


# JSC Robotics: Mobility Overview

Bill Bluethmann, PhD NASA

# Mobility: Introduction (videos)

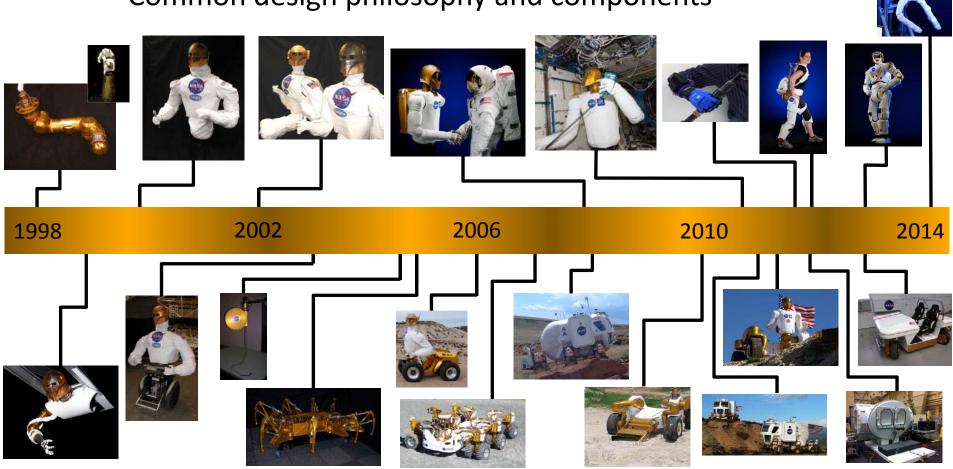








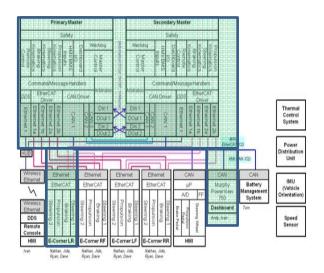


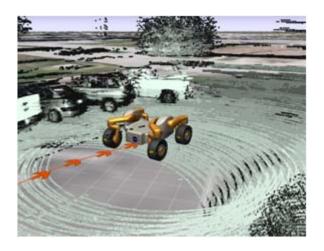



# Mobility: Background





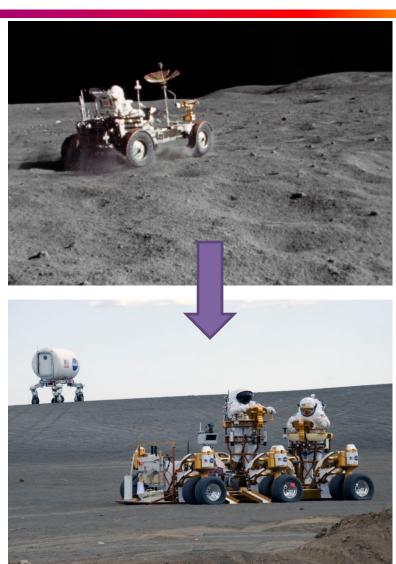

Common design philosophy and components




# Mobility: Common Themes



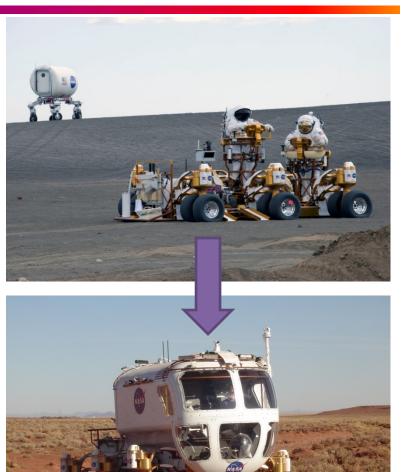
- Safety is paramount
  - Getting crew home is top priority in space
  - Translates to earth
  - Functional redundancy
- Extreme dexterity
  - Independent wheel modules
  - Active suspension
  - Crab steering
- Re-use to cut development time and cost
- Multiple control modes
  - Ride-on
  - Teleoperated
  - Autonomous and shared control modes






#### **Chariot Chassis**




- Developed beginning in 2007
- Concept/prototype of crew rover developed for surface exploration
- Goal: challenge the conventional wisdom of crew rovers
- Designed for extreme terrain mobility
- Six wheeled rover with each wheel module having 3 motions
- Capable of being driven by onboard crew, tele-operation and ground control



#### **Chariot Chassis**



- Designed as a modular chassis carrying a variety of payloads
  - Crew in pressurized suits, standing up, Chariot style
  - Configured as a flat deck for general purpose payloads
  - Small Pressurized Rover Cabin (forming NASA's Lunar Electric Rover)
  - Science and surveying instruments
  - Supplementary power
- Currently two models in 1<sup>st</sup> generation series



# **Chariot Chassis: Video**





### Space Exploration Vehicle



- Pressurized Mobile Habitat consisting of:
  - Small Pressurized Rover cabin
  - Chariot chassis
- Crew explores in shirt sleeves
- Access to space through suit ports
  - No airlock
  - Direct access to suits from cabin
  - EVA in 15 minutes vs. 4 hours on Space Station
- Nominal operations: 2 crew for 3, 7 or 14 days
  - 4 crew for up to 24 hours





### Space Exploration Vehicle



#### Features:

- 2 person cockpit
- Redundant driving stations
- Separate crew areas with privacy curtains
- Storage for up to 14 days
- Water system
- Waste control system
- Exercise devices
- Hatches with docking ports
- Aft driving station
- Aft enclosure for suit dust and thermal protection





#### **MRV**: Context



- NASA developed unique skills in Astronaut rovers during NASA's Constellation program (2006-2010),
  - Focus on safety & reliability
  - R&D scale of investment
  - Highly maneuverable vehicles
  - Rigorous testing
  - Different requirements than Mars rovers
  - Dual purpose: Astronaut or robotically driven
- MRV projects spins technologies to terrestrial applications

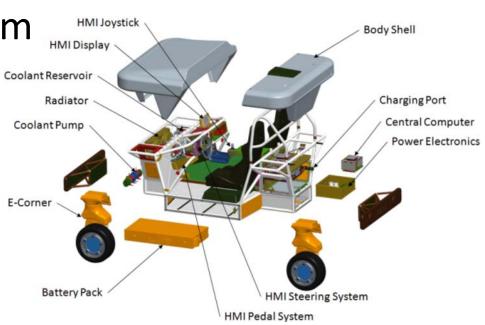




# MRV: Unique Vehicle Capabilities



- Fail-operational drive-by-wire design
  - Focus on vehicle safety under fault conditions
- Independent, modular wheel systems
- Extreme maneuverability
- Battery electric vehicle
- Designed for robotic control: remote and autonomous driving


## MRV: Vehicle Specs



- Design speed: 64 kph (40 mph)
  - Currently computer limited to 25 kph (15 mph)
- Curb weight: 900 kg (2000 lb)

• Footprint: 2.15 x 1.55 m (7' x 5')

 Drive-by-wire without mechanical backup



# **Concluding Remarks**





















