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System Engineering of Autonomous 
Systems
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 System Engineering seeks to obtain Elegant Systems 
which function 
 Effectively in their intended application and 

environment
 Most efficiently as compared to options fitting the 

system context
 Robustly in application and operation
 Avoiding Unintended Consequences



System Engineering of Autonomous 
Systems
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 Elegant System Engineering requires
 Understanding the Mission Context

 System Applications
 System Environments (operational, test, abort, etc.)

 Understanding the Physics of the System
 System Interactions with themselves and with their environments are governed 

by their physics
 Information Theory provides linkages between physical state representations 

and actual physical states
 Managing the organizational influences on system design and the system 

context influences on the organization
 Understanding Policy and Law Constraints

 National Space Policy
 International Space Treaties and agreements

 Space Debris, Contamination, Property



Autonomy in Context:  What and Why?
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 Spacecraft and Surface System Autonomy is the enabling capability for Human Exploration 
beyond Lunar Sortie Missions
 Autonomy is necessary for complex system operations

 Timely response to unplanned or unscheduled events

 Propulsion, Structure, Thermal Conditioning, ECLSS, Electrical Power, Avionics, RCS, 
Communication are all understood sufficiently to allow engineered solutions to be reliably 
produced
 Challenges do exist in terms of Space Environmental Effects, efficiency, compact size

 Radiation Hardened computer processors needed

 Physics and demonstrated solutions are available from which to engineer a vehicle

 Operations are sufficiently understood for terrestrial based execution, not on-board execution
 Manual operations provide a rich knowledge base of planning and execution processes

 Manual operations have a generic template (derived from Apollo/Saturn) applied uniquely to each 
spacecraft

 Terrestrial based manual operations will not support operations beyond 5 light minutes from Earth

 Autonomous Operations are essential to Human Exploration of the Solar System



Operations Concept Drivers
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 Small Crew Size (4-6)
 1 crew member per shift available for vehicle operations

 Limited systems experts

 Complex Systems
 Nuclear Power and Propulsion Systems

 Life Support and Environmental Protection

 USN Attack Submarines are similar complexity systems but have 134 crew members

 ~525 high level functions to manage an interplanetary crewed spacecraft.

 Abort Scenarios
 Unambiguous determination

 Extremely low latency

 Fully autonomous/automated (crew incapacitated conditions)

 Vehicle reconfiguration necessary

 Long Communication Latency/Blockages
 15 minutes one way, 30 minutes round trip to Mars

 Ground based intelligence not responsive to maintain crew safety

 1 hour blockage by Moon each Lunar orbit

 Harsh Environment
 Solar flare radiation

 Meteorites
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Spacecraft Systems Overview
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 Beyond Earth Orbit (BEO) crew transport vehicle are comprised of several 
unique and intricately integrated subsystems
 Propulsion
 Structure
 Electrical Power
 Avionics
 Thermal Management
 Flight control system
 Communication and Tracking
 Vehicle Management (Guidance, Navigation and Control (GN&C) and Mission 

and Fault Management (M&FM))
 Environmental Control and Life Support Systems (ECLSS)

 Each of these subsystems are driven by unique physics and information 
theory relationships

 Control Theory governs the control of each subsystem both independently 
and at the vehicle level



State Variable Methodology

 Goal/Function Tree
 State Variable to define System Performance

 State variables are defined as inputs and outputs to 
functions:  y=f(x)
 x = inputs to the functions f
 f transforms the inputs into the outputs y

 Goals = Requirements => define intended range of the 
output state variables y

 Failure = state (value) of output state variable y is out 
of intended range

 State variables enforce strong connection of the 
functional decomposition to the system’s physical laws 
and causation

 The state variables are the connection between function 
and design—exist in both function and design 
representations

 Allows system to be analyzed in each mission phase 
and goals which can have different ranges and 
values for each state variable
 Allowed leak rates vary inversely with time from Earth 

Return date 9
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• Crewed BEO Mission Goal Types
• Transportation
• Crew health and safety
• Scientific and Technical



Transportation Goals
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 Position, Velocity, Acceleration
 Earth Departure, Mars Departure

 Propulsion System
 Flight Control System

 Interplanetary Coast
 Propulsion System
 Flight Control System

 Planetary Orbital Insertion
 Propulsive
 Aero Braking

 Surface Descent
 Propulsive
 Aero Surfaces

 Planetary Mobility
 Drive force
 Control System



Crew Health and Safety Goals
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 Provides link between human health and System Performance
 Biological
 Psychological

 Biological State Variables are linked directly with System State Variables
 Biological

 Heart rate
 Respiration rate
 Food intake
 Water intake
 Solid and Liquid waste production rate 

 Spacecraft Systems
 Breathable air (oxygen concentration, carbon dioxide concentration, atmospheric pressure)

 Oxygen can  be stored as LOX and converted to gas as needed

 Drinkable water (mass)
 Consumable food (mass)
 Solid and Liquid waste processing/disposal (mass)
 Vehicle acceleration rates (linear and rotational accelerations)
 Crew Cabin/Suit temperature (temperature and humidity)
 Activity (work and exercise)  and sleep times (hours or minutes / crew day)
 Communication System (family communications (email, video, audio), entertainment, etc.)

 Ranges vary with mission phases



Science and Technology Goals
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 Information Return
 Communication systems
 Transmission rates

 radiated power
 signal strength
 beam width

 Sample Return
 Containment System (mass, pressure, leakage rate)
 Samples (mass)



Autonomy Stack
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 Autonomy must operate consistent with the physical 
control laws of the vehicle systems

 Multiple subsystems exist within the vehicle
 Management algorithms must match subsystem physical 

control laws
 Vehicle level integration is a unique set of relationships 

dependent on the subsystem types chosen
 Type of Propulsion
 Type of Flight Control System(s)
 Type of ECLSS
 Type of Electrical Power Generation
 Etc.



Autonomy Stack
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 Vehicle Autonomy has 5 distinct functions
 Control
 Monitoring (sensing)
 Performance Determination
 Diagnostics
 Prognostics

 Subsystems Autonomy has the same 5 distinct functions
 Control
 Monitoring (sensing)
 Performance Determination
 Diagnostics
 Prognostics

ISHM
FDIR

Control System

ISHM
FDIR

Control System
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Candidate Autonomous Algorithms for 
Spacecraft Systems
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 Several classes of Autonomous Algorithms
 Expert Systems
 Neural Networks
 Bayesian Belief Networks
 Model Based Reasoning
 Fuzzy Logic

 Demonstrated in marine, space, industrial, and aviation applications
 Verification and Validation (V&V) approaches will need to be 

defined for these algorithms, both individually and as an integrated 
set
 Formal V&V Methods (e.g., model checkers) need to be properly 

applied
 Non-deterministic V&V methods need definition



Candidate Autonomous Algorithms for 
Spacecraft Systems
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 Expert Systems
 Expert rules establish decision structure
 Knowledge base contains rules and relationships
 Serves well as a central authority where rules/relationships 

are clearly established
 Can be processing intensive with high data storage 

requirements depending on rules and rule relationship 
complexities

 Well suited for:
 Mission Planning, Crew and Mission Constraint Management
 Subsystems with clear cut physical equations and well understood 

interrelationships



Candidate Autonomous Algorithms for 
Spacecraft Systems
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 Neural Networks
 Gradient Descent Methods

 Deterministic due to the underlying mathematics
 Ideal for nonlinear and interpolative applications/situation

 Static Networks
 Learning during training operations only
 Quality of application based on quality of training cases

 Dynamic Networks
 Learning during real time operation
 Validation and predictability

 Implementation
 Hardware (fast)
 Software
 Complexity can be difficult to verify and may require specialized chips (e.g., ASIC)

 Ideal for 
 Control of highly nonlinear subsystems

 Propulsion, Flight Control System transients
 Interpolation

 Good where there is limited knowledge of complex physical interactions
 Real time adaptation in the event of spacecraft subsystem reconfiguration (failure response)



Candidate Autonomous Algorithms for 
Spacecraft Systems
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 Bayesian Belief Networks
 Applies Bayes Rule to Determine System State
 Prior States
 Current Belief probability

 Best employed as an information source for other subsystem 
or vehicle autonomous algorithms
 Helps clarify/validate uncertainty
 Aids inference and reasoning (e.g., augments Expert Systems) 

 Well Suited for:
 Performance Determination

 Vehicle
 Subsystem



Candidate Autonomous Algorithms for 
Spacecraft Systems
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 Model Based Reasoning
 Models based on extensive domain knowledge
 Can leverage design models
 Uncertainty based on fidelity of model implemented

 Software architecture must address
 Efficient Programming Language
 Operating System capable of dealing with 

 Conflict resolution
 Efficient processing
 Embedded systems for mission critical applications (i.e., software health 

management)

 Well Suited for:
 Vehicle and Subsystem Diagnostics
 GN&C (Kalman Filter)



Candidate Autonomous Algorithms for 
Spacecraft Systems
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 Fuzzy Logic
 Classical Mathematical Set Theory
 Requires deep knowledge of subsystem physical rules 

and interactions to properly train
 Provides support to Reasoning Systems (e.g., Model 

Based Reasoning)
 Well Suited for:
 Flight Control Systems



Autonomous Algorithm Integration
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 3 Levels
 Mission Execution and Planning
 Vehicle Management
 Subsystem Integration Based
 Physics form basis of subsystem 

interactions
 Form basis of normal or failed states

 Subsystem Level
 Physics based



Autonomous Algorithm Integration
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 Subsystem Level Autonomy
 Keys:   

 Understanding the physics of the system 
 Selecting an autonomous algorithm that can

 effectively manage the system physics(take the necessary actions based on all interactions) 
 and responsively manage the system physics (take the necessary action in a timely manner) 

 System physics are driven by the internal system processes, interactions with 
other systems, and interactions with the environment, all of which must be 
managed by the algorithm

 System-level algorithm matching involves knowledge of the system transfer 
functions which include external system and environment interactions
 Control Theory is important in implementation. 

 The physics will define the poles and zeros of the control system and the relative proximity of 
the system response to these locations. 

 System Transfer Functions must be defined and matched with the characteristics of the 
autonomous algorithms



Autonomous Algorithm Integration
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 Vehicle Level Autonomy
 Keys:   
 Integration of the systems autonomous algorithms into a 

cohesive and response management system
 Algorithms taking proper responses to planned and 

unplanned conditions
 Managing the subsystem physics effects on the vehicle are 

essential
Manage interactions between systems

 Vehicle must manage cooperative vs. competitive subsystem 
responses such that subsystems do not counter each other’s 
actions leaving the vehicle in a failed state 



Autonomous Algorithm Integration
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 Mission Execution and Planning
 Keys: 

 Mission Execution
 Manages the total execution of the all mission aspects from a vehicle stand point

 Proper knowledge of the current vehicle states
 Progress toward specific mission objectives

 Mitigates subsystem interaction effects through adjustment to system control parameters in 
response to specific physical events. 

 Mission Planning 
 Based on

 Proper knowledge of the current vehicle states
 Progress toward specific mission objectives

 Conducts Re-planning (with crew approval) to ensure future vehicle states will stay within 
mission objectives and constraints

 Three Levels
 Strategic:  Earth-based controls will also be involved 
 Tactical:  Crew input and approval
 Emergency:  Automated to prevent loss of mission, crew, or compromise of crew safety



Summary
28

 Human exploration outside of the Earth planetary system (beyond Earth orbit) requires 
autonomous operation of the vehicle
 Communication Latencies
 Crew size Limits
 Vehicle Complexity

 A fully autonomous vehicle of this complexity will require multiple autonomous algorithms 
working cooperatively within a set of mission objectives and system constraints
 The understanding of the physics of the systems, system interactions, and environmental interactions is 

essential to the system engineering of this complex system
 The Goal-Function Tree methodology provides a system engineering approach to define the vehicle 

state variables and their interactions. 

 Algorithms at the vehicle level will need to handle future projected states to enable safe 
mission execution and planning. 

 Verification and validation approaches will need to be defined for these algorithms, both 
individually and as an integrated set
 V&V will also need to borrow from Formal Methods (e.g., model checkers)

 Applications looking at autonomous system cooperation will be essential to the development of 
human rated spacecraft operated away from the Earth planetary system


