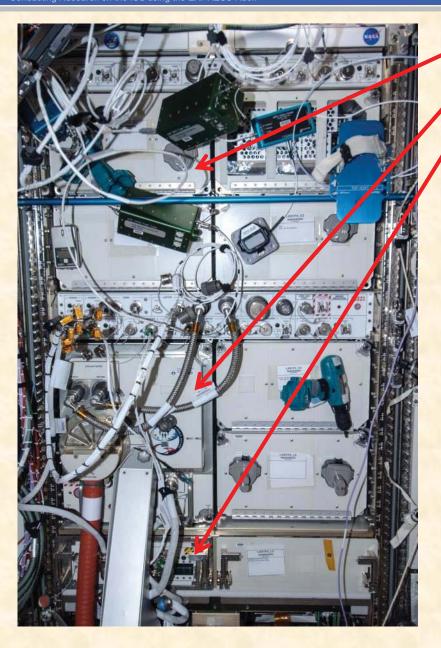
EXPRESS Rack 6, Galley (Inc 35)

Conducting Research on the ISS using the EXPRESS Rack

Microgravity Experiment Research Locker/INcubator (MERLIN) 1

- Freezer/refrigerator or incubator that can be used for a variety of experiments.
- Temperature range for MERLIN is -20 °C (-4 °F) to +48.5 °C (+119 °F).
- http://www.nasa.gov/mission_pages/station/research/experiments/MERLIN.html

Potable Water Dispenser


- Microgravity Experiment Research Locker/INcubator (MERLIN) 2
- COTS UHF Communication System (CUCU)
- **GLACIER 2**
- **Food Warmer**

EXPRESS Rack 8 (Inc 35)

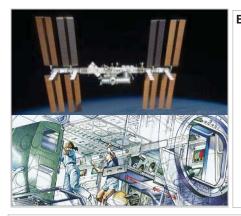
Conducting Research on the ISS using the EXPRESS Rack

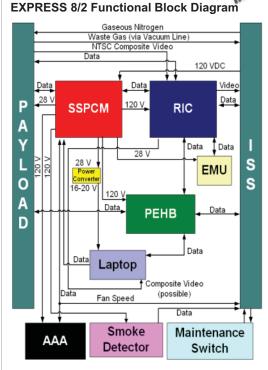
Robonaut Tele-Ops

Amine Swingbed

- Investigation determines if a vacuumregenerated amine system can effectively remove carbon dioxide (CO₂) from the ISS atmosphere using a smaller, more efficient ,vacuum regeneration system.
- http://www.nasa.gov/mission_pages/station/research/exper iments/Amine Swingbed.html

Summary


- EXPRESS Racks provide capability for payload access to ISS resources.
- The successful on-orbit operations and versatility of the EXPRESS Rack has facilitated the operations of many scientific areas, with the promise of continued payload support for years to come.
- EXPRESS Racks are currently deployed in the US Lab, Columbus and JEM.
- Process improvements and enhancements continue to improve the accommodations and make the integration and operations process more efficient.
- Payload Integration Managers serve as the primary interface between the ISS Program and EXPRESS Payload Developers.
- EXPRESS Project coordinates across multiple functional areas and organizations to ensure integrated EXPRESS Rack and subrack products and hardware are complete, accurate, on time, safe, and certified for flight.


Back Up Material

EXPRESS – EXpedite the PRocessing of Experiments for Space Station – Research Accommodations

EXPRESS 8/2 Configuration International Standard Payload Rack Secondary Structure & Subsystems 8/2 Payload Configuration (8 ISS Lockers, 2 ISIS Drawers)

ISS Locker P/N SEG46117022

Features

- 4 rear captive fastener attachments
- Friction hinge
- Dual door locks
- Installation tool guides on 4 corners
- Weight 13 lbs empty
- Volume 2 ft³

International Subrack Interface Standard Drawer

Powered P/N 683-43650 Stowage P/N 683-43656

Features

- 4 PU (Panel Unit)
- Blind Connectors
- Locking Handles
- Weight 26 lbs empty
- Volume 1.26 ft³

- Dedicated laptop/rack
- Crew rack displays
- Crew rack commanding
- Crew payload commanding
- Unique operating system (NT)

Total EXPRESS Rack Type Accommodations Structural 8 Lockers & 2 4-PU ISIS Drawers **Power** 2000 W 28 VDC power to payloads **Thermal Control** 2000 W payload heat rejection air/water combined (1200 W air) Data 10 - RS-422; 10 - Ethernet; 18 – Analog; 28 – Discrete (bi-dir) Video* 1 – NTSC feed from each payload **Vacuum Exhaust** 1 – Payload connection Nitrogen 1 – Payload connection

Power 28 VDC (+1.5/-(5/10/15/20 Am Power 120 VDC (+6/-4) SSPCN Ànalog +/- 5V Discrete (5 V) 25 Amps @ 3kW) MIL-STD-1553 HRDL RIC Video Analog IVS: Timing Signal **PEHB** Ethernet (10bT) Ethernet (10bT Vacuum Exhaust -Vacuum Exhau GN₂ MTL Water MTL Water (16 to 23° C) (200lbm/hr) AAA (61-73.4° F) EXPRESS Functional Interfaces

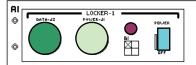
/-2.5 mps	A a a a mana a d'ati a m a **	4-PU Drawer Position Accommodations**
T) ust	Mass vehicle dependent	64 lb total within cg constraints
	5/10/15/20 Amps (@28 VDC)	5/10/15/20 Amps (@28 VDC)
	Nominal – 150 W (Ducted Air)	Nominal – 150 W (Ducted Air)
	500 W – 2 positions (Water)	500 W – 2 positions (Water)
	1 – RS-422; 1 – Ethernet ;	1 – RS-422; 1 – Ethernet ;
	2 - Analog; 3 - Discrete	1 – Analog; 2 – Discrete
	1 – NTSC/170A feed - Shared	1 – NTSC/170A feed - Shared
	1 – Shared	1 – Shared
	1 - Shared (0 - 12 lbm/hr)	1 – Shared (0 – 12 lbm/hr)
		•

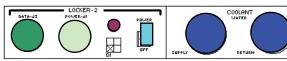
^{*} Digitized Payload Video may be included in ethernet telemetry

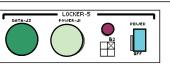
^{**} Grayed-out Accommodations are not supported with the Lean Payload Integration approach

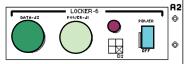
Conducting Research on the ISS using the EXPRESS Rack

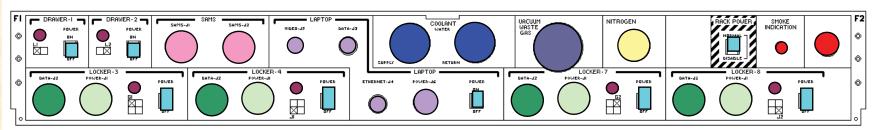
Rack Rear View




EXPRESS Rack Connector Panels




Conducting Research on the ISS using the EXPRESS Rack


Upper Connector Panel

Lower Connector Panel

Data Ports

ELC Video/Data/Ethernet/Power

LEDs

Nitrogen

Power Switches

Power Ports

SAMS Data Ports

Smoke Indication LED & Fire Port (PFE Access)

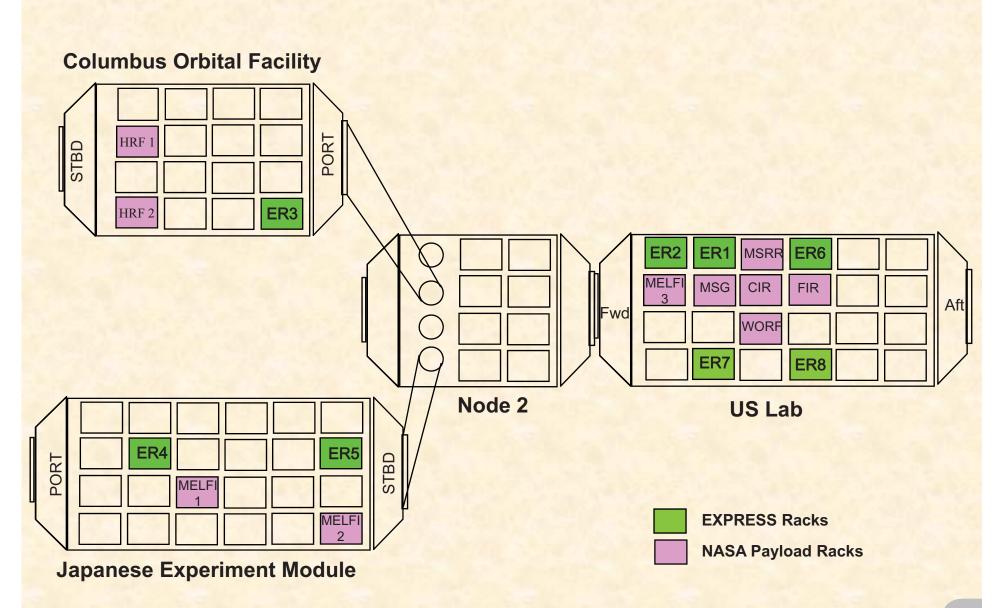
Water Supply & Return

Vacuum Waste Gas

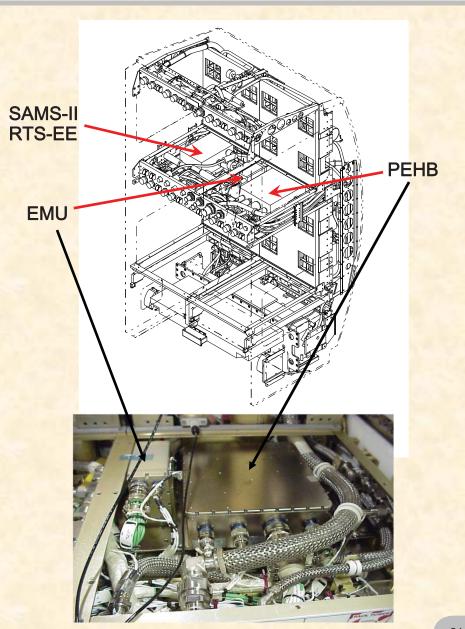
EXPRESS Topology - Legend

Conducting Research on the ISS using the EXPRESS Rack

n the ISS using the EXP	RESS Rack
ISS Locker	- Stowage Locker (no door) - Stowage Locker w/o door
ISS Locker	- Location reserved for Lean Payloads
Payload	- Payload Insert (Payload inserted into ISS Locker or ISIS Drawer)
Payload	- Locker Replacement Payload
ISIS Dwr	- ISIS Drawer
Payload	- Drawer Replacement Payload
-5	- requires water (TCS)
0	- requires EXPRESS Rack provided power
∇	- requires EXPRESS Rack provided data connection
•	- Front Breather payload
(223	- deployed payload
(111)	- power resource utilized


NLP - National Lab Payload

ISS Topology at Assembly Complete


Conducting Research on the ISS using the EXPRESS Rack

EMU: EXPRESS Memory Unit

- 320 MB solid state memory device that stores RIC boot-up and payload configuration data
- > PEHB: Payload Ethernet Hub Bridge
 - Provides primary means of communication between EXPRESS rack, the payloads, and the ISS.
 - Provides 10 Mbps Ethernet data packet transfer between payloads, laptops, and the RIC and provides a bridge to the ISS LANs for telemetry downlink.
 - Command and data interface to EXPRESS laptop.
- SAMS-II RTS-EE: Space Acceleration Measurement System Remote Triaxial System Electronics Enclosure (ARIS only)

EXPRESS Project

- Manage engineering integration activities for the EXPRESS Racks.
- Review and submit the integrated EXPRESS Safety Data Package.
- Review and approve EXPRESS generic and payload-unique documentation and engineering integration products.
 - EXPRESS rack to payload hardware and software ICDs, IDD, IRD, PVP
 - ICD PIRNs, Exceptions, Verification
 - Stage Analysis/Guidelines & Constraints, On-Orbit Topology Config. Drawings
 - Review and sign CEFs for EXPRESS hardware manifests
- Facilitate identification and coordinate resolution of EXPRESS issues.
- Perform Mission/Stage Management & ensure accurate and complete accomplishment of CoFR activities for all launched and on-orbit EXPRESS hardware.
- Coordinate EXPRESS Project support for subrack payload development.
 - Review Payload Integration Agreements (PIAs)
 - Notify PSS manager of requested GSE and GFE (Connectors, QDs, Simulators, etc)
 - Facilitate EXPRESS Rack interface TIMs, as needed
 - Coordinate development and interface testing with Functional Checkout Unit
 - Support EXPRESS Integration Readiness Review (EIRR)