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Abstract 
���

Chemistry climate models (CCMs) are used to predict the future evolution of ���

stratospheric ozone as ozone-depleting substances decrease and greenhouse gases ���

increase, cooling the stratosphere.  CCM predictions exhibit many common features, but ���

also a broad range of values for quantities such as year of ozone-return-to-1980 and ���

global ozone level at the end of the 21st century.  Multiple linear regression is applied to ���

each of 14 CCMs to separate ozone response to chlorine change from that due to climate �	�

change.   We show that the sensitivity of lower atmosphere ozone to chlorine change �
�

ΔO3/ΔCly is a near linear function of partitioning of total inorganic chlorine (Cly) into its ���

reservoirs; both Cly and its partitioning are controlled by lower atmospheric transport.  ���

CCMs with realistic transport agree with observations for chlorine reservoirs and produce ���

similar ozone responses to chlorine change.   After 2035 differences in ΔO3/ΔCly ���

contribute little to the spread in CCM results as the anthropogenic contribution to Cly ���

becomes unimportant.  Differences among upper stratospheric ozone increases due to ���

temperature decreases are explained by differences in ozone sensitivity to temperature ���

change ΔO3/ΔT due to different contributions from various ozone loss processes, each ���

with their own temperature dependence.  In the lower atmosphere, tropical ozone �	�

decreases caused by a predicted speed-up in the Brewer-Dobson circulation may or may �
�

not be balanced by middle and high latitude increases, contributing most to the spread in ���

late 21st century predictions.   ���

 ���

���
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1. Introduction ���

If anthropogenic ozone depleting substances (ODSs) were the only change in ���

atmospheric composition, ozone (O3) and stratospheric chlorine would be expected to ���

return to unperturbed levels as ODSs were removed from the atmosphere.  Other ���

concurrent changes in composition complicate the picture, and the anticipated increases ���

in greenhouses gases leading to stratospheric cooling and circulation changes are also �	�

expected to impact the future global ozone distribution.  Stratospheric cooling causes �
�

ozone to increase by slowing temperature dependent ozone loss processes.  All chemistry ���

climate models (CCMs) predict a speed-up in the Brewer Dobson circulation, leading to a ���

decrease in stratospheric tropical ozone column and increased ozone in middle and high ���

latitudes, depending on the structure of the circulation change [Austin and Wilson, 2006; ���

Shepherd, 2008; Waugh et al., 2009].  In spite of commonalities in simulated ozone ���

evolution as noted by Oman et al. [2010], there are significant differences in the ���

predictions that are the subject of this work.  ���

 ���

Eyring et al. [2005] describe the on-going community effort, sponsored by Stratospheric �	�

Processes and Their Role in Climate (SPARC), to evaluate CCMs (CCMVal). The  �
�

CCMVal project used diagnostics developed from observations to evaluate dynamical, ���

chemical, and radiative processes in CCMs.  The CCMs, their simulations, and the results ���

of the evaluations are described in the CCMVal report [SPARC CCMVal, 2010, hereafter ���

referred to as CCMVal2010]. These simulations were also contributed to the World ���

Meteorological Organization Scientific Assessment of Ozone Depletion: 2010 [WMO, ���

2011; hereafter referred to as WMO2011]. Although CCMVal used observations to show ���
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that chemical and transport processes were not well-represented by the CCMs in all ���

cases, this information was not used to discriminate among CCMs. Predictions of 21st ���

century ozone used in WMO2011 were obtained using a time series additive model �	�

(TSAM) method described in Chapter 9 of CCMVal2010 and Scinocca et al. [2010] to �
�

produce multi-model trends (MMT).   The use of such methods to combine results of ���

simulations is widespread in science and economics, and is a better predictor than ���

individual models when the models are independent and unbiased. The CCMs ���

participating in CCMVal and WMO2011 are not completely independent as they share ���

common elements such as the advection scheme or core general circulation model.  ���

Perhaps more important, the CCMVAL2010 evaluation reveals deficiencies for some ���

CCMs such as non-conservation of mass, missing chemical reactions, or poor ���

representation of various processes that result in poor comparisons of constituent ���

distributions with observations. When simulations include known and identified �	�

deficiencies, the MMT becomes less credible as the best predictor. �
�

 ���

Waugh and Eyring [2008] compared a prediction for total column ozone (TCO) obtained 	��

using performance metrics to weight the contributions from various CCMs with an 	��

unweighted multi-model mean (MMM), and found only small differences between these 	��

weighted and unweighted predictions.  Their analysis also revealed some issues with the 	��

strategy of weighting contributions to obtain a better prediction, noting that the 	��

diagnostics were not independent of each other.  In addition, performance on a particular 	��

diagnostic of the present atmosphere might or might not be related to the ozone response 	��

to composition change.     		�
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Recent studies have taken a different approach to the use of diagnostics of chemistry and 	
�

transport diagnostics to explain differences among simulations. Strahan et al. [2011] used 	��

an expanded set of transport diagnostics for the lower stratosphere to show that four 
��

CCMs with the most realistic representation of transport also produced a much narrower 
��

range of predicted TCO return-to-1980 dates than the suite of CCMs that contributed 
��

simulations to CCMVAL2010 and WMO2011. These same four CCMs also had no 
��

significant errors or omissions in their chemical mechanism. Douglass et al. [2012] 
��

examined the upper stratospheric ozone response to chlorine and temperature. The 
��

reaction O + O3 → 2 O2 and catalytic loss cycles involving chlorine, nitrogen and 
��

hydrogen radicals that have the same net effect control upper stratospheric ozone.  The 
	�

temperature dependence of the loss processes varies; O + O3 is most temperature 

�

dependent and the chlorine catalytic cycle is least.  Douglass et al. [2012] showed that 
��

the CCMs produce a wide, often unrealistic, range of upper atmospheric temperatures for ���

the present atmosphere.  Together that range and differences in constituents such as ���

reactive nitrogen account for differences in the relative importance of the catalytic loss ���

cycles.   All of the CCMs predict increases in upper stratospheric ozone as anthropogenic ���

chlorine and temperatures decrease in the 21st century.   However, there are differences in ���

the magnitude of increases predicted by the CCMs that become larger as anthropogenic ���

chlorine decreases even though their predicted temperature decreases are similar because ���

the ozone sensitivity to temperature change varies among CCMs.  Neither of these studies �	�

elucidates the link between transport and lower stratospheric chemistry implied by the �
�

Strahan et al. [2011] result. ���

 ����
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This paper demonstrates that many of the differences in the predicted evolution of ����

stratospheric ozone can be interpreted and understood using a subset of CCMVal ����

diagnostics and concepts that describe interactions among photochemical, transport and ����

radiative processes that control stratospheric ozone. We apply multiple linear regression ����

(MLR) to the future simulations that were used in the CCMVal exercise and WMO2011 ����

in order to separate contributions of chlorine change from other factors that contribute to ����

future ozone evolution.  MLR has been successfully applied to observational data sets ��	�

and CCM output to quantify the ozone response to chlorine by accounting for other ��
�

factors known to affect ozone levels such as volcanic injection of stratospheric aerosols, ����

solar cycle variability and the quasi-biennial oscillation [Stolarski et al., 1991; Stolarski ����

et al., 2006].  This approach was also applied to future simulations to separate the ozone ����

response to chlorine change from that due to other changes in composition and climate ����

[Stolarski et al., 2009; Oman et al., 2010].   The results of this separation will then be ����

examined with two goals.  The first is to explain the narrower range of values for the ����

predicted year of ozone return to 1980 that is obtained from CCMs with the most realistic ����

performance on transport diagnostics as detailed by Strahan et al. [2011].   This part of ����

the analysis focuses on the simulated ozone responses to changes in ODSs.  The second ��	�

goal is to explain the differences in the ozone response to the ongoing changes in ��
�

greenhouse gases (excluding ODSs) that lead to changes in stratospheric circulation and ����

temperature.  These differences in response cause the future simulations to diverge from ����

one another in the middle to late 21st century.   ����

 ����
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The simulations and the CCMs that produce them are briefly described in section 2.  ����

Section 2 also describes datasets that contribute to interpretation of the simulated ozone ����

evolution.  The analysis strategy and results are presented in section 3.  Section 4 ����

describes relationships between the sensitivity of simulated ozone to chlorine change and ����

the simulation of the present atmosphere.  Section 5 considers ozone after 2035 as the ��	�

anthropogenic contribution to chlorine levels decreases and the ozone response to climate ��
�

change becomes dominant.  Results and their implications are summarized in section 6.   ����

 ����

2.  Chemistry Climate Models, Simulations and Data  ����

2.1 CCMVal Models and Simulations ����

Morgenstern et al. [2010] and Oman et al. [2010] present a detailed overview of the ����

models, inputs, and scenarios used in the CCMVal-2 exercise.  These models contributed ����

simulations that are evaluated in the CCMVAL2010 and used in WMO2011 Chapter 2 ����

(Stratospheric Ozone and Surface Ultraviolet Radiation [Douglass and Fioletov et al., ����

2011]) and Chapter 3 (Future Ozone and Its Impact on Surface UV [Bekki and Bodeker et ��	�

al., 2011].  Eighteen groups contributed simulations to CCMVal-2, but for this analysis ��
�

we include only the fourteen models that contributed a future scenario simulation and ����

whose vertical domain includes the upper stratosphere.  These models are listed in Table ����

1.  The future scenario (referred to as REF-B2) uses the A1B greenhouse gas scenario ����

from the Intergovernmental Panel on Climate Change (IPCC) [2000] and the revised A1 ����

halogen scenario from WMO [2007] and CCMVal2010.  Most models have simulations ����

that cover 1960 – 2099 with 10-year model spin-up prior to 1960.  The Unified ����
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Model/United Kingdom Chemistry Aerosol Community Model – Met Office ����

(UMUKCA-METO) future simulation ends in 2083.   ����

 ��	�

2.2  Observations ��
�

 We use observations to show how the simulated distributions of reservoir gases such as ����

hydrogen chloride (HCl) and chlorine nitrate (ClONO2) depend on realistic lower ����

stratospheric transport in order to establish context for discussion.  We otherwise do not ����

repeat the comprehensive evaluation of photochemistry in Chapter 6 of the CCMVal2010 ����

report, or identify ‘best’ simulations that agree with one or more sets of observations.   ����

 ����

Network for the Detection of Atmospheric Composition Change ����

A primary goal of the Network for the Detection of Atmospheric Composition Change ����

(NDAAC) is to obtain consistent, standardized, long-term measurements of atmospheric ��	�

trace gases at a set of globally distributed research stations to detect trends in atmospheric ��
�

composition.  Here we consider timeseries of the total column abundances of HCl and ����

ClONO2 obtained using Fourier Transform Infrared Spectrometers (FTIR) from eight of ����

the long-term measurement sites listed in Table 2. These sites were selected from the 18 ����

FTIR locations listed in the measurements and analysis subdirectory to encompass a ����

broad latitude range with temporal records of nine years or longer.  Rinsland et al. [2003] ����

discuss such measurements in detail, and show that the build-up and leveling off of the ����

sum of HCl and ClONO2 columns from six of these sites and others not included here is ����

consistent with timeseries for surface source gases and with upper stratospheric HCl as ����

measured by the Halogen Occultation Instrument on the Upper Atmosphere Research ��	�
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Satellite, confirming the effectiveness of the Montreal Protocol and its amendments in ��
�

reducing the anthropogenic contribution to atmospheric chlorine.  Details about the ����

measurements are provided by Rinsland et al. [2003] and references therein, and can also �	��

be obtained from the NDAAC website http://www.ndacc.org/.   �	��

 �	��

SciSat Atmospheric Chemistry Experiment �	��

The Atmospheric Chemistry Experiment (ACE) on the Canadian satellite SCI-SAT-1 is a �	��

Fourier Transform Spectrometer (FTS).  ACE-FTS is a solar occultation instrument that �	��

obtains high resolution spectra (0.02 cm-1) between 750–4400 cm-1 [Bernath et al., 2005].  �	��

ACE-FTS makes daily measurements in each of two latitudes bands for sunrise and �		�

sunset.  Vertical profiles are retrieved for up to 15 sunrises and 15 sunsets per day.  Of �	
�

the many species obtained by ACE-FTS, here we use V3 ClONO2 and HCl profiles, �	��

focusing on middle latitudes between 50 and 10 hPa.   �
��

 �
��

3.  MLR Analyses of CCM Ozone Columns  �
��

3.1 Total column ozone time series in CCMs �
��

Figure 1 shows the evolution of differences from 1980 for the 60°S-60°N and 90°S-90°N �
��

averages of total column ozone (TCO) simulated by the CCMVal models. The 1980 �
��

mean is approximated by a five-year average of annual means (1978-1982) to reduce the �
��

importance of year-to-year variations.  The range of differences among simulations in �
	�

2100 (~10 DU) is substantially smaller than the range in 2000 (~15 DU) when the �

�

stratospheric chlorine was near its peak value.   However, the simulated range of ozone �
��

loss due to chlorine change is unrealistically large compared with the estimates of ozone ����
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depletion obtained from observations.  WMO2010 reported 60°S-60°N column ozone ����

levels to be 3.5% (~10 DU) less than 1980.   The range of simulated increases in global ����

column ozone in 2100 relative to 1980 is comparable to the observed depletion due to ����

anthropogenic chlorine and thus indicates significant uncertainty. ����

 ����

 ����

In each panel of Figure 1 the four blue traces identify the simulations from the CCMs that ��	�

have the most realistic transport based on the expanded version of the tracer diagnostics ��
�

used in Chapter 5 of CCMVal2010 as reported by Strahan et al. [2011].  The black ����

dashed vertical lines indicate the earliest and latest years for return-to-1980; the blue ����

dashed vertical lines show the narrower range of return years for the CCMs with realistic ����

transport.  These ranges are nearly the same for the 60°S – 60°N and 90°S – 90°N ����

averages.  The differences from the 1980 mean are more negative around 2000 and more ����

positive beginning ~2050 for the global average compared with the 60°S – 60°N average.   ����

The contribution from springtime lower stratosphere polar ozone loss that is included in ����

the global average explains the more negative difference in 2000.  Acceleration of the ����

Brewer Dobson Circulation (BDC), predicted by all CCMs [Butchart et al., 2006; ��	�

Butchart et al., 2010] causes a tropical ozone decrease that is countered by middle and ��
�

high latitude ozone increases [Li et al., 2009].  The high latitude average includes more of ����

the lower stratosphere middle and high latitude ozone increase, explaining the more ����

positive differences from 1980 after 2050 for the 90°S – 90°N averages.  Because the ����

differences among the simulations are similar for the both spatial averages, further ����
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discussion considers only the 60°S – 60°N that was discussed by Strahan et al. [2011] ����

and is commonly considered in the WMO assessments. ����

 ����

Figure 1 shows that the differences in CCM responses to increasing chlorine vary by ~15 ����

DU over a 20-yr period in spite of using identical chlorine source gas boundary ��	�

conditions. This suggests that the amount and distribution of stratospheric inorganic ��
�

chlorine (Cly) in the CCMs varies, resulting in differences in the ozone response to the ����

specified chlorine change.  ����

 ����

In order to quantify and explain such differences in the ozone sensitivity to changes in ����

chlorine and climate, our strategy is to analyze the output from each CCM using multiple ����

linear regression (MLR).  This method, which has been applied to observed and ����

simulated timeseries [Stolarski et al., 1991; Stolarski et al., 2009] capitalizes on the ����

length of the simulated time series to separate the contributions of chlorine change and ����

climate change (i.e., circulation and temperature) to ozone evolution.  For each CCM the ��	�

timeseries used in the MLR begins in 1960 and extends to 2083 for the shortest ��
�

simulation and to within one or two years of 2100 for the others.   ����

 ����

We explored several options for explanatory variables in the MLR.  The chlorine change ����

is always represented by equivalent effective stratospheric chlorine (EESC) [Newman et ����

al., 2007].  Circulation or climate-related changes are represented by timeseries of ����

monthly mean vertical velocities at 70 hPa averaged for 20°S – 20°N or the normalized ����

timeseries of lower tropical stratosphere gradients in long-lived tracers such as N2O or ����
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CFCl3.  In practice, any of these choices is equivalent to a combination of EESC, a linear ����

trend and the time dependence of the change in upwelling (for the few cases where this ��	�

change is not linear). All options produce similar values for the ozone sensitivities to ��
�

chlorine change and climate change (including both changes in temperature and ����

circulation) within each CCM.   Examples are shown in Figure 2.  In each panel, the ����

crosses are the annual average ozone between 60°S and 60°N from a particular CCM.  ����

The black solid line is the fit to the simulation obtained from MLR.  The green line is the ����

mean value plus the contribution to the temporal evolution due to chlorine change; the ����

blue line is the mean value plus the contribution due to changes in climate.  The fits ����

obtained from the MLR capture the time dependence of each simulation.  MLR fitting ����

facilitates comparisons among CCMs by reducing noise due to interannual variability ����

when computing ozone differences for various time periods.   ��	�

 ��
�

In all of the CCMs, most of the change in TCO from 1980-2000 is due to chlorine ����

change.  For the ensemble of simulations the mean and standard deviation of the ozone ����

decrease between 1980 and 2000 attributed to chlorine increase are -9.4 DU and 4.0 DU.  ����

The mean and standard deviation of the ensemble of ozone change due to climate change ����

are 0.8 DU and 0.7 DU, respectively.  For the examples in Figure 2 the 60°S-60°N ozone ����

change between 1980 and 2000 due to climate changes is ~1.25 DU.  In contrast, the ����

60°S-60°N ozone changes due to chlorine increase are -8.4 DU and -18.4 DU.  ����

 ����

3.2 Ozone Response in the Upper Stratosphere and Lower Atmosphere ��	�
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Projected changes in greenhouse gases (GHG) and ODSs will have different impacts on ��
�

the upper and lower stratospheric ozone because the ozone response to these composition ����

changes varies because the timescales for processes controlling ozone vary with height. ����

In the upper stratosphere, fast radical photochemistry controls the ozone level on ����

timescales of days, while transport controls O3 on seasonal to multi-decadal timescales ����

through the slowly changing levels of long-lived source gases and reservoir species that ����

control the levels of total reactive nitrogen (NOy) and Cly.  In the lower stratosphere ����

where ozone is long-lived, the chemical and transport processes have similar timescales.   ����

The predicted speed-up in the Brewer Dobson circulation will affect processes ����

controlling ozone at all timescales through its effects on composition, chemistry, ��	�

transport, and temperature..  ��
�

 ����

In addition to its application to the total column ozone as discussed in the previous �	��

section, here we use MLR to quantify the effects of GHG and ODS changes on ozone in �	��

two partial columns: the upper troposphere and the mid-stratosphere (500 hPa – 20 hPa), �	��

hereinafter referred to as the lower atmosphere (LA), and the upper stratosphere (US) (20 �	��

hPa – 1 hPa).  As for the TCO, MLR is applied to timeseries from 1980 to the final �	��

simulated year for each CCM.  Ozone changes are computed from the resulting MLR fits �	��

for time periods when changes in chlorine loading are large (1980-2000) and when they �	��

are small (1980-2035).  The TCO differences and the contributions from the upper �		�

stratosphere and lower atmosphere columns are shown for each CCM in Figure 3.     The �	
�

year 2035 is chosen because it is near the midpoint of the range of return years (2026 – �	��

2040) for the CCMs with realistic transport identified by Strahan et al. [2011] and also �
��
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because chlorine change and climate change make similar contributions to the differences �
��

in projections as will be discussed in the following section. �
��

 �
��

Figure 3a shows that while chlorine loading is increasing (1980-2000), ozone changes are �
��

negative in both the LA and US columns in most CCMs. The TCO changes among the �
��

CCMs range from -3 to -17 DU; most of this variance comes from the LA response.  For �
��

the ozone change between 2035 and 1980 (Figure 3b), the LA changes are negative in �
	�

most CCMs whereas the US changes are positive or less than -0.7 DU. The TCO change �

�

can be positive (beyond ‘recovery’), near zero (‘recovery’), or negative (not yet �
��

‘recovered’).  The range of predicted TCO difference for 2035-1980 (standard deviation ����

2.6 DU) is less than that predicted for 2000-1980 (standard deviation 4.1 DU).   The LA ����

changes in this period again contribute the most to the differences among predictions. ����

 ����

3.3 Contributions of Chlorine and Climate Change to Ozone Response ����

3.3.1 Total Column Ozone Changes  ����

In Figure 4 we separate the chlorine and climate change contributions to the TCO change ����

to explain the variance among CCMs shown in Fig. 3b. Ten CCMs, including the four ��	�

with the most realistic transport, are clustered near the vertical dashed line, showing the ��
�

balance between the contributions of chlorine change and climate change among these ����

CCMs that are close to 1980 O3 levels by 2035. Among these CCMs, the TCO change ����

between 1980 and 2035 is most negative for those with the smallest increase due to ����

climate change.  Three of the CCMs that are 4 or more DU from their 1980 value are ����

among those with the greatest change due to chlorine; two of these three have negative ����
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ozone response due to climate change.  The CCM with the earliest recovery (more than ����

2.5 DU greater than 1980 in 2035) has weak sensitivity to chlorine change and the most ����

positive response to climate change.   ����

 ��	�

3.3.2  Separation of Processes Affecting Lower and Upper Ozone Columns ��
�

From 1980 to 2000, the correlation between upper and lower column ozone responses is ����

0.6; this is not surprising since chlorine related processes dominate the loss in both ����

regions. The correlation gradually declines to 0.2 between 2000 and 2050, as atmospheric ����

chlorine decreases and the contributions from climate change increase.  This shows that ����

different mechanisms control the ozone response during different time periods and that ����

upper and lower atmosphere responses of ozone to climate change are not correlated.  ����

This prompts separate investigation of the processes contributing to upper and lower ����

column ozone change from 1980. ����

 ��	�

Douglass et al. [2012] show that upper stratospheric ozone levels prior to 1980 are higher ��
�

for the CCMs with colder upper atmospheres and vice versa.   They use the framework ����

developed by Stolarski and Douglass [1985] to explain how differences in unperturbed ����

values for ozone level, temperature and reactive nitrogen contribute to differences in ����

sensitivity of ozone to perturbations in temperature and chlorine.  The amplitude of the ����

temperature-dependent annual cycle in ozone varies as expected, decreasing as chlorine ����

increases in all CCMs because the chlorine catalyzed loss cycle is less dependent on ����

temperature.  In the LA both photochemical and transport terms are important.   Chlorine ����

change has a small impact on the ozone response to temperature change.   In this section, ����
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we use MLR to separate the ozone change related to chlorine from other processes in the ��	�

LA and US, presenting results for two time periods.   ��
�

 ����

Figure 5a shows the simulated ozone changes in the LA from 1980-2000. The response ����

due to chlorine increase (green diamonds) greatly exceeds the ozone change due to ����

climate change (blue triangles) in all but one of the CCMs. In addition, ozone response to ����

increased chlorine contributes much more to inter-model differences than the response to ����

climate change (4.3 DU and 0.6 DU standard deviations, respectively).  In comparison, ����

the lower atmosphere ozone difference between 1980 and 2035 due to chlorine is less ����

than half the difference between 1980 and 2000 and there is also less variance among ����

CCMs (Figure 5b).  By 2035 middle latitude lower stratospheric inorganic chlorine has ��	�

decreased by 20-40% from its peak value, depending on the pressure level and CCM ��
�

being examined, explaining to the smaller contribution from chlorine related processes.  ����

The differences among the climate change responses between 2035 and 1980 are larger ����

than those for chlorine.  ����

 ����

US changes between 1980 and 2000 (Figure 5c) are broadly similar to the LA but exhibit ����

significantly less model-to-model variability (Figure 5a). The ozone change due to ����

chlorine increase dominates the overall response, and differences in sensitivity to chlorine ����

change contribute to the variability among CCMs.  The ozone response to climate change ����

is positive and about 1.1 DU in all CCMs. By 2035 (Figure 5d), the ozone change due to ��	�

chlorine change has decreased while the O3 increase due to climate change has increased; ��
�

this increase is both larger and more variable than the ozone decrease due to chlorine.  ����
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Douglass et al. [2012] show that temperature changes are comparable among CCMs, thus ����

the differences in ozone response to climate change reflect differences in ozone ����

sensitivity to temperature.  Ozone sensitivity to climate change is similar among CCMs in ����

2000 and different in 2035.  This is expected because when ozone loss due to chlorine is ����

a larger fraction of all losses, as in 2000, O3 is less sensitive to temperature change ����

because the chlorine loss reaction is the least temperature dependent of all the loss ����

processes. ����

 ��	�

Figure 6 shows how the standard deviation among the 14 simulations of the 60ºS-60ºN ��
�

TCO differences from 1980 changes between 1980 and 2080, separating the contributions ����

from chlorine change (green) and climate change (blue).  Until about 2000, the ����

differences in ozone sensitivity to chlorine change account for nearly all of the variation ����

among CCM predictions.  The contribution from climate change rises throughout the ����

integration, equaling the contribution from chlorine change in about 2035.  The chlorine ����

contribution to inter-model differences continues to decline as expected as chlorine ����

declines, while the contribution of climate change continues to increase.  By 2080, the ����

differences in chlorine sensitivity do not contribute significantly to inter-model ����

differences, and the climate change contribution is ~70% of the magnitude of the peak ��	�

chlorine contribution in 2005. ��
�

 ����

4.  Explaining differences in ozone projections �	��

Figure 1 shows that in 2000 the range of CCM values for the difference from 1980 for �	��

60ºS-60ºN or 90ºS-90ºN TCO amounts is approximately 15 DU. By about 2080, the �	��



� �
�

range is about 9 DU and the contribution of the simulated ozone response to stratospheric �	��

chlorine change is near zero (Figure 6).  The MLR analysis presented in the previous �	��

section, summarized by Figure 6, shows that understanding the differences among CCM �	��

predictions requires understanding both the differences in ozone sensitivity to chlorine �	��

and the differences in ozone sensitivity to climate change, especially in the LA.  To �		�

explain the narrower range for TCO return to 1980 for CCMs with most realistic �	
�

transport, we demonstrate the relationship between transport and lower stratosphere �	��

distributions of chlorine reservoirs, linking those distributions with the simulated �
��

sensitivity of LA ozone to chlorine change.   �
��

 �
��

All CCMs solve a continuity equation for the ozone mixing ratio γO3 at each grid point �
��

that includes chemical production (P), loss (L) and transport terms:    �
��

  
�
��

Below about 50 km ozone is very nearly equal to the sum of ozone and atomic oxygen, �
��

and photolysis of ozone producing atomic oxygen and reformation of ozone through �
	�

reaction of atomic and molecular oxygen are in approximate balance.  Production is �

�

mainly photolysis of molecular oxygen producing two oxygen atoms that form ozone �
��

molecules by reaction of atomic and molecular oxygen.   In addition to the reaction of ����

atomic oxygen with ozone, catalytic cycles involving hydrogen, nitrogen and chlorine ����

radicals contribute to ozone loss.   ����

 ����



� ���

As atmospheric composition changes, realistic computation of the ∂γO3/∂t requires ����

appropriate contributions from the photochemical and transport terms.   A realistic ����

estimate of the fractional change in L requires realistic representation of the fractional ����

importance of each catalytic cycle to the total loss in an unperturbed atmosphere.  Short-��	�

lived radicals (e.g., chlorine monoxide (ClO), hydroxyl (OH) and nitrogen dioxide ��
�

(NO2)) participate in catalytic ozone loss.  Although radicals are short-lived, transport ����

processes affect ozone loss through their influence on the distributions of long-lived ����

gases and reservoir gases    Source gases such as chlorofluorcarbons and nitrous oxide ����

(N2O) produce radicals when destroyed in the stratosphere,  Reservoir gases such as ����

hydrogen chloride (HCl) and chlorine nitrate (ClONO2) are produced by reactions of ����

radicals with source gases or with each other.  Dessler et al. [1995] showed that the ����

partitioning between ClONO2 and HCl as observed by instruments on the Upper ����

Atmosphere Research Satellite (UARS) follows expectation; the ratio ClONO2/HCl is ����

quadratically dependent on ozone, linearly dependent on the hydroxyl radical and ��	�

inversely dependent on methane.  In the lower stratosphere the distributions of both ��
�

ozone and methane are strongly influenced by transport.  Dessler et al. [1996] showed the ����

broad agreement between observed and expected partitioning of the reservoir ClONO2 ����

and the radical chlorine monoxide using UARS observations of ClO, NO2 and ClONO2 ����

along with laboratory data. Thus, the influence of transport on radical distributions in the ����

lower stratosphere causes higher levels of ClONO2 to produce higher levels of ClO. Such ����

simulations will have greater contributions of chlorine-catalyzed loss to the ozone ����

tendency.  ����

 ����



� ���

Chapter 6 of CCMVal2010 compared timeseries of HCl and ClONO2 at the Jungfraujoch ��	�

station (46.6°N) with timeseries simulated by CCMs; these are likely indicators of the ��
�

simulated lower atmosphere sensitivity to chlorine because for both species more than ����

70% of the total column resides below 20 hPa.  The simulated HCl columns shown in ����

Figure 7 span a wide range of values, with peak annual mean values between 3.1 x 1015 ����

and 6.4 x 1015 molecules/cm2 (disregarding one CCM with an extremely high peak value ����

due to lack of tropospheric rainout of HCl) compared with 4.0 x 1015, the 1998 – 2001 ����

average of HCl column measurements at Jungfraujoch.   The simulated columns ����

generally exhibit the observed time dependence because the time dependence of the ����

chlorine containing source gases (e.g., CFCl3 and CF2Cl2) is controlled by the boundary ����

conditions.  The Cly produced by destruction of these molecules varies substantially ��	�

among the CCMs, and differences in Cly and its partitioning between the chlorine ��
�

reservoirs both contribute to the large spread in computed values of the HCl columns.   ����

 ����

The link between transport and gas phase photochemistry in the lower stratosphere is ����

demonstrated by comparisons of observed and simulated HCl columns in Figure 7. We ����

use seven stations that span 68oN-45oS (Table 2) but are outside the polar vortices, ����

avoiding large seasonal variations in their columns [Santee et al., 2008].  The right ����

column compares the subset of CCMs with realistic transport identified by Strahan et al. ����

[2011] with observed HCl columns; the left column compares timeseries from the ����

remaining CCMs. For the entire latitude range, observed and simulated HCl columns are ��	�

in much better agreement for simulations that perform well on transport diagnostics.  ��
�

Because observations are made at irregular intervals throughout the year, the CCM ����



� ���

monthly zonal means are compared with daily measurements from each station. Observed ����

variability neither zonally nor monthly averaged, like the CCMs, and so appears much ����

larger.    ����

 ����

We further investigate the partitioning between HCl and ClONO2 reservoirs using ����

observations from the ACE-FTS. Figure 8a shows profiles from the 14 CCMs of ����

ClONO2/Cly (≈ ClONO2/(ClONO2 + HCl for 20 hPa and higher pressures in winter) for ����

December 2005.  Blue lines indicate the four with most realistic transport, black lines are ��	�

the others.  The red line indicates the December mean of ACE-FTS profiles between ��
�

40°N-50°N, 50 hPa – 20 hPa; horizontal lines are the standard deviation of the observed ����

profiles.  The CCM with the highest values for ClONO2/Cly has a known error in the ����

photochemical mechanism that leads to lower HCl.   ����

 ����

Figure 5 shows that the contribution of chlorine processes to lower atmospheric ozone ����

column change between 2000 and 1980 varies substantially among CCMs.  Much of the ����

variation in response is explained by the partitioning of chlorine reservoirs shown in ����

Figure 8b.  The sensitivity of lower atmosphere ozone to chlorine change (ΔO3/ΔCly ) ����

obtained from the MLR is shown as a function of the simulated partitioning of the ��	�

chlorine reservoirs (ClONO2/Cly ≈ ClONO2/(ClONO2+HCl) at 45ºN for December 2005 ��
�

in Figure 8b.  The symbol color indicates the total chlorine level at 20 hPa, and the range ����

of values from ACE-FTS for December 2005, 40°N-50°N is shown on the color bar.  The ����

three CCMs that are least sensitive to chlorine change have lower than observed values of ����

ClONO2/Cly, and also higher than observed values for total Cly.  The simulations that are ����



� ���

most sensitive to chlorine have higher than observed levels of ClONO2/Cly.  The ����

sensitivity ΔO3/ΔCly is negatively correlated with ClONO2/Cly between 50 and 10 hPa for ����

all months.  The correlation reaches its maximum value between 30 and 20 hPa (the peak ����

for ClONO2/Cly) during winter months, and is -0.78 at 20 hPa in December.  Note that ����

observations and simulations confirm that for this pressure range distributions of ��	�

reservoirs control the radical distributions [Dessler et al. 1996].  Stolarski and Douglass ��
�

[1986] and Douglass and Stolarski [1987] used a one-dimensional model to show larger ����

(smaller) ozone sensitivity to chlorine change for higher (lower) levels of chlorine �	��

radicals in the “present” simulated lower atmosphere.  The CCMs investigated here �	��

produce the same result.  Simulations with higher levels of chlorine radicals inferred by �	��

partitioning of reservoirs are more sensitive to chlorine change and vice-versa.  The �	��

transport diagnostics select CCMs with similar Cly levels in the lower stratosphere and �	��

similar partitioning of reservoirs, implying similar contributions of chlorine catalyzed �	��

loss processes to ozone loss.  The Cly levels and partitioning of reservoirs for the CCMs �	��

with most realistic transport also agree with the NDACC columns and the observations �		�

from ACE-FTS.  This result and the similar TCO increases due to climate change shown �	
�

in Figure 5 explain narrower range for year-of-return-to-1980 for CCMs with realistic �	��

performance on transport diagnostics discussed by Strahan et al. [2011]. �
��

 �
��

As chlorine decreases, the chlorine contribution to the total change in ozone decreases �
��

and differences in chlorine reservoir distributions caused by differences in lower �
��

stratospheric transport contribute less to the variance in simulated ozone.   Figure 6 �
��



� ���

shows that after 2035 the differences in the response to climate change make the larger �
��

contribution to the spread among the CCM predictions. �
��

   �
	�

5.  Stratospheric ozone after 2035 �

�

The contributions to ozone change for 2080 – 1980 from chlorine change and from �
��

climate change are compared in Figure 9.  Although the anthropogenic contribution to Cly ����

is not zero, the Cly level in 2080 is less than the 1980 level, and the annually averaged ����

60ºS to 60ºN total column ozone change relative to 1980 due to chlorine change is always ����

positive, falling between 0.5 and 2.2 DU (Figure 9a). The ozone change due to chlorine ����

change is always positive in the upper stratosphere and is positive in the lower ����

stratosphere with one exception because for all but one CCM the anthropogenic ����

contribution to stratospheric chlorine is smaller in 2080 than in 1980.  Chlorine plays a ����

small role compared with climate change, as shown in Figure 9b (note different scales for ��	�

the y-axis).     ��
�

 ����

Climate change affects ozone through cooling and through changes in circulation.  All ����

CCMs predict a speedup in the Brewer Dobson circulation, leacing to ozone decreases in ����

the tropical lower stratosphere and increases at middle and high latitudes.  Stratospheric ����

cooling results in slower rates of ozone loss processes, producing increased ozone.  ����

Twelve of the CCMs produce a net ozone increase relative to their 1980 level by 2060 as ����

impact of chlorine change decreases.  The maximum predicted increase for 2080 relative ����

to 1980 due to processes related to climate change is more than 8 DU.   ����

 ��	�



� ���

The changes in TCO and the separate contributions from the upper stratosphere and ��
�

lower atmosphere due to climate related processes are shown in Figure 9b.  The standard ����

deviation of the total column ozone increase due to climate change (~3DU) is comparable ����

to the multi-model mean increase (~4DU). This large variance is caused by a bimodal ����

distribution in model differences between the US and LA columns. In the US, the CCMs ����

consistently produce an ozone increase.  In the LA, seven of the CCMs predict a ����

contribution of less than 1 DU.  For these CCMs the TCO response to climate change is ����

controlled by the US.  The mean TCO increase for these seven CCMS is about 5.6 DU, ����

with a standard deviation of 1.2 DU. Li et al. [2009] discuss near the cancellation of ����

tropical and extratropical LA ozone changes in the GEOSCCM that leads to a small net ��	�

LA response to climate change, and show that the TCO increase due to climate change is ��
�

approximately equal to the increase in the US.  In six of the CCMs the LA ozone ����

decrease due to increased tropical upwelling exceeds extratropical increases such that the ����

latitudinally averaged response to climate change is negative.  In these six CCMs the LA ����

ozone decrease is opposed by the US increase; mean TCO response is smaller (2.3 DU) ����

but the standard deviation is larger (3.6 DU) compared with the seven CCMs with small ����

contributions from the LA.  In one CCM the extratropical increases exceed the tropical ����

decrease; the LA and US increases combine to produce the TCO increase of more than 8 ����

DU.    ����

 ��	�

Although complete information is not available for these fourteen CCMs, this difference ��
�

in the net lower atmospheric ozone response appears to be linked to differences in the ����

simulated increases in upwelling.  For example, Figure 4.11 in CCMVal2010 shows that ����



� ���

the 9 CCMs producing timeseries longer than 100 years fall into two groups.  The annual ����

mean upward mass flux at 70 hPa as calculated from w* for a ‘high’ group containing 5 ����

CCMs shows increases from a 1960 value ~5.8 x 109 kg/s to values as high as 7-9.2 x 109 ����

kg/s.  In contrast, the annual mean upward mass flux at 70 hPa for a ‘low’ group ����

containing 4 CCMs is initially ~4.8 x 109kg/s and increases to 6-6.5x109 kg/s.  The ����

simulations considered here also included in CCMVal2010 Figure 4.11 separate into two ����

groups based largely on the change in mass flux.  The CCMs in the ‘high’ group all ��	�

produce substantial net lower stratospheric ozone decreases due to climate change; the ��
�

CCMs in the ‘low’ group all produce more complete cancellation.     ����

 ����

Although the US and LA both contribute to the range of CCM responses; the range of US ����

responses is smaller than that of the LA.  Douglass et al. [2012] considered the US ����

response in detail, showing that differences in the UA response to temperature change are ����

partially explained by the simulated ozone levels themselves.  CCMs that produce higher ����

(lower) ozone levels for the 1960-1980 timeframe are more (less) sensitive to temperature ����

change because the most temperature dependent loss process O + O3 contributes more ����

(less) to the net ozone loss.   Although this is not the only factor that affects the simulated ��	�

response, this approach does give insight into the responses of the outliers.  The CCM ��
�

that produces the largest US ozone response to climate change (> 8 DU) also produces ����

the largest unperturbed US ozone partial column, exceeding the multi-model mean by ����

more than 15%.  In contrast, the CCM that produces the smallest upper stratospheric ����

response to climate change (< 3DU) produces an unperturbed US partial ozone column ����

that is about 15% less than the multimodel mean. ����



� ���

To summarize, compensation or lack thereof between the LA decrease in tropical ozone ����

and middle and high latitude LA increase contributes much to the range of responses, but ����

whether or not such compensation is produced is not related to performance on transport ����

diagnostics.  Figure 1 shows that the CCMs identified with best performance on transport ��	�

diagnostics separate after about 2050, with predictions of ozone increases for 2 CCMs ��
�

each at the high and low ends of the range for the 14 CCMs.  For the CCMs included in ����

Figure 4.11 of SPARCCCMVAl, the high and low predictions of ozone change are ����

consistent with the CCM falling in the group with high change in mass flux (larger LA ����

decrease opposing US increase resulting in smaller TCO increase) and low change in ����

mass flux (more cancellation between tropical and extra-tropical  LA ozone changes and ����

larger total column increase).    ����

 ����

The response of the circulation to climate change is robust among the CCMs in the sense ����

that all CCMs predict an increase of tropical upwelling, however the response is less than ��	�

robust in two ways.  First, the rate of increase varies, and in some of the CCMs the ��
�

appearance and disappearance of the ozone hole affects the rate of increase.  For ����

example, Li et al. [2009] show that in the GEOSCCM the rate of increase is about 1/3 �	��

faster during the formation phase of the ozone hole and 1/3 slower as the ozone hole �	��

dissipates compared with the rate of increase in the late 2000’s when chlorine change �	��

ceases to be significant.  Note that GEOSCCM is in the group with ‘low’ change in �	��

annual mean upward mass flux at 70 hPa.  Analysis of the time dependence of the annual �	��

mean upwelling for the subset of CCMs that provide timeseries of w* shows that the rate �	��

of increase may be faster, slower or unaffected by ozone hole formation and dissipation.  �	��



� �	�

Second, the extratropical circulation changes and their convolution with simulated lower �		�

stratospheric ozone vary substantially.  There are differences in both the tropical decrease �	
�

and in the extratropical increase that result in near cancellation or lack thereof.   Both of �	��

these factors contribute to the differences among CCM predictions for 21st century ozone. �
��

 �
��

6.  Conclusions �
��

This work quantifies the ozone response to changes in chlorine containing source gases �
��

and changing climate (i.e., stratospheric cooling and circulation change) in 14 CCMs that �
��

participated in CCMVal and contributed simulations to WMO2010. All models used the �
��

same time-dependent mixing ratio boundary conditions for source gases from 1960-2100. �
��

In 2035, ozone decreases relative to 1980 due to chlorine in all CCMs, since chlorine is �
	�

still substantially elevated compared with 1980.  The response to climate change is �

�

generally but not always positive.  The 60ºS-60ºN annual mean ozone is within 2 DU of �
��

1980 levels (i.e., ΔTCO < 1%) for ten of the CCMs by 2035.   ����

 ����

Strahan et al. [2011] showed a narrower range of recovery dates for the CCMs with best ����

performance on the CCMVal transport diagnostics compared with the range for the entire ����

group.  This work shows that differences in the sensitivity to chlorine change make the ����

larger contribution to the spread in years for return-to-1980.  These differences in ����

chlorine sensitivity are explained by differences in the middle latitude lower stratospheric ����

columns of chlorine reservoirs and differences in partitioning between HCl and ClONO2. ��	�

The transport diagnostics narrow the range of responses because they select CCMs with a ��
�

much narrower and more realistic range of column values and partitioning among ����



� �
�

chlorine reservoirs than produced by the suite of CCMs.  By 2035 12 of 14 CCMs show ����

an ozone increase due to climate change that is between 1 and 4 DU. The CCMs with ����

latest recovery are either more sensitive to chlorine change or less sensitive to climate ����

change than the CCMs identified as having most realistic transport.  The CCM with much ����

earlier recovery is least sensitive to chlorine change and among the most sensitive to ����

climate change.   ����

 ����

We emphasize the value of the comparisons with NDACC column measurements of the ��	�

chlorine reservoirs along with comparisons of partitioning among chlorine reservoirs ��
�

obtained from ACE ClONO2 and HCl profiles, as these comparisons provide a ����

mechanism to explain the variation in the sensitivity to chlorine change by linking lower ����

stratospheric transport with chemistry through the control of the distributions of chlorine ����

reservoir species.  CCMs that are most sensitive to chlorine have higher values for ����

ClONO2/Cly.   The column amounts of HCl and ClONO2 depend both on total Cly in the ����

lower atmosphere and its partitioning between the chlorine reservoirs.  Because of the ����

mixing ratio boundary conditions, stratospheric Cly can vary widely depending on the ����

simulated transport.  However, even CCMs with the most lower-atmospheric chlorine ����

need not be the most sensitive to chlorine change, if they partition chlorine reservoirs ��	�

towards HCl at the expense of ClONO2.  The ozone response to chlorine change depends ��
�

on reactions with short-lived radical species; their levels are controlled by both the total ����

Cly and its partitioning between the reservoir species HCl and ClONO2.   ����

 ����

 ����
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In 2035, the simulated response to climate change is similar for the CCMs with most ����

realistic transport; for 12 of the 14 CCMs the response to climate change is positive and ����

between 1 and 4.5 DU. As the simulations continue, differences in the ozone response to ����

changes in circulation and temperature grow.  In the US the 60ºS-60ºN annual average ����

ozone increases in all CCMs, and the differences in the magnitude of the increase are ��	�

explained by differences in the importance of the various catalytic loss cycles, such that ��
�

simulations with highest ozone in the unperturbed (low chlorine) period (~1960 – ~1980) ����

are most sensitive to temperature change [Douglass et al., 2012].  These differences ����

account for about one third of the spread in predictions.  The LA ozone response is more ����

complicated, as both circulation change and temperature change contribute.  Although the ����

CCMs all predict increased upwelling, the rate of increase varies among CCMs.  Li et al. ����

[2009] show a much larger rate of increase in w* during ozone hole formation than ����

during ozone hole dissipation for GEOSCCM.  There is no consensus among CCMs as to ����

the impact of the ozone hole on the rate of increase of w*.  Li et al. [2009] also note LA ����

cancellation of the impacts of the speedup of the Brewer Dobson Circulation between ��	�

tropical and extratropical latitudes, i.e., the tropical ozone decrease that accompanies ��
�

upwelling increase is opposed by middle and high latitude ozone increase.  Seven of the ����

14 CCMs (including GEOSCCM) behave in a similar manner, and the net LA change due ����

to climate change for this subgroup is less than 1 DU for 2080 relative to 1980.   For six ����

of the CCMs the LA impact due to climate change is substantially negative, and for one ����

the net LA impact due to climate change is substantially positive.  These differences ����

contribute most to the differences in projections in the late 21st century.  The CCMVal ����

diagnostics do not discriminate among the projections for w* or the cancellation between ����



� ���

tropical and extratropical response.  Reduction of the spread among predictions for future ����

ozone levels requires further investigation in the differences in the response of the ��	�

Brewer Dobson Circulation to increasing GHGs. ��
�

 ����

This analysis shows that the differences in projections for ozone can be explained.  The ����

US responses would be similar if the catalytic loss cycles were represented in the same ����

balance; therefore it is important to use observations to assure that the loss cycles are ����

represented in the appropriate balance in order to identify the ‘best’ prediction [e.g., ����

Douglass et al., 2011].  Similarly, the near linear dependence of the ozone sensitivity to ����

chlorine on the partitioning between ClONO2 and HCl suggest that LA responses to ����

chlorine change will be similar if the reservoir distributions are similar, therefore it is ����

important to use observations such as NDACC columns and profiles from ACE-FTS to ��	�

assure that the reservoir distributions are realistic.  In this case, deficiencies in transport ��
�

relate directly to differences in the simulated response to composition change.  The lower ����

stratospheric ozone evolution is simple to diagnose given the evolution of w*.  Although ����

it is not possible at this time to explain differences among simulations for w*, it is likely ����

that, as data records lengthen, analysis of observations in the tropics will make provide ����

limits for the rate of change of w* using such quantities as the lower stratospheric ozone ����

or the amplitude of the quasi-biennial oscillation [Randel and Thompson, 2011; Kawatani ����

and Hamilton, 2013].   ����

 ����

Finally, these results, in particular linking transport diagnostics, unrealistic reservoir ��	�

distributions and differences in sensitivity of simulated lower atmospheric ozone to ��
�



� ���

chlorine change, question the value of the use of a multi-model mean as a best prediction ����

of 21st century ozone.  Differences in simulated responses that can be traced to biases and �	��

understood are clearly not random. This study has identified the causes for differences in �	��

CCM ozone projections and explained the differences in lower atmosphere sensitivity to �	��

chlorine change.  This work demonstrates that diagnostics used to evaluate CCM �	��

performance are most useful when they are linked with a mechanism that is related to a �	��

model’s response to a perturbation.  The use of such diagnostics supports a strategy to �	��

reduce uncertainty in prediction. �	��
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Table 1 
�
�

Model Reference 

AMTRAC3 Austin and Wilson  [2010] 

CCSRNIES Akiyoshi et al. [2009] 

CMAM Scinocca et al. [2008];  de Grandpré et al. 

[2000] 

CNRM-ACM Déqué [2007]; Teyssièdre et al. [2007] 

GEOSCCM Pawson et al. [2008] 

LMDZrepro Jourdain et al. [2008] 

MRI Shibata and Deushi [2008a; 2008b] 

Niwa-SOCOL Schraner et al. [2008] 

SOCOL Schraner et al. [2008] 

ULAQ Pitari et al. [2002] 

UMSLIMCAT Tian and Chipperfield [2005]; Tian et al. [2006] 

UMUKCA-METO Davies et al. [2005]; Morgenstern et al. [2009] 

UMUKCA-UCAM Davies et al. [2005]; Morgenstern et al. [2009] 

WACCM Garcia et al. [2007] 
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Table 2  
���

Station Location 

Kiruna, Sweden 67.84°N  20.41° E 

Harestua, Norway 60.2°N  10.8 °E 

Jungfraujoch, Switzerland 46.55°N    7.98 °E 

Kitt Peak, AZ, USA 31.9°N  111.6°W 

Izaña (Tenerife), Spain 28.30°N     16.48°W 

Mauna Loa, HI, USA 19.54°N  155.58°W 

Lauder, New Zealand 45.04°S   169.68°E 
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FIGURES  
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Figure 1 a) The difference in the TCO from the 1978-1982 mean for 60°S-60° as 
���

simulated by CCMVal models; b) same as a) for 90°S-90°N. In both panels the blue 
���

traces identify CCMs with most realistic transport.  The dashed black vertical lines 
���

indicate the range of years for return to 1980 for the entire group of CCMs; the blue 
�	�

vertical lines indicate the narrower range for the CCMs with most realistic transport. 
�
�
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Figure 2  60°S-60°N average column ozone from two of the CCMVal CCMs.  The 
	��

crosses are the annually averaged columns; the black, green and blue lines are the fit 
	��

obtained using the MLR, the contribution due to chlorine change and the contribution due 
	��

to climate change respectively.  The ozone response to climate change is similar for these 
	��

examples, but the ozone response to chlorine change differs by more than a factor of 2.   
	��

�
		�

�
	
�

�
	��

Figure 3  The upper stratosphere and lower atmosphere contributions to the 60ºS-60ºN 

��

change in TCO between 1980 and 2000 (left) and 1980 and 2035 (right).  For both time 

��

intervals, the LA contributes more to the differences in CCM predictions than US.  The 

��

dotted vertical lines identify the CCMs with most realistic transport.�

��
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��

Figure 4  The 2035 – 1980 60ºS-60ºN contribution due to chlorine change (crosses, y-

��

axis) and that due to climate change (stars, y-axis) as functions of the change in TCO (x-

��

axis).  The black symbols indicate the CCMs with most realistic transport.    

	�

�


�

�

��

Figure 5  a) The 60°S-60°N LA ozone column change between 2000 and 1980 (crosses), 
���

the contribution due to chlorine change (green diamonds), and the contribution due to 
���

climate change (blue triangles);  b)  Same as a) for 2035 and 1980; c) same as a) for the 
���

US; d) same as b) for the US.  The dotted vertical lines identify the CCMs with most 
���

realistic transport.�
���
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Figure 6  CCM variance for each year between 1980-2080 of the difference from 1980 TCO. 
�	�

The MLR results are used to produce separate time series for the contribution due to chlorine 
�
�

change and the contribution due to climate change. The standard deviations are shown here for 
���

the total difference (black), the chlorine contribution (green) and the contribution due to climate ����

change.�����



� �	�

�����

�����



� �
�

�����

Figure 7 Monthly zonal mean simulated HCl columns at 7 NDACC stations spanning a latitude ����

range 67.8oN – 45oS for CCMs with most realistic transport (right column) and for the remaining ����

CCMs (left column).  Measurements are overhead columns (molecules/cm2).   ��	�
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�
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Figure 8  a) The December 2004 mean ClONO2/Cly for 45°N from the ACE ����

measurements (red solid line), from the 4 CCMs with most realistic transport  (blue solid ����

lines), and from the rest of the CCMs (black solid lines).  Horizontal bars on the ACE ����

profile indicate the standard deviation.  b) The sensitivity of lower atmosphere ozone to ����

chlorine change (ΔO3/ΔCly) obtained from the MLR as a function of the simulated ratio ����

ClONO2/Cly at 20 hPa.  The CCMs with most realistic transport are outlined by black ����

squares.  Vertical dashed lines indicate the ACE estimate for ClONO2/Cly at 20 hPa.  The ����

colors of the symbols correspond to the total Cly at 20 hPa – the ACE estimate is ��	�

indicated on the color bar.  The correlation coefficient between ClONO2/Cly and ��
�

ΔO3/ΔCly is -0.78. �����
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Figure 9  a) ozone change due to chlorine change, 2080 – 1980, upper stratosphere and ����

lower atmosphere; b) ozone change due to climate change, 2080 – 1980, upper ����

stratosphere and lower atmosphere. ����


