

Development of Ionic Liquid Based Epoxies for Carbon Fiber Composite Cryogenic Tanks 2014 National Space & Missile Materials Symposium (NSMMS) 23 - 26 June 2014, Von Braun Center - Huntsville, AL

Development of Ionic Liquid Based Epoxies for Carbon Fiber Composite Cryogenic Tanks

R.N. Grugel (MSFC), W.F. Kaukler (UAH), M.S. Paley (AZ Technology), C.R. Henry (AZ Technology), C.T. Canaday (MSFC), W.C. Hastings (MSFC), and E. Rabenberg (MSFC)

23 - 26 June 2014, Von Braun Center - Huntsville, AL

Introduction

<u>Ionic Liquids:</u>

Basically "salts" that are liquid at some subjective low temperature, say < 100°C; Largely composed of ions.

Their discovery dates back to the 1800's.

Considerable advances made since then, applications/uses include:

- Battery Electrolytes
- Cellulose Processing
- Metallic Ore Refining
- Biofuel Processing
- Rocket Fuels
- Epoxies
- Many Others

23 - 26 June 2014, Von Braun Center - Huntsville, AL

23 - 26 June 2014, Von Braun Center - Huntsville, AL

Ionic Liquids as a Base for Epoxy Resins

Number of advantages for NASA Applications:

- Extremely Low Vapor Pressures
- Comparatively Better Low Temperature Strength
- Low Flammability
- Low Hydrogen Permeability
- Hydrophobic
- Low Coefficient of Thermal Expansion
- Comparatively "Greener" Manufacturing Process

Also Adheres well to Aluminum

23 - 26 June 2014, Von Braun Center - Huntsville, AL

Mechanical Testing: Initial Results

ΕΡΟΧΥ	TEST VALUE	TEMP
Button adhesion		
ILEP-2	8400psi	RT
ILEP-2	9100psi	LN2
Lap shear		
ILEP-2	1833psi	RT
Epon 828	1350psi	RT
Tensile		
ILEP-2	8675psi	RT
Epon 828	6004psi	RT
Epotek 301-2	3751psi	RT
Hysol 9361	1153psi	RT
Tra-Con F 113	2539psi	RT
Epotek 301-2	6783psi	100 K
Hysol 9361	4225psi	100 K
Tra-Con F 113	7092psi	100 K

23 - 26 June 2014, Von Braun Center - Huntsville, AL

Property Improvement: Addition of Core Shell Rubber (CSR) Particles

Nano-scale Core-Shell-Rubber (CSR) particles designed to toughen polymers have been successfully and uniformly incorporated into the epoxy matrix.

SEM micrograph of an epoxy impact test showing uniform dispersion of CSR particles over a torturous fracture path.

23 - 26 June 2014, Von Braun Center - Huntsville, AL

Plot of impact test results with increasing percentages of CSR for room and liquid nitrogen temperatures.

Batch 18 0% CSR RT

Batch 18 0% CSR LN2

Batch 22 8.8% CSR RT

Batch 22

8.8% CSR LN2

23 - 26 June 2014, Von Braun Center - Huntsville, AL

Plot of tensile test results with increasing percentages of CSR for room and liquid nitrogen temperatures.

Note: Above LN2 Tensile

Data is Misleading!

Batch 22 8.8% CSR LN2

Batch 18 0% CSR RT

Batch 18 0% CSR LN2

Batch 22 8.8% CSR RT

Batch 22 8.8% CSR LN2

23 - 26 June 2014, Von Braun Center - Huntsville, AL

Other Property Improvements due to Addition of CSR Particles

1) Measured improvement in the glass transition temperature

2) Measurement of the IL epoxy Coefficient of Thermal Expansion from cryogenic to room temperature was very favorable at $36 \pm 2 \text{ ppm} (36 \pm 2 \times 10^{-6})$ which places amongst the lowest of the common polymers.

Development of Ionic Liquid Based Epoxies for Carbon Fiber Composite Cryogenic Tanks 2014 National Space & Missile Materials Symposium (NSMMS) 23 - 26 June 2014, Von Braun Center - Huntsville, AL

Composite Article Fabrications using CSR IL Epoxy

Some carbon-fiber test articles utilizing CSR containing IL epoxy have been successfully made.

Fabricated 5-layer carbon cloth hexagonal shaped rollup made with IL epoxy containing 8.8% CSR

Development of Ionic Liquid Based Epoxies for Carbon Fiber Composite Cryogenic Tanks 2014 National Space & Missile Materials Symposium (NSMMS) 23 - 26 June 2014, Von Braun Center - Huntsville, AL

Cycling ILE - Carbon Fiber in LN2 shows no evidence of cracking/delamination

Left: Macrograph of initial surface. Right: Surface after 10 cycles between room and LN2 temperatures.

23 - 26 June 2014, Von Braun Center - Huntsville, AL

Interim Summary

1) Properties of ILE Resins Strongly Support NASA Applications

2) The Addition of CSR Particles Significantly Improves Properties

3) Viable Carbon Fiber Composites made with ILE Resins

23 - 26 June 2014, Von Braun Center - Huntsville, AL

Commercial Comparison

Plot of impact test results comparing ILE's to Epon 828 resin – Huntsman T-403 curing agent epoxy resin

23 - 26 June 2014, Von Braun Center - Huntsville, AL

Future Work

- Continue to Improve IL Chemistry
- Continue Testing

Composite Overwrap Pressure Vessel (COPV) Burst Test
Evaluate IL Performance in LOX and LH2 Environments

Samtech SK1229 aluminum liner COPV burst test bottles with identical Hexcel IM-10 Carbon Fiber wraps

Epon 828 Resin with Huntsman T-403 Curing Agent

IL Resin (no CSR) with APB Curing Agent

23 - 26 June 2014, Von Braun Center - Huntsville, AL

Acknowledgements

This work was originally funded by a MSFC TIP proposal. Continued support by MSFC EM20, EM30, and EM40 is gratefully acknowledged. The authors particularly appreciate the invaluable in-kind support of AZ Technology