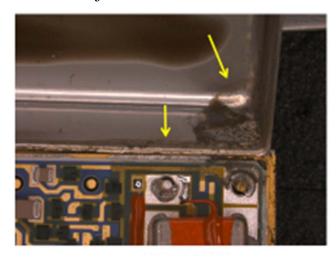


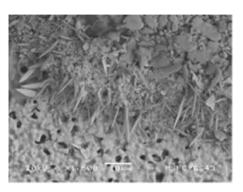
AGENDA

- I. Hermeticity 101
- II. Task Objectives
- III. Task Update
 - A. Instrument Correlation Study
 - B. Gross Leak Standard Development
 - C. Test Method Optimization

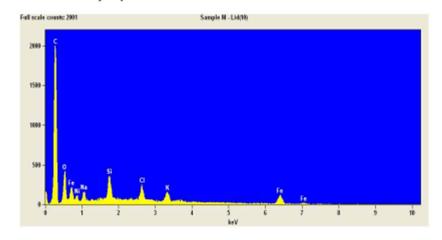
High reliability design applications typically require the use of hermetically sealed microelectronics to insure device longevity and ruggedness in an attempt to mitigate risk to mission critical electronic systems.

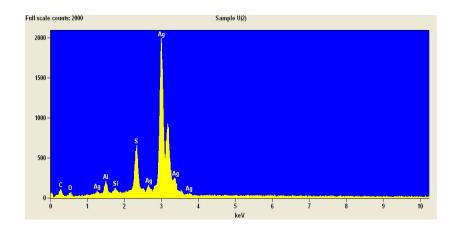

- Damaged or defective seals and feedthroughs can allow ambient air/water vapor to enter the internal cavity of a device which over time and under the right conditions can lead to device failure.
- Examples of failure modes due to moisture/air ingress:
 - Chemical corrosion of device metallization
 - Die lifts due to oxidation of solder die attach
 - Surface electrical leakage
 - Electrical shorts due to dendritic growth
 - Stiction in MEMS
 - Arc discharge in the presence of Argon

• Hermetic Failures


Evidence of corrosion with reduced electrical stability

Examination of a representative Ag₂S corrosion area


284U ×296 1894m №FC/E84J

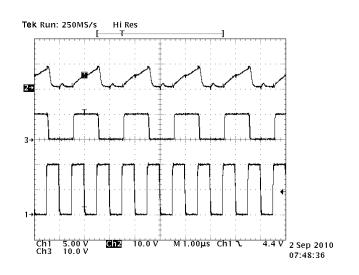

Die and bond area at low magnification

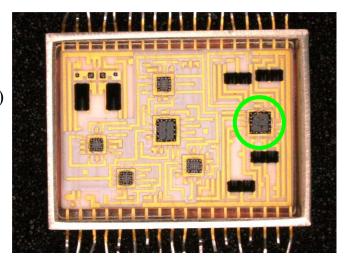
Evidence of heavy growth of Ag₂S along Ag die attach edge and bond pad

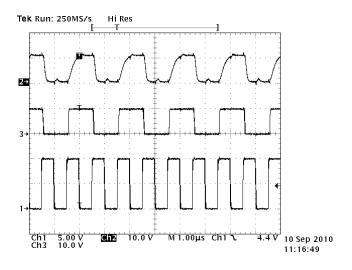
Elemental analysis provides evidence of ionic contamination and corrosion

• Surface Electrical Leakage

Electrical instability in the presence of ionic contamination and moisture

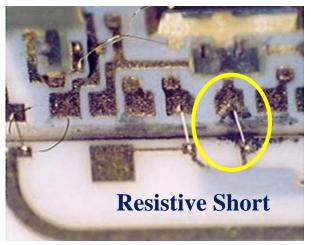

■ Failure: MDM Module in an IEA (2009)


■ Isolated: 8-bit CMOS Shift Reg. Die (LDC 8222)

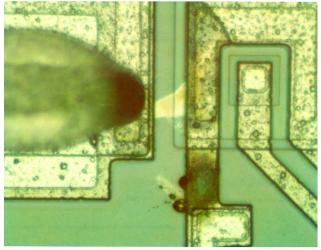

Electrical Testing

> As Received

➤ 24 hr Bake Out @ 125°C

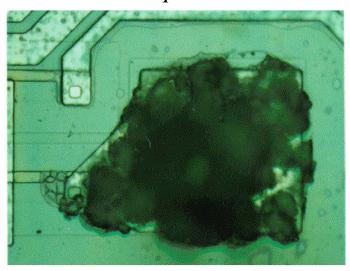


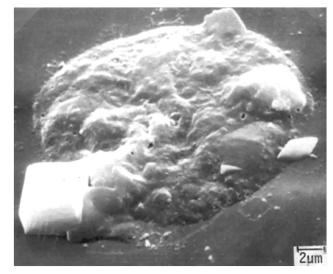
• Dendritic Growth

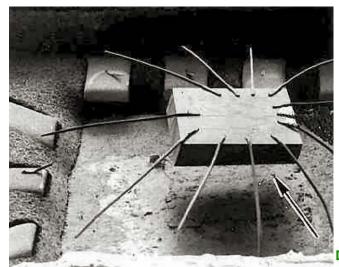

Growth is cause by a combination of electrical bias, contamination, and moisture

• Surface Arcs

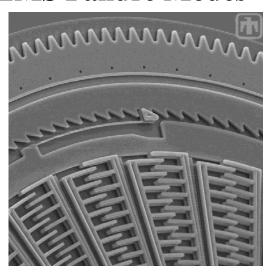
Usually occur over a 300V transient but are dependent on surface glassivation and moisture

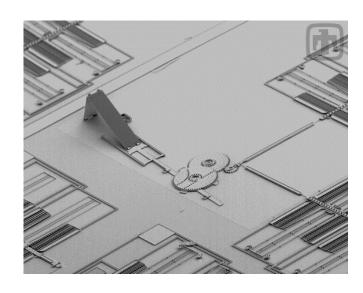





• Corrosion

Aluminum bond pad corrosion in the presence of ionic contamination and moisture


• **Die Lifting**Oxidation of Solder Die Attach



• MEMS Failure Modes

Stiction:

Internal MEMS structures are so small that surface forces (capillary condensation, van der Waals molecular forces, and chemical and hydrogen bonds between the surfaces) cause microscopic structures to stick together when their surfaces come into contact.

Humidity:

Surface micromachined devices are extremely hydrophilic for reasons related to processing. In the presence of humidity, water will condense into small cracks and pores on the surface of these structures (i.e. gears) and effect operability.

Fine and gross leak testing are used to determine the effectiveness of package seals in microelectronic packages.

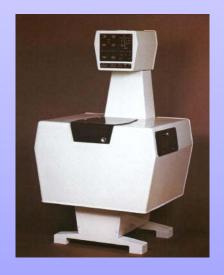
- Most specifications for hermeticity testing define leak rates larger than 10-5 as being GROSS and smaller than 10-6 as being FINE.
- Three systems are used to non-destructively test: CHLD, KR-85, OLT
 - CHLD, Kr-85 systems use back pressurization of a tracer gas to enter existing leak paths. A detector is used to determine the presence of gas.
 - OLT uses an interferometer to measure package lid deflection in the response to changes in ambient pressure. The amount or absence of lid deflection is directly correlated to a helium leak rate.
- Testing is performed in accordance with MIL-STD-883, Test Method 1014 for hybrids/microcircuits and MIL-STD-750 for 1071 for discrete semiconductor devices

TASK OBJECTIVES

NEPP Hermeticity task is a collaborative effort between GSFC/MSFC to address the following:

- Determine CHLD test equipment capability between NASA centers as well as correlation of test results with other equipment used for hermeticity testing (OLT, Krypton-85, IGA)
- Design, fabricate, and test gross leak hermeticity standards
- Provide input to DLA Land & Maritime to optimize hermeticity specifications based on the knowledge gained during correlation studies, part testing, and research efforts

Hermeticity Correlation Study



What was the purpose of this study?

Conduct a round robin study of non-hermetic parts to evaluate hermetic test equipments capability to positively identify fine and gross leaking devices.

Krypton-85
(IsoVac Mark V Bomb Station)

OLT System
(NorCom 2020 Optical Leak Test System)

Test Plan

Step 1 Secure Non-Hermetic Parts

- Obtained 3 sets 10 parts each of MIL-STD-750 gross/fine leakers from IsoVac, Inc. which were go/no go tested (Prerequisites: Nitrogen sealed, no fluorocarbon/red dye testing)
- 3 package styles were used: TO-18, TO-5, and UB

Step 2 Confirm GSFC/MSFC CHLD Performance

- Used 2 calibrated helium leak standards to verify high/low leak range accuracy
- Verified empty chamber values to confirm analyzer sensitivity to detect fine leaks and set GLT to detect gross leaks

Step 3 Test Parts Using CHLD, OLT, and Kr85 Equipment

- Order of testing was CHLD-MSFC, CHLD-GSFC, OLT NorCom, Kr85–IsoVac, Kr85–MSFC, Kr85 Red Dye-IsoVac (if applicable)
- Exception: Set 1 T0-18 gross leakers were tested by CHLD-MSFC after OLT-NorCom

Step 4:

Test Parts With IGA to Confirm Parts Selected Were Non-Hermetic Testing was done for final confirmation of part hermeticity and to ensure fluorocarbons were not present which could skew test results

Test Specifics

CHLD

- MSFC/GSFC tested in accordance with MIL-STD-750 TM1071 Test Condition CH₂
- Both used identical bombing conditions, equipment setup, and comparable wait times prior to testing each sample
- CHLD test conditions and system setup are summarized in a backup chart

OLT

- NorCom, Inc. tested in accordance with MIL-STD-750 TM1071 Test Condition L₂
- OLT test and bombing conditions were determined by NorCom
- Testing was observed by GSFC
- OLT test conditions and system setup are summarized in a backup chart

Kr85

- MSFC/IsoVac Eng., Inc. tested in accordance with MIL-STD-750 TM1071
- Gross leak was performed using Test Condition B
- Fine leak was performed using Test Condition G-1
- Red dye testing was performed by IsoVac Eng., Inc. in accordance with Test Condition A
- Test conditions and system setup are summarized in a backup chart.

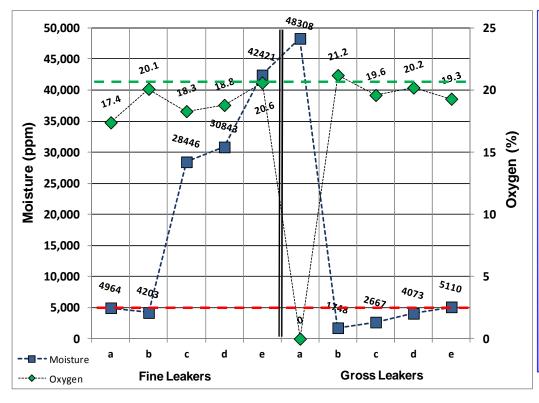
IGA

- ORS, Inc. tested in accordance with MIL-STD-750 TM1018
- TO-5, TO-18 IGA was performed using a quadrupole mass spectrometer. TO-18 required special mounting (<0.7cm diameter)
- UB High Resolution HR-IGA was performed using a time of flight (TOF) mass spectrometer. (volume <0.01)
- All samples were prebaked 16-24hrs @100°C and tested at 100°C

Data & Results

Legend for Correlation Data Tables

- Failed (correlates with baseline Kr85 and RGA)
 - Failed fine when initially Kr85 failed as gross
- G Failed gross when initially Kr85 failed as fine
 - P Plugged resulting in passing a failed part
- P OLT passed device when other instruments failed the device
- P OLT fails device when CHLD/Kr85 data indicates its plugged
- Instrument not capable to test part
 - N/A Not Applicable



Data & Results: Set 3 UB

System	Order of				Fine						Gross		
System	Testing	а	b	С	d	е	Results	а	b	С	d	е	Results
Kr85	IsoVac (Pass/Fail)						5/5						5/5
CHLD	MSFC	P	P	P	P	Р	0/5						5/5
	GSFC	P	P	Р	P	Р	0/5						5/5
OLT	Norcom				Packa	age Ty	pe Canno	t Be T	estec	l With	olt		
Kr85	IsoVac	P	P	P	P	Р	0/5						5/5
	MSFC	P	P	P	P	P	0/5						5/5
	IsoVac (Red Dye)	P	Р	Р	P	Р	0/5				N/A		
RGA	ORS						5/5						5/5

Lot Date Code is unknown; Fine leak limit is 1 X 10⁻⁹ atm-cc/sec air

Test Result Summary

Gross:

- All instruments but OLT identified gross leakers per Mil-STD-750 TM's
- 5/10 RGA moisture under ppm failure criteria but indicated atmospheric exchange (Note: 883 would have passed these 4)
- 100% correlation between Kr85, CHLD, IGA.

Fine:

 Parts are plugged. Initially Kr85 was able to detect leakers subsequent CHLD, OLT, Kr85 testing could not.

Plugging

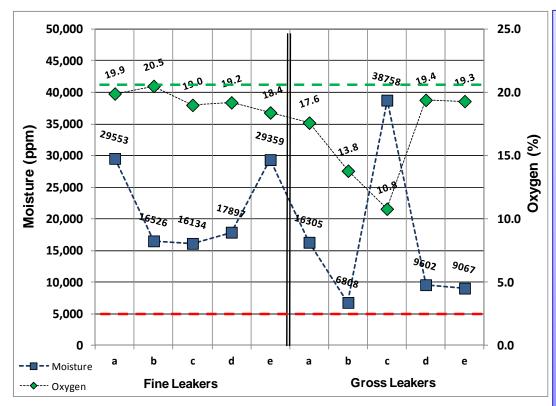
Handling

Testing

- When non-hermetic parts are handled/tested outside of a clean room environment atmospheric particle counts are higher and can plug existing leak paths.
- Test conditions during screening by mfg/user can expose device to ambient conditions and thermal/pressurized environments which can result in conditions conducive to plugging.

Storage

- Parts stored in ambient conditions provides a suitable environment for oxidation. Metal compounds used in the sealing process and device construction can rust and plug existing leak paths.
- Storage conditions that allow moisture ingress or internal moisture to form inside the device cavity can cause one way leakers.



Data & Results: Set 2 TO-5

Order of			Fi	ne					Gı	ross		
Testing	а	b	С	d	е	Results	а	b	С	d	е	Results
IsoVac (Pass/Fail)						5/5						5/5
MSFC	2.5E-08	G	G	G	1.6E-08	5/5				1.2E-08	1.2E-08	5/5
GSFC	2.5E-08	G	3.4E-08	2.5E-08	1.8E-08	5/5	3.7E-08	3.8E-08		1.5E-08	1.6E-08	5/5
Norcom	P	2.9E-08	Р	8.3E-09	Р	2/5	Р	Р		Р	Р	1/5
MSFC	P	1.6E-08	P	4.1E-08	P	2/5	1.7E-08	P		Р	P	2/5
IsoVac (Final)	P	2.4E-08	P	3.9E-08	P	2/5	1.7E-08	P		Р	P	2/5
ORS						5/5						5/5

Lot Date Code 1009; Fine leak limit is 5 X 10⁻⁹ atm-cc/sec air

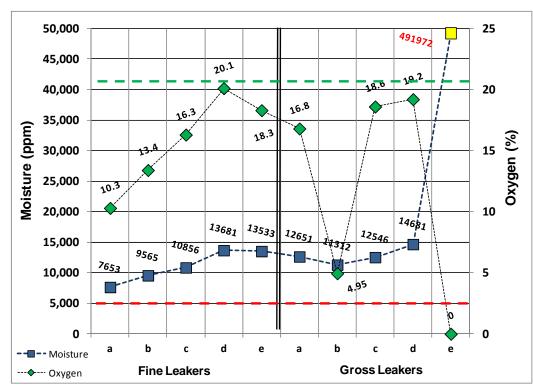
Test Result Summary

Gross:

- MSFC/GSFC CHLD failed all 5 parts
- 3 parts plugged after CHLD testing
- Of 2 remaining parts, OLT passed 1 failed part and failed 1 part.
- Kr85 failed 2 parts which correlates with CHLD and conflicts with OLT
- RGA data confirms that all 5 parts were leakers

Fine:

- CHLD failed all 5 parts
- 3 parts plugged after CHLD GSFC testing allowing Kr85 to only fail 2 parts
- RGA data confirms that all 5 parts were leakers



Data & Results: Set 1 TO-18

	Order of			F	ine			Order of			G	ross		
System	Testing	а	b	С	d	е	Results	Testing	а	b	С	d	е	Results
Kr85	IsoVac (Pass/Fail)						5/5	IsoVac (Pass/Fail)						5/5
CHLD/OLT	CHLD:MSFC	Р	Р	G	P	G	2/5	CHLD: GSFC	P		Р		P	2/5
	CHLD: GSFC	Р	Р	Р	P	Р	0/5	OLT: Norcom			9.2E-08	1.3E-08	P	3/5
	OLT: Norcom	G	1.2E-08	1.9E-08	P	G	4/5	CHLD: MSFC	P		Р	P	P	1/5
	IsoVac	Р	P	a	P	P	0/5	IsoVac	P	P	P	P	P	0/5
Kr85	MSFC	Р	P	P	P	P	0/5	MSFC	P	P	P	Р	P	0/5
	IsoVac (Red Dye)	P	P	Р	P	P	0/5	IsoVac (Red Dye)	N/A	Р	N/A	N/A	P	0/2
RGA	ORS						5/5	ORS						5/5

Lot Date Code is 0937; Fine leak limit is 5 X 10⁻⁹ atm-cc/sec air

Test Result Summary

Gross:

- All samples exhibited plugging
- CHLD GSFC passed one failed part that NorCom identified as a fine leak.
- One part shifted during OLT testing and would require retesting (?? Wait time and 5 hr rebomb)

Fine:

- All samples exhibited plugging
- GSFC identified all parts as passed.
 MSFC indicated 2 parts failed. OLT indicated 4 parts failed. Several scenarios unable to make a conclusion due to lack of correlation.

Correlation Without OLT

		Order of			F	ine			Order of			Gı	ross		
Part	System	Testing	а	b	С	d	е	Results	Testing	а	b	С	d	е	Results
Set 1	Kr85	IsoVac (Pass/Fail)						5/5	IsoVac (Pass/Fail)						5/5
(TO-18)	CHLD	CHLD:MSFC	P	Р	G	Р	G	2/5	CHLD: GSFC	Р		P		Р	2/5
0.0345 cc		CHLD: GSFC	P	Р	P	Р	Р	0/5	CHLD: MSFC	P		Р	P	P	1/5
		IsoVac	P	Р	Р	Р	Р	0/5	IsoVac	Р	Р	Р	Р	P	0/5
	Kr85	MSFC	P	Р	Р	Р	Р	0/5	MSFC	Р	Р	Р	Р	P	0/5
		IsoVac (Red Dye)	P	Р	Р	Р	P	0/5	IsoVac (Red Dye)	N/A	Р	N/A	N/A	P	0/2
	RGA	ORS						5/5	ORS						5/5

		Order of			Fi	ne					Gı	ross		
Part	System	Testing	а	b	С	d	е	Results	а	b	С	d	е	Results
Set 2	Kr85	IsoVac (Pass/Fail)						5/5						5/5
(TO-5)	CHLD	MSFC	2.5E-08	G	G	G	1.6E-08	5/5				1.2E-08	1.2E-08	5/5
0.2244 cc		GSFC	2.5E-08	G	3.4E-08	2.5E-08	1.8E-08	5/5	3.7E-08	3.8E-08		1.5E-08	1.6E-08	5/5
	Kr85	MSFC	P	1.6E-08	P	4.1E-08	P	2/5	1.7E-08	P		Р	P	2/5
		IsoVac (Final)	P	2.4E-08	P	3.9E-08	Р	2/5	1.7E-08	P		Р	P	2/5
	RGA	ORS						5/5						5/5

Dout	Sustana	Order of			F	ine					Gr	oss		
Part	System	Testing	а	b	С	d	е	Results	а	b	С	d	е	Results
	Kr85	IsoVac (Pass/Fail)						5/5						5/5
	CHLD	MSFC	P	P	P	P	P	0/5						5/5
Set 3		GSFC	P	P	P	P	P	0/5						5/5
(ceramic)	Kr85	IsoVac	P	P	P	P	P	0/5						5/5
0.0026 cc		MSFC	P	P	P	P	P	0/5						5/5
		IsoVac (Red Dye)	P	P	P	P	P	0/5			N	/A		
	RGA	ORS						5/5						5/5

Summary

Correlation CHLD

- GSFC and MSFC were able to fail the same devices when plugging did not occur.
- If plugging is considered, CHLD correlates with Kr85.
- When GSFC and MSFC both identified a fine leak, the leak rates correlated within < 1/4 magnitude.

Correlation OLT

- There is a lack of correlation between OLT and CHLD/Kr85 data for TO-18 packages and one gross TO-5 package.
- If OLT data was omitted, the results in this study correlate in regards to segregating failed devices and plugging.
- OLT could not test ceramic/metal lid UB parts.

Correlation Kr85

- MSFC and IsoVac correlate 100%.
- All gross leaks and plugged devices were identified, and fine leak rates were within <1/4 magnitude.
- IsoVac initial testing and ORS IGA correlate 100% proving these devices were all leakers at one time.

Lessons Learned

Plugging

- The **most reliable leak test** is the one performed during initial lot screening by the manufacturer.
- Leaky parts can gradually and/or completely plug at anytime.
- The mechanism of plugging requires more study to determine root cause.

IGA

• All constituent gases should be considered in the pass/fail criteria of MIL-STD-883 TM 1018.

OLT

- OLT should undergo additional qualification testing prior to its inclusion into the seal test methods.
- A list of devices that can not be tested with this instrument should be identified in the test methods.

Follow-up Work

Plugging

• Resealed RGA holes and performed a bake out test on 8 gross leakers to study the one way leak phenomena. 3 devices recovered prior to bake out (1 gross/2 fine). Isolated the leak to the seal area of the gross leaker using Kr-85 "sniffing" technique. The oven experienced thermal runaway during testing which jeopardized further leak testing.

IGA

• Submitted essential comments to add constituent gases to the pass/fail criteria of MIL-STD-883 TM 1018.

Testing

• Supporting a second instrument correlation study of MIL-STD-883 devices.

Leak Standard Development

Gross Leak Standard Development Plan

Phase 1: Design

- Adsorption Free Construction Materials
- Fabricated Using Typical Manufacturing Processes
- Micron Sized Holes (? -? μm)

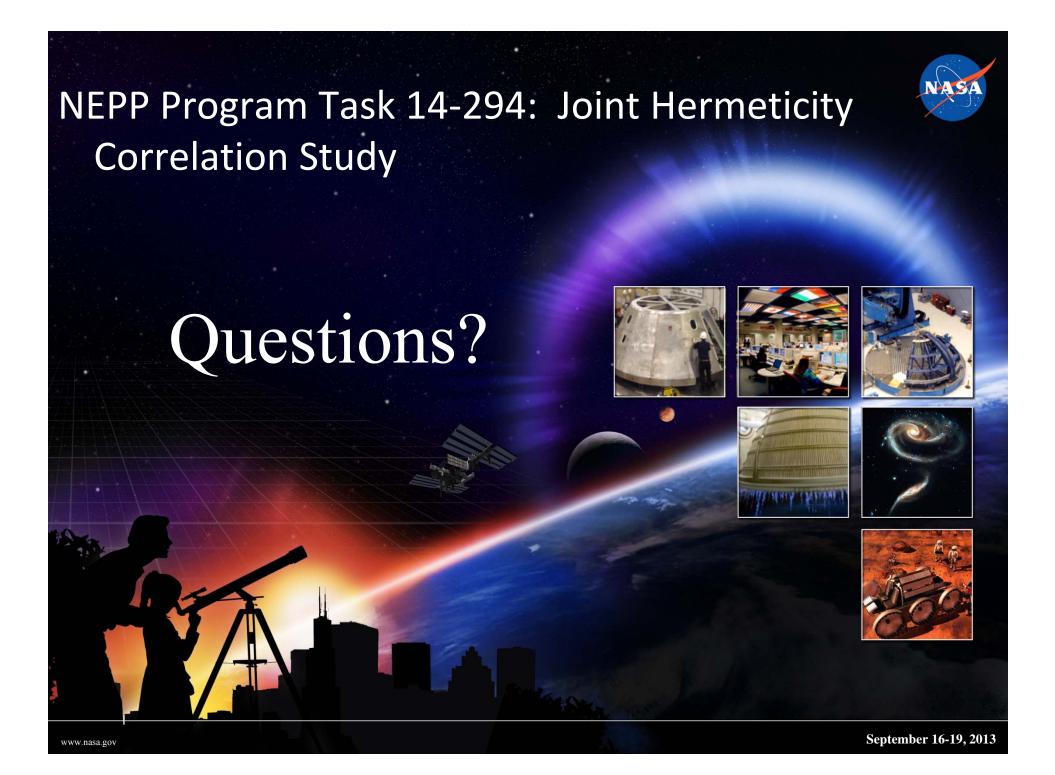
Phase 2: Validation

- Round Robin Measurements with Hermetic Test Equipment
- Identification of Strengths & Weaknessses
- Design Review: Go/No Go Decision

Phase 3: Implementation

- MIL-STD Optimization Based on Validation
- NIST and/or ANSI Standardization

Test Method Optimization

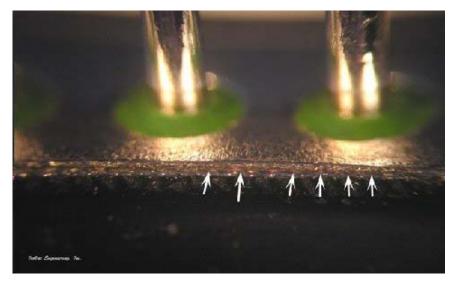


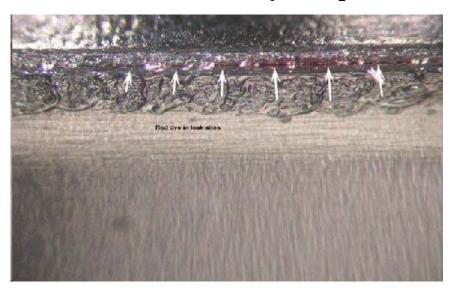
Objective

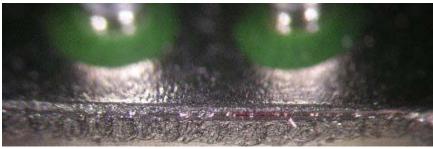
• Provide input to DLA Land & Maritime to optimize hermeticity specifications based on the knowledge gained during correlation study, part testing, and research efforts.

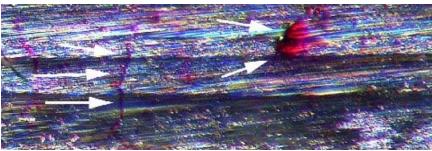
Status

- Calculated and submitted a CHLD fixed rate table to support the tightening MIL-STD-883 leak rate limits for class K devices.
- Currently working with Minco Technologies to correlate Kr85 gross leak test data of various small volume package samples which have 5, 4, 3, 2, and 1 mil holes. The data will be used to determine if the current specification for gross leak qualification is invalid as written and evaluate smaller diameter holes to determine optimum size.
- Evaluating the Kr85 red dye gettering efficiency which is used to test small volume packages that fail the 5mil hole criteria in the test methods 5, 4, and 3 mil size sample holes will be drilled in-house for testing.






Plugging Mechanism



These images show leaks in the weld material of TO-257 parts. The metal is "steel", which will start to rust right away in humid environments. Rust can potentially "plug holes." Gross leakers are shown below. Note that fine leaks may seal quicker.

Courtesy of IsoVac Engineering, Inc.

Plugging Mechanism

References

Greenhouse, H., <u>Hermeticity of Electronic Packages</u>, 2nd Edition, 2012

DerMarderosian, A. and Gionet, V., Raytheon, *Package Integrity Measurement Technology and Quality Assurance*, RL-TR-93-159, Rome Laboratories, August 1993

ORS White Paper, Interpretation of RGA Data, 1994

Epstein, D., ILC Data Device Corporation, *How to Test for One Way Leakers*, Hybrid Circuit Technology (March 1988)

Clark, R. A., Teledyne and DerMarderosian, A., Raytheon, *Variable Leak Rate Phenomena in Glass to Metal Seals*, International Symposium on Microelectronics (1998)

Devaney, J. Hi-Rel and Dicken, H. DM Data, *Failure Mechanisms and Picture Dictionary*, IEEE Parts Technology Seminar Powerpoint Presentations @ MSFC (Sept. 2007)

Test Specifics: CHLD

			Volume	L (air)				He Boml	bing		CHLI) Set Value	es	Tes	ting
Group	Desc.	LDC	(cc)	(atm-cc/sec)	Item	SN's	Pressure (psig)	Time (hr)	R1 (He) (atm-cc/sec)	Chamber	Insert (mm)	GLT	Method	Dwell (min)	Test Order
Set 1	2N2907A	0937*	0.0345	5.00E-09	Fine	1-5	60	90	8.03E-09	Small	7/11	1.00E-09	20/3/30/30/3	20/24	SN
(T0-18)					Gross	B07, B19, B27, B37, B42	60	90	8.03E-09	Small	7/7	5.00E-10	10/3/10/10/3	40/45	SN
Set 2	2N2219A	1009	0.2244	5.00E-09	Fine	6-10	60	4	5.96E-11	Small	13/7	1.00E-09	10/3/10/10/3	10/14	SN
(TO-5)					Gross	1-5	60	2	2.98E-11	Sm/Med	13/11	1.00E-09	20/3/50/50/5	12/14	SN
Set 3	4 Leaded		0.0026	1.00E-09	Fine	6-10	60	2	1.00E-10	Small	7/7	1.00E-09	10/3/10/10/3	11/6	SN
(ceramic)					Gross	1-5	60	2	1.00E-10	Small	7/7		10/3/10/10/3	10/9	SN

Raw Data: CHLD

					CI	HLD		
		Sample #		GSFC			MSFC	
			atm-cc/sec He	atm-cc/sec Air	Jud	atm-cc/sec He	atm-cc/sec Air	Jud
Set 1	Fine	а	3.96E-09	Pass	Р	3.25E-09	Pass	Р
TO-18		b	3.09E-09	Pass	Р	2.50E-09	Pass	Р
		С	2.62E-09	Pass	Р	Gross	Gross	G
		d	2.32E-09	Pass	Р	1.82E-09	Pass	Р
		е	2.53E-09	Pass	Р	Gross	Gross	G
	Gross	а	1.79E-09	Pass	Р	2.25E-09	Pass	Р
		b	Gross	Gross	G	Gross	Gross	G
		С	1.73E-09	Pass	Р	2.12E-09	Pass	Р
		d	Gross	Gross	G	2.01E-09	Pass	Р
		е	1.46E-09	Pass	Р	1.90E-09	Pass	Р
TO-5	Fine	а	1.41E-09	2.46E-08	F	1.42E-09	2.47E-08	F
		b	Gross	Gross	G	Gross	Gross	G
		С	2.70E-09	3.40E-08	F	Gross	Gross	G
		d	1.49E-09	2.53E-08	F	Gross	Gross	G
		е	7.78E-10	1.83E-08	F	5.82E-10	1.58E-08	F
	Gross	а	1.59E-09	3.70E-08	F	Gross	Gross	G
		b	1.68E-09	3.80E-08	F	Gross	Gross	G
		С	Gross	Gross	G	Gross	Gross	G
		d	2.81E-10	1.55E-08	F	1.80E-10	1.24E-08	F
		е	3.03E-10	1.61E-08	F	1.73E-10	1.22E-08	F
UB	Fine	а	6.63E-11	Pass	Р	5.37E-11	Pass	Р
		b	4.12E-11	Pass	Р	4.99E-11	Pass	Р
		С	5.91E-11	Pass	Р	4.38E-11	Pass	Р
		d	4.30E-11	Pass	Р	4.19E-11	Pass	Р
		е	4.36E-11	Pass	Р	3.98E-11	Pass	Р
	Gross	a	Gross	Gross	G	Gross	Gross	G
		b	Gross	Gross	G	Gross	Gross	G
		С	Gross	Gross	G	Gross	Gross	G
		d	Gross	Gross	G	Gross	Gross	G
		е	Gross	Gross	G	Gross	Gross	G

Test Specifics: OLT

• OLT was performed by NorCom Systems Inc (located in Norristown PA) using NorCom 2020

NorCom 2020 resolution: 15nm

- Pressurization gas: Helium

Parameters	TO-5	TO-18*	UB package
Package Cavity [cc]	0.2244	0.0345	0.0026
Test Time	10 hours	5 hours	
Helium pressure +/- modulation [psi]	57.3psi +/- 2	57.3psi +/- 2	Ço
Fine Leak Limit (L ₂) [atm cc/sec He]	1.37e-08	1.37e-08	10,00
Test Sensitivity of NorCom 2020 for this part [†]	6.0e-9	3.7e-09	Contraction of the Contraction o
Fine Leak Limit (L) [atm cc/sec air] per MIL-STD-750	5e-09	5e-09	100
Number of parts tested	10	10	

(†) Conversion L= $L_2/2.69$ results in L values that are tighter than stated in MIL-STD-750

^(*) TO-18 lid stiffness and package size are right at the edge of NorCom 2020 detection capability

Raw Data: OLT

				OLT	
		Sample #		NorCom	
			atm-cc/sec He	atm-cc/sec Air	Judge
Set 1	Fine	а	Gross	Gross	G
TO-18		b	3.31E-08	1.23E-08	F
		С	4.97E-08	1.85E-08	F
		d	Pass	Pass	Р
		е	Gross	5.00E-06	G
	Gross	а	No Data	No Data	ND
		b	Gross	5.00E-06	G
		С	2.48E-07	9.22E-08	F
		d	3.38E-08	1.26E-08	F
		е	Pass	Pass	Р
TO-5	Fine	а	Pass	Pass	Р
		b	7.85E-08	2.92E-08	F
		С	Pass	Pass	Р
		d	2.24E-08	8.33E-09	F
		е	Pass	Pass	Р
	Gross	а	Pass	Pass	Р
		b	Pass	Pass	Р
		С	Gross	Gross	G
		d	Pass	Pass	Р
		e	Pass	Pass	Р
UB	Fine	а	No Data	No Data	ND
		b	No Data	No Data	ND
		С	No Data	No Data	ND
		d	No Data	No Data	ND
		е	No Data	No Data	ND
	Gross	а	No Data	No Data	ND
		b	No Data	No Data	ND
		С	No Data	No Data	ND
		d	No Data	No Data	ND
		е	No Data	No Data	ND

Test Specifics: MSFC Kr85

Mark V	Leak Test	Bomb C	onditions	
System Parameters		TO-18	T0-5	UB
$SA = 230 \mu \text{Ci/atm-cc}$	Gross	75 psia @	0.03 hours	
SA = 230 μCi/atm-cc K = 14,444 CPM/μCi R = 500 CPM	Fine	$Q_s = 2.9 \text{ X } 10^{-9} \text{ atm-cc/sec Kr}$ P = 75 psia T = 0.57 hrs	$Q_s = 5.8 \times 10^{-10}$ P = 75 psia T = 2.87 hrs	o atm-cc/sec Kr

Raw Data: Kr85

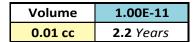
						K	r 85			
		Sample #		IsoVac		IsoVac	Red Dye		MSFC	
			atm-cc/sec Kr	atm-cc/sec Air		1		atm-cc/sec Kr	atm-cc/sec Air	Judgement
Set 1	Fine	а	PASS	PASS	Р	PASS	PASS	PASS	PASS	Р
TO-18		b	PASS	PASS	Р	PASS	PASS	PASS	PASS	Р
		С	PASS	PASS	Р	PASS	PASS	PASS	PASS	Р
		d	PASS	PASS	Р	PASS	PASS	PASS	PASS	Р
		е	PASS	PASS	Р	PASS	PASS	PASS	PASS	Р
	Gross	а	2.00E-08	3.42E-08	F			4.46E-07	7.63E-07	F
		b	Gross	Gross	G			Gross	Gross	G
		С	PASS	PASS	Р	PASS	PASS	PASS	PASS	Р
		d	1.80E-08	3.08E-08	F			PASS	PASS	Р
		е	PASS	PASS	Р	PASS	PASS	PASS	PASS	Р
TO-5	Fine	а	PASS	PASS	Р			PASS	0.00E+00	Р
		b	1.40E-08	2.39E-08	F			9.3E-09	1.59E-08	F
		С	2.75E-09	4.70E-09	Р			1.2E-09	2.05E-09	Р
		d	2.30E-08	3.93E-08	F			2.40E-08	4.10E-08	F
		е	PASS	PASS	Р			PASS	PASS	Р
	Gross	а	1.00E-08	1.71E-08	F			1.00E-08	1.71E-08	F
		b	PASS	PASS	Р			PASS	PASS	Р
		С	Gross	Gross	G			Gross	Gross	G
		d	PASS	PASS	Р			PASS	PASS	Р
		е	PASS	PASS	Р			PASS	PASS	Р
UB	Fine	a	PASS	PASS	Р	PASS	PASS	PASS	PASS	Р
		b	PASS	PASS	Р	PASS	PASS	PASS	PASS	Р
		С	PASS	PASS	Р	PASS	PASS	PASS	PASS	Р
		d	PASS	PASS	Р	PASS	PASS	PASS	PASS	Р
		е	PASS	PASS	Р	PASS	PASS	PASS	PASS	Р
	Gross	а	Gross	Gross	G			Gross	Gross	G
		b	Gross	Gross	G			Gross	Gross	G
		С	Gross	Gross	G			Gross	Gross	G
		d	Gross	Gross	G			Gross	Gross	G
		е	Gross	Gross	G			Gross	Gross	G

Leak Rate Limits

What are the leak rate limits?

- MIL-STD-750F, Test Method 1071.11 "Hermetic Seal"
 - Equivalent standard leak rates (atm cc/s air) for volumes:
 - $\square \le 0.002 \text{ cc: } 5 \text{ X } 10^{-10}$
 - \supset > 0.002 and < 0.02 cc: 1 X 10⁻⁹
 - \supset > 0.02 and < 0.5 cc: 5 X 10⁻⁹
 - \Box > 0.5 cc: 1 X 10⁻⁸
- MIL-STD-883J, Test Method 1014.14 "Seal"
 - Equivalent standard leak rates (atm cc/s air) for volumes:
 - $\square \le 0.05$ cc: 5 X 10⁻⁸ except 1 X 10⁻⁹ for Hybrid Classes S and K
 - \triangleright 0.05 and \le 0.4 cc: 1 X 10⁻⁷ except 5 X 10⁻⁹ for Hybrid Classes S and K
 - \supset 0.4 cc: 1 X 10⁻⁶ except 1 X 10⁻⁸ for Hybrid Classes S and K

Atmospheric Exchange


How do we determine optimum leak rate requirements?

Leak Rates: Vol cc: Time to Exchange 50% atmoshphere

Volume	1.00E-06	5.00E-07	1.00E-07	5.00E-08	1.00E-08	5.00E-09	1.00E-09	5.00E-10
0.002 cc	0.4 Hrs	0.8 Hrs	3.9 Hrs	7.7 Hrs	1.6 Days	3.2 Days	16.0 Days	32 Days
0.01 cc	1.9 Hrs	3.9 Hrs	1 Days	2 Days	8.0 Days	16 Days	80 Days	160.5 Days
0.1 cc	19 Hrs	2 Days	8 Days	16 Days	80.2 Days	160 Days	2.2 Years	4.4 Years
0.4 cc	3 Days	6 Days	32 Days	64 Days	321 Years	2 Years	8.8 Years	17.6 Years
0.75 cc	6 Days	12 Days	60 Days	120.3 Days	2 Years	3 Years	16 Years	33.0 Years
1 cc	8 Days	16 Days	80 Days	160.5 Days	2 Years	4 Years	22 Years	44 Years
3 сс	24 Days	48 Days	240.7 Years	1.3 Years	7 Years	13 Years	66 Years	132 Years
5 cc	40 Days	80 Days	1.1 Years	2.2 Years	11 Years	22 Years	110 Years	220 Years
8 cc	64 Days	128.4 Days	1.8 Years	3.5 Years	18 Years	35 Years	176 Years	352 Years
10 cc	80 Days	160.5 Days	2.2 Years	4.4 Years	22 Years	44 Years	220 Years	440 Years
12 cc	96 Days	192.5 Days	2.6 Years	5.3 Years	26 Years	53 Years	264 Years	528 Years
15 cc	120.3 Days	240.7 Days	3.3 Years	6.6 Years	33 Years	66 Years	330 Years	659 Years

Volume	1.00E-10		
0.002 cc	4.4 Years		

$$P_t = P_0 e^{-(\kappa t)}$$

t = time (sec)

MIL-STD-883 TM 1014 Leak Rate Limits

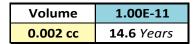
MIL-STD-750 TM 1071 Leak Rate Limits

This "Exchange Table" shows the number of 'hours,' 'days,' or 'years' required for a device to ingest 50% of the atmoshphere to which it is exposed, based on the volume of the part, (cc), and the leak rate of the part.

These exchange values have been studied and confirmed using Kr85 measured leak rates and IGA evaluation.

Atmospheric Exchange

How do we determine optimum leak rate requirements?


Leak Rates: Vol cc: Time to Exchange 90% atmoshphere

Volume	1.00E-06	5.00E-07	1.00E-07	5.00E-08	1.00E-08	5.00E-09	1.00E-09	5.00E-10
0.002 cc	1.3 Hrs	2.6 Hrs	12.8 Hrs	1.1 Days	5.3 Days	10.7 Days	53.3 Days	107 Days
0.01 cc	6.4 Hrs	12.8 Hrs	3 Days	5 Days	26.7 Days	53 Days	267 Days	1.5 Years
0.1 cc	3 Days	5 Days	27 Days	53 Days	266.5 Days	1 Years	7.3 Years	14.6 Years
0.4 cc	11 Days	21 Days	107 Days	213 Days	3 Years	6 Years	29.2 Years	58.4 Years
0.75 cc	20 Days	40 Days	200 Days	1.1 Years	5 Years	11 Years	55 Years	109.5 Years
1 cc	27 Days	53 Days	267 Days	1.5 Years	7 Years	15 Years	73 Years	146 Years
3 сс	80 Days	160 Days	2.2 Years	4.4 Years	22 Years	44 Years	219 Years	438 Years
5 cc	133 Days	267 Days	3.7 Years	7.3 Years	37 Years	73 Years	365 Years	730 Years
8 cc	213 Days	1.2 Years	5.8 Years	11.7 Years	58 Years	117 Years	584 Years	1,168 Years
10 cc	267 Days	1.5 Years	7.3 Years	14.6 Years	73 Years	146 Years	730 Years	1,460 Years
12 cc	320 Days	1.8 Years	8.8 Years	17.5 Years	88 Years	175 Years	876 Years	1,752 Years
15 cc	1.1 Years	2.2 Years	10.95 Years	21.9 Years	109.5 Years	219 Years	1,095 Years	2,190 Years

Volume	1.00E-10		
0.01 cc	7.3 Years		

$$P_t = P_0 e^{-(\kappa t)}$$

$$k = \underline{leak \ rate}$$

t = time (sec)

This "Exchange Table" shows the number of 'hours,' 'days,' or 'years' required for a device to ingest 90% of the atmoshphere to which it is exposed, based on the volume of the part, (cc), and the leak rate of the part.

These exchange values have been studied and confirmed using Kr85 measured leak rates and IGA evaluation.

MIL-STD-883 TM 1014 Leak Rate Limits

MIL-STD-750 TM 1071 Leak Rate Limits