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A framework was developed for the optimization and validation of empir-
ical dynamic models subject to an arbitrary set of validation criteria. The
validation requirements imposed upon the model, which may involve several
sets of input-output data and arbitrary specifications in time and frequency
domains, are used to determine if model predictions are within admissible
error limits. The parameters of the empirical model are estimated by find-
ing the parameter realization for which the smallest of the margins of re-
quirement compliance is as large as possible. The uncertainty in the value
of this estimate is characterized by studying the set of model parameters
yielding predictions that comply with all the requirements. Strategies are
presented for bounding this set, studying its dependence on admissible pre-
diction error set by the analyst, and evaluating the sensitivity of the model
predictions to parameter variations. This information is instrumental in
characterizing uncertainty models used for evaluating the dynamic model
at operating conditions differing from those used for its identification and
validation. A practical example based on the short period dynamics of the
F-16 is used for illustration.
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d Number of samples
e Error
ε Admissible error
g Requirement functions
J Dimension reduction error
J̄ Cost function used for the maximum likelihood
L Likelihood function
m Aspect vector
μr Mean dimension reduction error
n Number of parameters in θ
ng Number of requirement functions in g
θ Parameters of the empirical model

θ̂ Maximal-margin parameter estimate
θc Geometric center of the bounding set
θ̄ Maximum-likelihood parameter estimate

θ̃ Critical parameter value (CPV)
ρ Parametric safety margin (PSM)
R Noise covariance matrix
R̄ Maximum likelihood noise covariance matrix
t Time
σ̄ Standard deviation of θ
Σ Parameter covariance
u(t) Input to the empirical model
V Validation domain in θ-space
Vol Volume operator
w Worst-case requirement function
ωr Maximal dimension reduction error

I. Introduction

Consider the linear time invariant (LTI) model described by

ẋ(t) = A(θ)x(t) + B(θ)u(t) (1)

y(t) = C(θ)x(t) +D(θ)u(t) (2)

where θ ∈ R
n is the vector of model parameters whose value is unknown, t ∈ R is time,

x(t) ∈ R
nx is the state, x(0) = x0 is the initial condition, u(t) ∈ R

nu is the input, y(t) ∈ R
ny

is the output, A ∈ R
nx×nx , B ∈ R

nx×nu , C ∈ R
ny×nx and D ∈ R

ny×nu are the system
matrices. The output of the physical system modeled by Eqs. (1-2) is measured at discrete
time instants ti. These measurements are described by

z(ti) = y(ti) + ν(ti) (3)

where z(ti) ∈ R
ny is the measured output for i = 1, . . . N , and ν(ti) ∈ R

ny is measurement
noise. In aircraft dynamics, the parameters in θ usually are stability and control derivatives.
System identification entails using the u(ti) and z(ti) corresponding to a carefully chosen
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maneuver to estimate the value of θ, and thereby identify the dynamic model. For most
aircraft system identification, it is assumed that the input u is measured without error.
Thus, we will denote by u(ti) the measurement of u(t) and by z(ti) the noisy measurement
of y(t). The input and output set u(ti) and z(ti) corresponding to the system identification
experiment will be referred to as the system identification data set.

For traditional output-error parameter estimation, it is assumed that the measurement
noise ν is a white zero-mean Gaussian process, and no other source of uncertainty is present.
The unknown parameter vector θ is estimated by minimizing a weighted sum of squares of
the difference between measured output z and model output y, in a maximum likelihood for-
mulation. This formulation yields both the estimated parameter vector θ̄, and an ellipsoidal
uncertainty set Δe ⊆ R

n centered at θ̄, which is expected to contain the true value of θ with
a specified level of confidence. This set is often approximated by Δ, a hyper-rectangle whose
sides are the confidence intervals of the parameter estimates. Hence, the identified dynamic
model consists of Eqs. (1-2), the estimated parameter θ̄, and the uncertainty set Δ.

The identified model is often validated using an independent flight test maneuver. The
corresponding data set, to be called a validation data set, consists of the input uv(ti) ∈ R

nu

and the output zv(ti) ∈ R
ny , for i = 1, . . . Nv. The validation of the identified model

depends on its ability to predict zv given uv. In conventional aircraft system identification,
model validation is done heuristically without mathematical formalism. The identified and
validated empirical model, along with probabilistic descriptions of uncertainty based on Δ,
are used in Monte Carlo analyses to study the probable range of performance for the physical
system under different sets of operating conditions and/or different inputs.

This paper proposes a new approach to parameter estimation and dynamic model val-
idation based on post-flight analysis. The framework proposed, which integrates multiple
requirements corresponding to arbitrary performance metrics and/or several input-output
data sets, is applicable to dynamic models with arbitrary functional forms, e.g., a nonlin-
ear dynamic model with nonlinear parameterization. For example, one requirement may be
based on the difference between the measured output used for system identification, z, and
the predicted output y(θ, t, u) using the l2-norm of the difference as a performance metric,
whereas another may be based on the maximum offset between the validation output zv
and the predicted output y(θ, t, uv) using the l∞-norm of the difference as a performance
metric. Any value of θ leading to sufficiently small differences is an admissible realization
of the model parameters. The collection of all of these realizations constitute the valida-
tion domain. Hence, the system in Eqs. (1-2) evaluated at any member of the validation
domain yields a prediction that meets both validation requirements. The size and shape
of the validation domain characterizes the uncertainty in the parameters of the empirical
model. In this setting, parameter estimation is performed by identifying the realization of
the validation domain for which the smallest margin of requirement compliance is as large
as possible. This represents an optimized dynamic model relative to the selected validation
criteria. The validation domain plays a key role in formulating uncertainty models used by
Monte Carlo analyses. Other uses include comparing flight results with ground-based pre-
dictions, calibrating computational fluid dynamics calculations, stability and control flight
testing and flight envelope expansion, accident investigation, adaptive and learning control,
and fault detection.

This paper presents techniques for calculating parameter estimates given several valida-
tion requirements, bounding the validation domain, studying its dependence on admissible
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prediction error set by the analyst, and evaluating the sensitivity of the model predictions
to parameter variations. This paper is organized as follows. Section II presents a summary
of current practice in aircraft system identification and uncertainty analysis using the time-
domain output-error method. Section III presents the proposed model validation technique.
The global sensitivity analysis of the model predictions is covered in Section IV. Section
V discusses practical implementation issues. Section VI illustrates in detail the scope of
the methodology using a simple example. This is followed by Section VII, where a brief
comparison between the legacy and proposed strategies is made. Finally, Section VIII closes
the paper with a few concluding remarks.

II. Current Practice

The elements of the unknown parameter vector θ in Eqs. (1-2) can be estimated from
measured data using an output-error formulation in the time domain. In this approach, θ is
chosen to minimize the cost function

J̄(θ, u, z, R) =
1

2

N∑
i=1

[z(ti)− y(θ, ti, u)]
� R−1 [z(ti)− y(θ, ti, u)] +

N

2
ln(|R|) (4)

where R ∈ R
ny×ny is a weighting matrix. If R is known, then only the term involving the

summation in Eq. (4) is relevant for the optimization, with the elements of the θ vector
being the only unknowns. The cost function is then the weighted sum of squared differences
between the measured output z and the model output y for the given input u,

e2(θ, u, z, R) =
1

2

N∑
i=1

[z(ti)− y(θ, ti, u)]
� R−1 [z(ti)− y(θ, ti, u)] (5)

This formulation is called output error because the unknown parameters are chosen to min-
imize the weighted squared errors between the measured output and the model output.

The weighting matrix R in Eq. (4) is in general arbitrary, but if the noise ν is assumed
to be a sample from a stationary, zero-mean, white Gaussian process, and R is chosen as
the corresponding discrete noise covariance, E[ν(ti)ν(tj)

�] = Rδij, then the minimization
of the cost in Eq. (4) is equivalent to the maximization of a Gaussian likelihood function,
L(θ, u, z, R), defined as[1]

L(θ, u, z, R) =
1

[(2π)ny |R|]N2
exp

{
−1

2

N∑
i=1

[z(ti)− y(θ, ti, u)]
� R−1 [z(ti)− y(θ, ti, u)]

}
(6)

The cost function in Eq. (4) is the negative logarithm of the likelihood function given in
Eq. (6), except for a constant term which has no bearing on the optimization. Maximizing
the likelihood function is equivalent to minimizing its negative logarithm. Therefore, the
maximum likelihood estimate θ̄ is found as

θ̄ = argmax
θ

L(θ, u, z, R) = argmin
θ

J̄(θ, u, z, R) (7)

Maximum likelihood estimates have several desirable properties as the number of data points
N gets large, such being asymptotically unbiased (estimate approaches the “true” value), and
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having repeated estimates approach a Gaussian distribution with variances that approach
the theoretical minimum.

Because of the nonlinearity of the cost function in Eq. (4), along with the generally
coupled dynamics in Eqs. (1-2), the output-error cost function depends nonlinearly on the
unknown parameter vector θ and also on the noise covariance matrix R. Consequently, a
nonlinear optimization algorithm must be used to solve the problem. Typically, a relaxation
method,1 that combines the modified Newton-Raphson method (also called Gauss-Newton
method) and the simplex method, can be used to minimize e2 in Eq. (5), initially with R
assumed equal to the identify matrix. This yields the estimate θ̄. The maximum likelihood
noise covariance, R̄, which minimizes the cost in Eq. (4) with respect to R for fixed θ̄, is
given by the closed-form expression[1]

R̄ =
1

N

N∑
i=1

[
z(ti)− y

(
θ̄, ti, u

)] [
z(ti)− y

(
θ̄, ti, u

)]�
(8)

The relaxation method alternates between the nonlinear optimization used to find θ̄ using
Eq. (5) and the evaluation of R̄ using Eq. (8), until both estimates converge using selected
convergence criteria.1 Although there is no formal proof that the relaxation method will
converge, extensive practical experience has shown that it does converge. This procedure has
been mechanized in software and used successfully for a wide variety of aerospace dynamic
modeling problems. Reference [1] provides further theoretical and practical details on the
output-error parameter estimation method and the solution procedure outlined here. The
output-error solution yields maximum likelihood estimates for both the unknown parameter
vector θ and the noise covariance matrix R.

The procedures for calculating the parameter covariance matrix Σ, and an uncertainty
for θ are presented next. The diagonal elements of Σ are the variances of the parameter
estimates whereas the off-diagonal elements are the covariances. The Cramer-Rao lower
bound for the covariance matrix, also called the dispersion matrix D ∈ R

n×n, is defined as

D =

[
N∑
i=1

S�(ti)R̄−1S(ti)

]−1

(9)

where S ∈ R
ny×n, called the output sensitivity matrix, quantifies the sensitivity of the model

outputs to the model parameters at the maximum likelihood estimate:

S(ti) =
∂y(ti)

∂θ

∣∣∣∣
θ=θ̄

(10)

Output sensitivities can be calculated analytically by solving a set of sensitivity equations
derived by differentiating Eqs. (1-2) with respect to θ, or by applying a finite difference
technique to Eqs. (1-2), see Ref. [1] for details. The first-order approximation of the
sensitivity of the model output to uncertainty is given by the product of S and the range
of uncertainty. If the columns of the output sensitivity matrix S are non-zero and have
low pairwise correlations, then each model parameter has a distinguishable effect on the
output y(t), and Eq. (7) is a well-conditioned optimization problem leading to an accurate
parameter estimate with small uncertainties.
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The connection between the Cramer-Rao bound D and the input u is complicated and
nonlinear, even when the dynamic model is linear, as in Eqs (1, 2). Measured output noise
levels (quantified by R̄) also affect D. Roughly speaking, D is determined by squared noise
to signal ratio, where R̄ represents the noise variance (square of the noise level), and the
output sensitivities represent the signal strength for the parameter estimation problem. Be-
cause the covariance matrix Σ for maximum likelihood estimates asymptotically approaches
the Cramer-Rao lower bound D as N increases, it is common practice to assume that the
parameter covariance matrix Σ is approximately equal to D evaluated at the maximum like-
lihood estimate, i.e., Σ ≈ D. Modern flight instrumentation systems collect flight data at
50 Hz or more, so that even relatively short maneuvers have a large number of data points
N . This fact is used to justify the approximation Σ ≈ D.

As the number of data points increases, maximum likelihood parameter estimates are
asymptotically Gaussian with mean value equal to θ̄ and covariance equal to Σ. The corre-
sponding probability density function is

fθ(θ) =
1

(2π)
n
2 |Σ| 12 exp

(
−1

2

(
θ − θ̄

)�
Σ−1

(
θ − θ̄

))
(11)

The hyper-ellipsoidal uncertainty set corresponding to the (1− α)% confidence level is then

Δe(θ̄, α,Σ) =
{
θ :

(
θ − θ̄

)�
Σ−1

(
θ − θ̄

) ≤ η2(α)
}

(12)

where θ̄ is the center of the ellipsoid, and the value of η(α) can be determined from 1− α =
erf(η/

√
2). The values of θ for which the equality in Eq. (12) holds are level curves of the

density function in Eq. (11). The normalized eigenvectors of Σ are the principal axes of
the ellipsoid in Eq. (12), and the corresponding eigenvalues are the squared inverse of the
corresponding semi-axis lengths. A common choice is to use the 95% confidence intervals, for
which η(0.05) ≈ 2. A confidence interval is an interval that includes the parameter of interest
with a given level of confidence for repeated experiments. More specifically, if confidence
intervals are constructed across many separate data analyses of different experiments, the
proportion of such intervals that contain the true value of the parameter will match the
confidence level. This is guaranteed asymptotically as more data is available.

The hyper-ellipsoidal uncertainty set in Eq. (12) can be roughly approximated by the
hyper-rectangular uncertainty set

Δ
(
θ̄, α,Σ

)
=

[
θ̄1 − η(α)σ̄1, θ̄1 + η(α)σ̄1

]× . . .× [
θ̄n − η(α)σ̄n, θ̄n + η(α)σ̄n

]
(13)

where σ̄j, j = 1, . . . n, are the standard deviations of the estimated parameters. Each term
on the right hand side of Eq. (13) corresponds to the (1 − α)% confidence interval of a
component of θ for the case in which the parameters are uncorrelated. Hyper-rectangles
have the advantage that the range of an individual parameter is not affected by the ranges
of the other parameters. This is in contrast to bounding sets with other geometries, such as
ellipsoids. In general, none of the sets in Eqs. (12) and (13) contain each other.

The standard procedure in aircraft system identification for many years was to quote the
maximum likelihood estimates of the parameters θ̄, with 95% confidence intervals computed
based on D, and the Gaussian noise assumption. However, in practice, it was found that
model residuals (difference between measured output and model output) are typically not
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white Gaussian with constant variance, as assumed in the theory, but in fact are colored (time
correlated) with nonuniform variance. This occurs because in practical problems, the model
residuals include not just measurement noise, as assumed in the theory, but also model
structure errors from effects not included in the model, such as nonlinearities, structural
responses, and unsteady aerodynamic effects. The mismatch between theory and practice
results in estimated parameter uncertainty bounds that are overly optimistic (too small)
when using the standard procedure described above. Reference [2] provides some heuristic
techniques to address this problem. References [1,3,4] provide a rigorous solution, validated
using both simulation data and flight test data, which involves improving the R̄ estimate,
and using it to compute a corrected D matrix. This solution has become the dominant
approach in recent years, because standard errors computed in this way match the scatter in
parameter estimates from repeated experiments at the same flight conditions. The necessary
correction can be done as a post-processing of the residual sequences from an output-error
maximum likelihood solution, because only the D matrix elements (and consequently the
estimated parameter uncertainties) are affected, but not the parameter estimate θ̄.

Further details on the material in this section can be found in Ref. [1], which also includes
MATLAB R© software that implements the procedures described here, along with many other
procedures and techniques related to aircraft system identification.

III. Parameter Estimation and Validation Domain Bounding

This section presents techniques for calculating a parameter estimate and bounding the
validation domain. Recall that the dynamic model evaluated at any parameter realization
of this domain yields predictions that satisfy the validation requirements. The validation
domain is, in general, geometrically complex and multi-dimensional. These features often
preclude its exact determination and analysis. Techniques for calculating inner bounding sets
(subsets) and outer bounding sets (supersets) of this domain are presented below. While the
inner bounding sets are guaranteed to consist only of validation points, the outer bounding
sets are guaranteed to contain all the members of the validation domain. Some of the uses
of these bounding sets are listed in Section VII. For purposes of this paper, these bounding
sets are hyper-rectangles having edges that are parallel to the coordinate axes of θ-space.

The dependency of the dynamic model in Eqs. (1-2) on θ makes the stability and per-
formance metrics derived from this model dependent on θ. The error measure in Eq. (5)
and

e∞(θ, u, z, R) = max
ti

{
[z(ti)− y(ti, θ, u)]

� R−1 [z(ti)− y(ti, θ, u)]
}

(14)

which is an l∞-norm, are examples of these metrics. Metrics like these will be used to
prescribe a set of validation requirements. A dynamic model will be regarded as adequate
when the corresponding model predictions comply with all the requirements. A requirement
will be prescribed as an inequality constraint on the value of the error between the target
behavior and the model prediction. If e(θ) denotes such an error, and ε is the largest
admissible value of e(θ), this inequality can be described as

g(θ, ε) = e(θ)− ε ≤ 0 (15)

The dynamic model is compliant with the requirement if and only if the inequality is satisfied.
An extension to the multiple requirement case can be easily made. The multiplicity of
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requirements may stem from having multiple error forms or from having multiple data sets.
For instance, the satisfaction of the vector inequality

g(θ, ε) = [e2(θ, u, z, R)− ε1, e∞(θ, uv, zv, R)− ε2] ≤ 0 (16)

means that the square of the weighted l2 difference between the predicted data and the
measured data does not exceed ε1, and that the weighted l∞-norm of the difference between
the predicted data and the validation data does not exceed ε2.

The vector inequality g(θ, ε) ≤ 0, where g ∈ R
ng , partitions the space of model parameters

θ into two regions - a region where all requirements are met, and a region where at least one
of them is violated. The validation domain V , or requirement-compliant domain, defined as

V(ε) ≡
ng⋂
j=1

{θ : gj(θ, εj) ≤ 0} (17)

is comprised of all parameter realizations leading to predictions meeting all of the validation
criteria. Each term on the right hand side of this equation defines the validation domain
corresponding to an individual requirement. An alternative expression for the validation
domain is V(ε) = {θ : w(θ, ε) ≤ 0}, where

w(θ, ε) ≡ max
1≤j≤ng

gj(θ, εj) (18)

is the worst-case requirement function. This formulation allows describing V through a
single inequality constraint. The complement of the validation domain, C[V ], where C[·]
denotes the set complement operator, will be called the requirement-noncompliant domain.
Parameter realizations within this domain will violate at least one of the requirements.

The underlying logic supporting the calculation of the uncertainty set in Section II is
to bound the “true” value of θ via confidence intervals, whereas the rationale used here is
identifying the infinitely many realizations of θ for which the model predictions are adequate;
e.g., the realizations of θ for which the offset between the measurements and the models’
prediction is within admissible error bounds.

This formulation can also be used to impose mathematical attributes, not necessarily
described by the system identification or validation experiments, upon the dynamic model.
For instance, a local stability requirement for the open-loop system can be imposed by
including in g the requirement function max{	[λ1(θ)], . . . ,	[λnx(θ)]} − ε, where λk, k =
1, . . . nx are the eigenvalues of A(θ), 	[·] is the real part operator, and ε = 0. In the setting
of Eq. (16), the parameter realizations within the validation domain yield locally stable
dynamic models whose predictions adequately describe the measured outputs. Another
requirement that often comes up in practice is that a particular model parameter should
have a specific sign. If θa is to be negative, include gj(θ, εj) = θa in the g vector. For a
positive θa, use gj(θ, εj) = −θa.

The value of−w(θ, ε) can be interpreted as a margin of requirement compliance associated
with θ. In this setting, the parameter estimate θ̂, to be called the maximal-margin estimate,
is defined as

θ̂ ≡ argmin
θ

{w(θ, ε)} (19)

Therefore, the empirical model evaluated at θ̂ yields predictions that maximize the smallest
margin of requirement compliance, i.e., θ̂ makes the value of the largest component of g is as
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small as possible. If w(θ̂, ε) < 0, then θ̂ is an element of the validation domain. Otherwise,
V(ε) is empty.

Techniques for calculating inner bounds require a non-empty requirement-noncompliant
domain, whereas those for generating outer bounds require that V be bounded. Figure 1
shows a sketch for n = 2, where the boundary of V is shown as a solid black line. Two
rectangular inner bounding sets, denoted as Binner and B̃inner, and two outer bounding sets,
denoted as Bouter and B̃outer, all centered at θc, are also shown. Note that B̃inner and B̃outer

are, respectively, the minimum and maximum area rectangles bounding V having θc as their
center. Binner and Bouter are the optimal squares.

Figure 1. Bounding sets of the validation domain

The m-scaled infinity norm is instrumental for calculating hyper-rectangular bounding
sets. For a vector m ∈ R

n with positive components, the m-scaled infinity norm of a ∈ R
n is

defined as ‖a‖∞m = max{|ak|/mk}. The vectorm, called the aspect vector, sets the orientation
of the positive semi-diagonal of the hyper-rectangle. For example, the aspect vector of
Binner and Bouter in Figure 1 is m = [1, 1], while B̃inner and B̃outer use an aspect vector
that maximizes and minimizes the bounding set area, respectively. Reference [5] provides
background information for the developments that follow.

A. Subsets of the Validation Domain

Formulations for calculating hyper-rectangular subsets of V are presented below. While
empirical models evaluated at any point from within such a subset will comply with the
validation criteria, models evaluated outside this set may or may not satisfy these criteria.
We present two formulations, one for a fixed aspect vector m and another which calculates
an optimal aspect vector m. The optimal bounding set resulting from the latter formulation
minimizes the volume of the uncovered portion of the validation domain.
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1. Fixed Aspect Vector

Techniques for calculating the largest hyper-rectangle centered at θc with aspect vector m
that is fully contained in V are presented next. If g(θ, ε) ≤ 0 is the set of requirements
imposed upon the dynamic model, the hyper-rectangle

Binner (θc,m, ρinner) = {θ : θc − ρinnerm ≤ θ ≤ θc + ρinnerm} (20)

where θc ∈ V , with ρinner specified as

ρinner(ε) = min
θ

{‖θ − θc‖∞m : w(θ, ε) ≥ 0} (21)

is a subset of V . The calculation of a ρ, called the parametric safety margin (PSM), as in Eq.
(21), entails solving a nonlinear optimization problem. A value of θ at which the optimum
of Eq. (21) occurs, θ̃, is called a critical parameter value (CPV). A CPV is a parameter
realization where the bounding set and the requirement-noncompliant domain touch. The
small yellow circles shown in Figure 1 show where the CPVs are. The components of g
taking the value of zero at a CPV are the critical requirements. The PSM, each CPV, and
the critical requirements are all functions of the geometry of V , which in turn depends on
the admissible error ε.

The values of the constants ε, θc, and m must be set before solving Eq. (21). The
value of the components of admissible error vector ε should be set according to the nature
and importance of each requirement. Some requirements allow for a somewhat subjective
selection of ε (e.g., allowing for a 10% larger admissible error may still yield a sufficiently
accurate prediction), whereas others may not (e.g., requiring the dynamic model to be locally
stable demands an ε = 0). For the subjective cases, the sensitivity of V to ε can be explored
by calculating the monotonically increasing and possibly discontinuous function ρinner(ε).
Discontinuities in ρinner(ε) may arise when the w(θ, ε) for a fixed ε has several local maxima.
Additional information on ρinner(ε) is provided in Section III-C. The values of θc andm, which
prescribe the geometry of the bounding sets, can be chosen in multiple ways. The value of
θc should yield an accurate prediction, and the value of mk should be made proportional to
the level of uncertainty in the value of θk. A natural choice for the center of the bounding
sets is θc = θ̂. The conventional approach of Section II can be used to set m = σ̄. A poor
selection of θc and m may yield no solution for an inner bounding set (e.g., a case where
θc = θ̄ is outside the validation domain), or may yield unnecessarily loose bounding sets.
The subjectivity in the selection of θc and m can be eliminated using the strategies proposed
in the next section.

Imposing additional requirements or lowering the admissible error ε (or both) cannot in-
crease ρinner. Rather, these actions will shrink the validation domain, and thus, the associated
bounding sets. Note that the combination of several requirements, not necessarily stringent
by themselves, may lead to an empty V . So, it is possible to impose two requirements each
leading to a satisfactorily large validation domain by itself, but whose intersection is com-
paratively small. This would imply that the sets of parameter values in which the model
satisfies either of the two requirements is large, but the set in which both requirements are
satisfied is small.
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2. Optimal Aspect Vector

Techniques for calculating the hyper-rectangle centered at θc of largest volume within V
are presented next. In contrast to the fixed-m formulation, now the optimal value of m is
determined in an outer optimization loop

max
m

{Vol(Binner)} (22)

The resulting bounding set is given by Eqs. (20) and (21), where

m̃inner(ε) = argmax
m

{
ρninner(ε)

n∏
k=1

mk, ‖m‖ = 1,m > 0

}
(23)

is the optimal aspect vector. The PSM and bounding box corresponding to m̃inner will be
denoted as ρ̃inner(ε) and B̃inner, respectively. Note that finding m̃inner requires solving a nested
optimization problem where a search for the PSM for a fixed m occurs in the inner loop,
while a search for the optimal aspect vector m̃ occurs in the outer loop. As before, the
resulting hyper-rectangle is an inner bounding set of V . For the same θc, the bounding set
resulting from this formulation is better than the fixed-m formulation in the sense that the
volume of the validation domain not covered by the bounding set is the smallest. Figure 1
shows the optimal bounding set B̃inner as a red rectangle, and the corresponding CPVs as
yellow circles.

B. Supersets of the Validation Domain

In this section, techniques for finding supersets of V are developed. The empirical model
evaluated at any point outside this superset is requirement-noncompliant, whereas the model
evaluated at points inside this superset may either be requirement-compliant or requirement-
noncompliant. As before, two formulations are presented - one for a fixed m, and another
for an optimal m. The optimal bounding set resulting from the latter formulation contains
all the parameter realizations that comply with the requirements, with minimal excess, i.e.,
without extending unnecessarily over the requirement-noncompliant domain.

1. Fixed Aspect Vector

A formulation for calculating the smallest hyper-rectangle centered at θc with fixed aspect
vector m that contains V is presented next. If g(θ, ε) ≤ 0 is the set of requirements imposed
upon the dynamic model, the hyper-rectangle

Bouter (θc,m, ρ) = {θ : θc − ρouterm ≤ θ ≤ θc + ρouterm} (24)

with ρouter is specified by

ρouter(ε) = max
θ

{‖θ − θc‖∞m : g(θ, ε) ≤ 0} (25)

is a superset of V . As before, the calculation of the PSM requires solving a nonlinear
optimization problem. By construction, the family of empirical models resulting from varying
θ over C[Bouter] will violate at least one of the requirements. The PSM, the CPV, and
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critical requirements introduced in Section III-A can be naturally extended to the supersets
considered here. Figure 1 shows the outer bounding set for m = [1, 1], labeled Bouter, as a
blue rectangle, and the corresponding CPV as a yellow circle.

As before, the values of θc, m, and ε should be prescribed according to engineering
judgement. Although the center of the inner bounding set θc must be a point within the
validation domain (otherwise the bounding set would not be contained by V), the center of
the outer bounding set can be anywhere. Actually, if the validation domain is a disconnected
set, the selection of a θc outside the validation domain can yield smaller bounding sets, e.g.,
the smallest rectangle that contains two non-intersecting circles of equal diameter has a
center that is outside both circles.

As with the inner bounding sets, the sensitivity of V to ε can be studied by calculating the
monotonically increasing and possibly discontinuous function ρouter(ε). These discontinuities
are the result of w(θ, ε) having multiple local minima. Additional information on ρouter(ε) is
provided in Section III-C.

2. Optimal Aspect Vector

Techniques for calculating the hyper-rectangle centered at θc of smallest volume that fully
contains V are presented next. In contrast to the fixed-m formulation, the optimal value of
m is determined in an outer optimization loop

min
m

{Vol(Bouter)} (26)

The resulting bounding set is given by Eqs. (24) and (25), where

m̃outer(ε) = argmin
m

{
ρnouter(ε)

n∏
k=1

mk, ‖m‖ = 1,m > 0

}
(27)

is the optimal aspect vector. The PSM and bounding set corresponding to m̃outer will be
denoted as ρ̃outer(ε) and B̃outer, respectively. As before, finding m̃outer requires solving a
nested optimization problem where a search for the PSM for a fixed m occurs in the inner
loop, and a search for the optimal aspect vector m̃ occurs in the outer loop. For the same
θc, the bounding set resulting from the free-m formulation is better than that of the fixed-m
formulation in the sense that the volume of the requirement-noncompliant domain covered by
the outer bounding set is the smallest. Figure 1 shows the optimal superset (green rectangle)
and the corresponding CPVs (yellow circles). Note that multiple CPVs lay on the boundary
of both inner and outer optimal bounding sets.

The free-m formulations for calculating bounding sets of V can be trivially extended to
the case where the center of the bounding set θc, along with m, are determined in the outer
optimization loop. This practice leads to hyper-rectangular bounding sets where the offset
between them and V is minimal. This class of bounding sets will not be pursued here.

C. Dependency of the Bounding Sets on the Admissible Error

This section considers possible complexities of V , the bounding sets, and the PSMs, as
the admissible error ε prescribing the requirements changes. A simple example is used to
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illustrate the case where the monotonically increasing function ρ(ε) corresponding to both
inner and outer bounding sets of V is discontinuous.

Figure 2 shows an error function e(θ), defined by the gray line, for a single unknown
parameter θ. A piece-wise linear e(θ) has been chosen to facilitate the exposition. In this
case the bounding sets are intervals centered at θc, which is the global minimum of the error
function. Note that the inequality g = w = e(θ)− ε ≤ 0, which solely defines the validation
domain, is the singleton θc when ε = 0. Larger values of ε yield validation domains with
infinitely many points. The validation domains corresponding to a continuum of ε values is
colored in green. The validation domain for ε1 comprises two intervals, whereas the validation
domain for ε3 is a single interval. The colored lines in the left figure represent the endpoints
of the inner bounding interval of V (dashed red line) and the outer bounding interval of V
(dashed blue line). The half length of the intervals is the PSM.

The right figure shows the PSMs ρinner and ρouter as a function of ε. The local maxima
and minima of e(θ) yield discontinuities in ρinner(ε) and ρouter(ε), respectively. As expected,
ρouter > ρinner for all ε. The functions ρinner(ε) and ρouter(ε) relate the maximum value of the
worst-case error (abscissa) that occurs within a box centered at θ̄ with aspect vector m of a
given size (ordinate). In this particular example, these functions relate the maximum value
of e(θ) that occurs within an interval centered at θ̄ having a half length equal to the PSM.
The discontinuities in the PSM are cases where a differential change in the admissible error
ε yields a significant change in the validation domain, and thus, in the bounding sets. In
the case shown, each discontinuity is associated with V(ε) changing between being simply-
connected and being not simply-connected.

Figure 2. PSM of inner and outer bounding sets of V as a function of ε

The following section examines the global sensitivity of all the components of g, which
may well include metrics based on the output y(t), to the model parameters as their values
are free to range within the validation domain. The understanding of this section is not
necessary for the reminder of this paper, and as such, it may be considered optional.
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IV. Global Sensitivities

The output sensitivity matrix S in Eq. (10) and the parameter covariance matrix Σ in Eq.
(9) provide valuable information on the sensitivity of the predicted output y(t) to variation
in the model parameters. If a particular parameter sensitivity is poor, then that parameter
is dropped or fixed as part of the standard procedure in the system identification problem.
This well-established approach is based on the local sensitivity of the identified model output
y(t) to the system identification input at the single parameter point θ̄. Performance metrics
and requirements that are not based on y(t) will likely exhibit different sensitivities, e.g., the
sensitivity of the first natural frequency of the identified model to θ. Moreover, derivatives
about other θ points cannot be expected to be in agreement with those at θ̄. In general,
there is no basis to expect that the results of a global sensitivity analysis will be in agreement
with those of a local sensitivity analysis, unless the range of variation in θ is small, or the
figures of merit prescribing all the components of g are a weakly nonlinear function of θ.

Up to this point, the problem of assigning values to θ such that the system model satisfies
all requirements has been considered. The acceptability of candidate values of θ is based on
an error metric which measures, for instance, how closely the model output matches the test
results when the candidate value is used for the model parameters. In this section, methods
are explored for determining if, from the point of view of matching test results, the model is
so insensitive to the value assigned to specific components of θ that, for analysis purposes,
those components may be assigned fixed values without materially changing the quality of
the prediction. If such insensitive parameters can be identified, the dimensionality of the
parameter identification problem is effectively reduced. Similar ideas are used in Ref. [6]. A
mathematical formalism to describe these notions is presented next.

The effect that the value of a subset of the model’s parameters has on the quality of the
model’s predictions is studied next. To this end, we partition the parameter vector θ into two
subvectors, the vector f of parameters whose range of variation within V will be preserved,
and the vector r of parameters whose value within V will be kept fixed. This partition will
be represented as θ = [f, r]. Denote by F and R the projections of the validation domain
onto the f - and r-subspace respectively

F = {f : ∃r for which [f, r] ∈ V} (28)

R = {r : ∃f for which [f, r] ∈ V} (29)

The predictions made by the dynamic model are insensitive to r when g([f, r], ε) ≈
g([f, r̂], ε) for all [f, r] ∈ V , where r̂ is any fixed value of r in R. A metric for evaluating
the approximation error incurred by using g([f, r̂], ε) instead of g([f, r], ε) is the dimension
reduction error J(r̂), defined as

J(r̂) ≡
∫
V

∫
[g([f, r], ε)− g([f, r̂], ε)]� Q [g([f, r], ε)− g([f, r̂], ε)] dfdr (30)

where Q is a positive definite matrix. The matrix Q can be used to scale the components of g
according to the units of the error e prescribing it, and to emphasize particular requirements.
A small value of J(r̂) for all r̂ ∈ R indicates global insensitivity of g, thus of e and y, to the
value that r might take in R.

A couple of metrics for evaluating key features of the function J(r̂) as r̂ ranges over R
are introduced next. The first of these metrics the maximal dimension reduction error, ωr,
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given by

ωr = max
r̂

{
J(r̂)

Vol(R)
: r̂ ∈ R

}
(31)

The metric ωr is a tight upper bound on all possible dimension reduction errors that may
occur by fixing the value of r̂ in R. The second metric is the mean dimension reduction
error, μr, given by

μr =

∫
R

J(r̂)

Vol(R)
dr̂ (32)

While ωr depends on the extreme and possibly unlikely case at which J(r̂) attains is maxima,
μr is the average value of J(r̂) when r̂ is uniformly distributed overR. The sensitivity metrics
ωr and μr can be used to rank the model’s parameters and determining which of them can be
fixed at a constant value. The best of such values is the point where J attains its minimum.
Note that rankings based on ωr and μr may not agree. Further notice that fixing the value
of the parameters in r̂ effectively reduces the dimension of the unknown parameter space
from n to dim(f).

The sensitivity metrics ωr and μr can be evaluated using bounding sets of V . Details on
how to evaluate them numerically are provided next. Let B (

θ̄, m̂, ρ̂
)
be a superset of V(ε).

The partition θ = [f, r] leads to B = Bf × Br, where Bf = {f : f̄ − ρ̂m̂f ≤ f ≤ f̄ + ρ̂m̂f},
Br = {r : r̄ − ρ̂m̂r ≤ r ≤ r̄ + ρ̂m̂r}, m̂ = [m̂f , m̂r], and θc = [fc, rc]. In this setting, the
sensitivities in Eq. (31) and Eq. (32) are given by

ωr =
1

Vol(R)
max
r̂∈Br

{∫
Br

∫
Bf

h(f, r, r̂)IV ([f, r]) dfdr
}

(33)

μr =
1

Vol(R)

∫
Br

∫
Bf

h(f, r, r̂)IV ([f, r]) dfdr (34)

where h(f, r, r̂) is the integrand of Eq. (30), I is the indicator function, and

Vol(R) =

∫
Br

IR(r)dr (35)

The indicator function IA(a) is equal to one when a ∈ A, otherwise it is equal to zero. The
integrals above can be evaluated using sampling. This practice leads to approximation errors
which diminish only as O(1/

√
d), where d is the number of samples. This results in the usual

diminished returns of ordinary statistical estimators: to halve the error in the estimate of ωr

we must quadruple d. While the integrals can also be evaluated using Rieman’s sums, the
computational cost, which grows exponentially with n, restricts this approach to problems
with small number of uncertainties. As expected, the sets resulting from the optimal-m
formulations, which bound more tightly the validation domain, yield, for a given number of
samples, more accurate estimates of the integrals, thus, of the sensitivity metrics.

The sensitivity of the model prediction to a particular model’s parameter prescribes the
effort we should devote to modeling the uncertainty on its value. Besides providing insight
into the characterization of uncertainty, sensitivity information also enables establishing a
basic notion of causality. By knowing which parameters are important, better system iden-
tification experiments can be designed and critical requirements can be tightened or relaxed

15 of 27

American Institute of Aeronautics and Astronautics



accordingly. Furthermore, if the sensitivity metric for a particular parameter is close to zero,
the corresponding component of the system matrices in Eqs. (1-2) can be fixed in advance
and the validation domain of the new model, now in the dim(f)-dimensional subspace, can
be studied. If the dynamic model is under-parameterized the validation domain correspond-
ing to acceptable values of the admissible error ε will be empty. When the validation domain
is non-empty, the model can be either overly-parameterized or adequately parameterized.
The model is overly-parameterized when the value of some parameters can be fixed and
the model predictions corresponding to the validation domain associated with the remaining
parameters are about as good as the original. The model is adequately-parameterized when
fixing the value of any of the parameters yields a substantially degraded model prediction.

V. Practical Implementation

Guidelines for practical use of the framework proposed are given next. The following
step-by-step procedure provides a high-level description of the tasks required to estimate the
model’s parameters, characterize the uncertainty in their value, and validate the empirical
model.

1. Chose the structure of the dynamic model according to the physics governing the
system, or identify an adequate model structure from the data, using model structure
determination techniques.1 The dependence of the model output on the states, controls,
and parameter vector θ can be arbitrary.

2. Qualitatively prescribe the set of requirements to be imposed upon the model. Stability
and performance requirements in the time and frequency domains, as well as constraints
on the allowable range of variation for the parameter vector θ, can be included. These
requirements can bound the offset between the observations and model predictions, or
can force the model to satisfy desired mathematical properties.

3. Prescribe the above requirements quantitatively. This tasks entails creating a g for each
of the requirements such that g ≤ 0 implies requirement satisfaction whereas g > 0
implies its violation. Requirements bounding the offset between the observations and
the model predictions can be cast as g = e − ε, where the error e is any norm of the
offset and ε is the admissible error. Time and frequency domain specifications can be
prescribed by setting allowable ranges of variation for key figures of merit, e.g., if ts(θ)
is the settling time to a step input and 1 is the maximum allowable settling time, use
g = ts(θ)− 1.

4. Scale the components of g to make their range of variation comparable. Keep in mind
the requirement functions have different units and describe different performance met-
rics. Whereas scaling affects the parameter estimate θ̂, it does not affect the validation
domain bounds since their calculation only depends on the sign of g.

5. Find the maximal-margin parameter estimate θ̂ in Eq. (19). The best fixed-parameter
empirical model is given by the structure set in Step (1) evaluated at θ̂.

6. Find a parameter realization for which the empirical model satisfies all the require-
ments. Denote this realization as θ∗. θ∗ can be searched for by using sampling, or can
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be made equal to the maximal-margin parameter estimate provided that w(θ̂, ε) < 0.
Failing to find a value of θ for which this inequality holds may indicate that the model
structure does not capture the problem physics well, or that the requirements are overly
stringent. If this is the case, revisit steps 1 through 3 to mend these deficiencies. The
existence of θ∗ indicates that the validation domain is not empty.

7. Calculate inner bounding sets of the validation domain using either Eq. (21) or Eq.
(23) for θc = θ∗. The latter formulation yields tighter sets.

8. Calculate outer bounding sets of the validation domain using either Eq. (25) or Eq.
(27) for θc = θ∗. The latter formulation yields tighter sets.

9. The family of validated dynamic models is given by the model structure prescribed in
Step 1, and the bounds on the validation domain in Steps (7) and (8). While all the
members inside the inner bounding set yield validated models, all the members outside
the outer bounding set yield invalidated models.

10. For a global sensitivity analysis use the developments of Section IV. This analysis
enables (i) ranking the parameters in θ according to the extent which they affect the
model’s ability to meet the requirements, and (ii) determining which parameters can
be assumed to take on a fixed value without significantly degrading the accuracy of
the model prediction.

11. Use the outer bounding set of the validation domain as the support set of uncertainty
models for θ. This model is commonly used to study the variability on the model
predictions caused by parameter uncertainty using Monte Carlo analysis. The larger
the offset between the validation domain and its outer bounding set, the larger the
conservatism in the analysis.

A few remarks on the computational requirements of the above procedure are in order.
Note that the optimization problems in Eqs. (7, 19, 21, 23, 25, 27), are nonlinear in general.
These problems can be solved by most of the nonlinear programming algorithms available
in numerical computation software. For the unconstrained problems in Eqs. (7, 19, 23,
27), techniques such as Nelder-Mead (nonlinear simplex), trust-region, and quasi-Newton
algorithms are applicable. For the constrained optimization problems in Eqs. (21, 25),
sequential quadratic programming, interior-point, active-set, and trust-region reflective, can
be used. In this work, fminsearch, fminunc and fmincon from MATLAB R© were used.

In any non-convex optimization problem there is always the possibility of convergence to
a local optimum instead of the global optimum. While convergence to a non-global optimum
in the unconstrained problems of Eqs. (7, 19, 23, 27), is not critical, this is not the case for
the constrained cases in Eqs. (21, 25). When this anomaly occurs in the non-critical cases,
the resulting sets are suboptimal bounding sets, e.g., there exists a larger inner bounding set.
When this anomaly occurs in the critical cases, the resulting set is not an actual bounding
set. Absolute guarantees of convergence to the global optimum are not possible, but a variety
of algorithmic safeguards can be used to compensate for this deficiency. For instance, in the
calculation of an outer bounding set, g can be evaluated at few sample points outside the
resulting set. If g ≤ 0 for any of these sample points, which will indicate that the calculated
set is flawed, any of those sample points can be used as initial condition in subsequent
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searches. Note that Monte Carlo analysis cannot be used to calculate bounding sets, or to
prove that any set in the parameter space is indeed a bounding set. This is the result of not
being able to assess the regions of the parameter space where there are no sample points.
For instance, if the values w at selected sample points within the set Binner are all negative,
the possibility of w being positive in between any pair of sample points still exists. While
finding one sample point in B for which w > 0 is enough to prove that B is not an inner
bounding set of V , finding that w < 0 at any finite number of sample points is not enough
to establish that B is contained in V .

The computational effort of calculating bounding sets depends on the effort required to
evaluate g, the number of uncertain parameters n, and the convergence properties of the
nonlinear optimizer. This calculation may entail performing time simulations, calculating
eigenvalues and/or frequency domain metrics, among many other possibilities. A detailed
numerical analysis of the convergence to the optimum as a function of these parameters
is beyond the scope of this paper. However numerical experiments based on the example
below take a few hundred function evaluations of g, and about 4 minutes (2 × 3.2 GHz
Quad-Core) to converge. Because this technology is to be applied post-flight, and not in
real time, the CPU time associated with these calculations does not play a critical role. A
concrete example, where the main ideas above are developed in detailed, is presented next.

VI. Example

An example case using a dynamic model with 6 unknown parameters is studied next. An
LTI model for the short-period dynamics was extracted from the nonlinear F-16 simulation
in [1] using central finite differences. A steady level flight condition for α = 5 deg was chosen.
The model structure is the standard form given in Eqs. (1-2) where u is the deflection of the
stabilator, x = [α, q]�, α is the angle of attack, q is the pitch rate, and y = x. The system
matrices are

A(θ) =

[
θ1 θ2
θ4 θ5

]
, B(θ) =

[
θ3
θ6

]
, C =

[
1 0

0 1

]
, D =

[
0

0

]
(36)

The system identification data and the validation data were generated using the nonlinear
simulation with Gaussian noise for two different doublet input sequences. As a result, the
system identification input u(ti) and output z(ti), as well as the validation input uv(ti) and
output zv(ti), are available. Following the standard approach of Section II, we calculate the
maximum likelihood estimate θ̄ = [−0.6454, 0.9066,−0.1538,−3.7948,−1.2015, −6.5242],
and the standard deviation σ̄ = [0.0214, 0.0104, 0.0208, 0.0329, 0.0265, 0.0682]. This infor-
mation fully prescribes the uncertainty set Δ

(
θ̄, 0.05

)
in Eq. (13).

Validation requirements based on the error in Eq. (5) will be imposed upon the dynamic
model. The first requirement is g1 = es − ε, where

es(θ) =
e2(θ, u, z)

e2(θ̄, u, z)
(37)

ε ≥ 1, and u and z correspond to the system identification data set for R = R̄. This
requirement implies that the error incurred by θ must not exceed the minimum value by
more than 100(ε − 1) %. Note that the function es(θ), which depends upon six unknown
parameters, has a minimum equal to 1 at θ = θ̄. The normalization in (37) enables the
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comparison of the e2 error to the value attained by the maximum likelihood estimate. The
left subplots in Figure 3 show 2-dimensional contours of es(θ) within the 95% confidence
box Δ

(
θ̄, 0.05

)
. Note that the geometric center of the box is both the maximum likelihood

Figure 3. Contours of the error function for one (left) and two requirements (right).

estimate θ̄ (marked with a + sign) and the maximal-margin parameter estimate θ̂ (marked
with a × sign). Elements of θ that are not varied in the figure are fixed at their maximum
likelihood value. The largest error caused by uncertainty in θ5 and θ6 within the rectangle
pictured in the upper left is 27% larger than the error at θ̄, while the largest error caused by
uncertainty in θ1 and θ2 is 11% larger. Further notice that the contours depict the boundary
of the validation domain corresponding to different values of ε. Hence, the validation domains
have an ellipsoid-like shape centered at θ̄ whose principal axes are fairly independent of ε.
The boundary of V(1.025) is shown as a black line in all subplots.

Now consider two requirements, the one above and one based on the validation data set.
The constraint corresponding to a second requirement is g2 = ev − ε, where

ev(θ) =
e2(θ, uv, zv)

e2(θv, uv, zv)
(38)

θv ≡ minθ{e2(θ, uv, zv)}, and uv and zv correspond to the validation data set. Note that θv
is the maximum likelihood estimate corresponding to this data set. In general, the value
of θv does not coincide with θ̄. The intent and structure of both requirements is the same.
Furthermore, the same admissible error ε will be used in both constraints. As with es, the
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minimum of ev is also 1. This requirement implies that the variation in the error based on
the validation data set incurred by θ must not exceed the minimum attainable value by more
than 100(ε− 1) %.

Figure 4 shows the measured and predicted angle of attack corresponding to the system
identification data set (top) and the validation data set (bottom). The figure shows the
measured output (blue line), which is contaminated by noise, and the model predictions
for 3 values of θ. The predictions corresponding to θ̄ and θv, for which the prediction for
each requirement is optimal, are shown in red and cyan, while those corresponding to θa, a
value within Δ

(
θ̄, 0.05

)
, is shown in black. The difference between the model predictions

is barely visible. Figures 5 and 6 are used to better show such difference. Figure 5 shows

Figure 4. Input, measured output and model predictions for 3 sets of model parameters.

the unfiltered and filtered versions of the error between the measured output and the model
prediction for θ̄ (red-dashed line) and θa (black-solid line). The filtered versions result from
using a low-pass filter to remove the high frequency noise from the measurements. The
error functions corresponding to θv, which are practically indistinguishable from those of
θ̄, are omitted. Figure 6 shows the cumulative values of es and ev for θ̄, θv and θa. By
cumulative value we mean that the final integration time of the numerator in Eq. (37) and
Eq. (38) is varied from 0 sec to 10 sec. Note that the values of es and ev are equal to the
terminal value of the cumulative errors. Further notice that dynamic models that describe
well one of the measured outputs may be inaccurate predictors of the other one. For example,
the dynamic model evaluated at θa exceeds the minimum matching errors of the system
identification and validation data sets by 70%, and 285%, respectively. If we set 100% as
the maximum allowable percentage of exceedance for both requirements, the dynamic model
associated with θa will be outside of the validation domain even though its prediction of the
system identification output is sufficiently accurate. Note also that even though θ̄ and θv
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yield practically identical predictions, es
(
θ̄
)
< es(θv) and ev

(
θ̄
)
> ev(θv). The inequality

Figure 5. Error difference between measurement and prediction for 2 sets of model parameters.

constraint describing the satisfaction of both requirements for the same admissible error is
g = [g1, g2] = [es(θ) − ε, ev(θ) − ε] ≤ 0. The parameter realizations satisfying both of these
inequalities comprise the validation domain for both requirements. The boundary of V(ε)
can be displayed by plotting contours of the function esv(θ) = max{es(θ), ev(θ)}, which is
the worst-case requirement function in Eq. (18).

The right subplots in Figure 3 show 2-dimensional contours of esv(θ) within the 95%
confidence box Δ

(
θ̄, 0.05

)
. In this setting the maximal-margin parameter estimate, which is

the parameter realization minimizing esv marked with a × sign, differs from the maximum
likelihood estimate θ̄, which is the parameter realization minimizing es marked with a +
sign. Notice that there are values of ε for which θ̄ is outside the validation domain. This
is the case when ε = 1.025, which is the value leading to the validation domain boundary
shown in black. This implies that the parameter estimate leading to the best value of es (i.e.,
best estimate regarding the first requirement) yields a value of ev that exceeds admissible
levels. The maximal-margin parameter estimate, which is not even at the geometric center
of V(1.025), is θc = [−0.6280, 0.9060,−0.1587,−3.7862,−1.2212,−6.5461]. As expected, the
minimum of esv(θ5, θ6) and of esv(θ1, θ2) are larger than the minimum of both es(θ5, θ6) and
ev(θ1, θ2). Values of ε below such a minimum yield an empty validation domain, i.e., there
are no parameter realizations satisfying both requirements. The comparison between the
left and right subplots of Figure 3 shows that the imposition of an additional requirement
substantially increases the error spread within Δ. In contrast to the single requirement
case shown to the left, the validation domains corresponding to small values of ε are no
longer ellipsoids. Furthermore, note that for large values of ε, the principal axes of the
family of ellipsoid-like curves shown to the right slightly differ from those shown to the left.
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Figure 6. Cumulative errors associated with model predictions for 3 sets of model parameters.

These observations illustrate that the imposition of additional requirements, even in this
simple case for which the structure of both requirements uses the same error used by the
maximum-likelihood approach, can substantially affect both the maximal-margin parameter
estimate and the geometry of the validation domain. Figure 3 illustrates how the imposition
of an additional requirement reduces the size of the validation domain while ensuring that V
corresponding to a given set of m requirements is contained by the V corresponding to any
subset of m− 1 requirements out of these m.

Next, we calculate the PSM function ρinner(ε) for the center θc = θ̂, and the fixed aspect
vector m = σ̄/‖σ̄‖. Recall that the validation domain being bounded is a set in the 6-
dimensional θ space. As before, we will consider a case with a single requirement based on
Eq.(37), and another case with both requirements based on Eqs. (37) and (38). Figure 7
shows the ratio ρinner(ε)/‖σ‖ for the one requirement case (red dashed line) and the two
requirement case (blue solid line). For a given inner bounding box one must accept greater
error in order to satisfy two requirements vs. only one requirement. For example, the largest
error within the box Δ

(
θ̄, α

)
, which corresponds to the ordinate value 2 in Figure 7, is about

75% larger than the smallest attainable error. In contrast, the two requirement case leads
to maximum errors that are about 265% larger than the minimum error. As it was observed
in the 2-dimensional plots above, the imposition of the second requirement considerably
increases the prediction error within the box. Note that the value of ε where ρinner(ε) = 0 is
1.07 in the two requirement case and 1.0 in the one requirement case. This is consistent with
the increase of the minimum of esv mentioned above. In this case the second requirement is
the worst-case requirement for all values of ε (the PSM function corresponding to the second
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Figure 7. ρinner(ε)/‖σ̄‖ for the one and two requirement cases having m = σ̄.

requirement alone will lead to the same blue line). In general, the individual requirement
that prescribes the worst-case requirement depends on the value of ε.

Next, we calculate inner bounds of V(ε) for the two requirement case using the optimal-
m formulation. Figure 8 shows the corresponding PSM, ρinner. Recall that the aspect
vector m̃inner maximizes the volume of the inner bounding set. In this case the opti-
mal m̃inner changes slightly with ε. While the aspect vector used in Figure 7 is m =
σ̄/‖σ̄‖ = [0.24, 0.12, 0.24, 0.38, 0.30, 0.79], the optimal ones are closely scattered about m =
[0.36, 0.12, 0.30, 0.55, 0.18, 0.64].

Next, we calculate outer bounds of V(ε) for the two requirement case using the optimal-m
formulation. Figure 8 shows the corresponding PSM, ρouter. Recall that the aspect vector
m̃outer minimizes the volume of the outer bounding set. In contrast to the previous case, the
optimal m̃outer changes considerably with ε. Figure 8 indicates that the volume of the outer
bounding set is several orders of magnitude larger than the volume of the inner bounding
set. This difference indicates that the maximum likelihood estimate θ̄ is either far from the
centroid of V(ε) (as the left plots of Figure 3 suggest) or that C[V ] has long spikes intruding
into the validation domain.

Finally, the sensitivity analysis of Section IV is used to rank the six parameters in θ. To
this end we will use the bounding set of V(1.15). Therefore, prediction errors that exceed
in up to 15% the minimum attainable e2 error for both the system identification data set
and validation data set are admissible. The optimal PSM, optimal aspect vector, and vol-
ume of the inner bounding set are ρ̃inner = 0.0332, m̃inner = [0.3914, 0.1048, 0.2902, 0.4574,
0.2120, 0.7052] and Vol(Binner) = 7.0154× 10−11, while the values corresponding to the outer
bounding set are ρ̃outer = 0.3261, m̃outer = [0.2204, 0.3945, 0.2554, 0.7975, 0.2198, 0.2147],
and Vol(Bouter) = 0.06445. The dimension reduction error, J(r̂)/Vol(R) for r̂ = θ1, . . . θ6,
corresponding to Bouter are shown in Figure 9. Vertical lines at the values of the maximum
likelihood estimate are superimposed. The value of J(r̂)/Vol(R) at the maximum likeli-
hood estimate as well as the derivative at such a point, cannot be used to describe global
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Figure 8. PSMs and volumes of the optimal-m bounding sets as a function of the admissible
error ε.

sensitivities. The sensitivities ωr and μr can be readily evaluated from these functions. Sen-
sitivities based on the maximal dimension reduction error are ωθ1 = 0.0161, ωθ2 = 0.1729,
ωθ3 = 0.0157, ωθ4 = 0.0229, ωθ5 = 0.0432, and ωθ6 = 0.0013. This yields the parameter rank-
ing in decreasing order of importance [2, 5, 4, 1, 3, 6]. Conversely, sensitivities based on the
mean dimension reduction error are μθ1 = 0.0033, μθ2 = 0.0475, μθ3 = 0.0038, μθ4 = 0.0054,
μθ5 = 0.0086, and μθ6 = 0.0003. The parameter ranking according to μ is [2, 5, 4, 3, 1, 6].
In both cases there is a two orders of magnitude difference between the most and the least
important parameters. The functions shown in Figure 9 illustrate how J , thus the sensi-
tivities, varies within R. For instance, J(r̂)/Vol(R) for r̂ = θ5 at the maximum likelihood
estimate θ5 = −1.2015 is 0.0011. This is about 400% and 80% smaller than the sensitivity
for the maximal-margin and mean value respectively over R. Hence, variation within R
caused by variations in ε will yield different sensitivity values and rankings. In the context
of the maximum likelihood approach, a sensitivity metric to θi is 1/σ̄i. This metric leads
to values [46.78, 96.06, 48.13, 30.40, 37.66, 14.63] and an associated ranking of [2, 3, 1, 5, 4, 6]
which differs from the two rankings above. The ratio between the most and the least im-
portant parameters is 6.56, 158.3, and 133 according to 1/σ̄i, wr, and μr respectively. These
major differences are to be expected since the conventional approach is based on local sen-
sitivities of the output y, whereas the global sensitivities proposed account for the effects of
the model’s parameters on several figures of merit over the entire validation domain.
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Figure 9. J(r̂)/Vol(R) for r̂ = θi, for i = 1, . . . 6.

VII. Discussion

In this section a qualitative comparison is made between conventional uncertainty quan-
tification and model validation techniques and those proposed herein.

For the conventional approach of Section II, the dynamic model evaluated at the maximum-
likelihood parameter estimate yields a prediction that optimally matches the measured data
from a single flight test maneuver. As such, the identified parameter value is based on a
single flight experiment and the particular performance metric in Eq. (5). There is no theory
or rationale for assessing the error incurred by evaluating the dynamic model at any other
realization of the model’s parameters. The accuracy of the identified model parameters using
this approach depends on the suitability of the model for representing the system dynamics,
the characteristics of the measurement noise ν, and the effectiveness of the input in exciting
the system response in the desired frequency range. The uncertainty set that results from ap-
plying this approach, which uses local sensitivities evaluated at the parameter estimate, has
a statistical foundation solely based on the underlying assumptions prescribing the measure-
ment noise. Data from multiple flight test maneuvers can be used to refine both the dynamic
model and the uncertainty set, but this must be achieved by concatenating the data from
the multiple maneuvers, or by using sequential calculations in a Bayesian formulation.1

Conversely, the framework proposed here bounds the set of model parameters for which
the empirical model is requirement compliant, e.g., the model prediction accurately describes
the measured output corresponding to several maneuvers within an admissible level of error.
The relationship between this set of parameter values (i.e., the validation domain) and the
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prediction error is verifiable and objective. The validation domain can be systematically
reduced by imposing additional requirements or by using data from additional flight test
maneuvers. Both the structure of the dynamic model and the requirements can assume
arbitrary forms, e.g., a nonlinear system model can be subject to a matching error based
on an l∞-norm, or a linear system model can be subject to requirements in the frequency
domain. The calculation of the validation domain is not based on local sensitivities and
assumed probability density functions, but rather on the ability of the model to satisfy the
requirements imposed upon it.

According to conventional methods, the value of σ̄j is related to the inverse of the sen-
sitivity of the model prediction y(θ) to variations in θj, i.e., high sensitivity to a particular
parameter is reflected in a correspondingly tight uncertainty range, cf. Eq. (10). This sensi-
tivity metric solely depends on a derivative evaluated at a single parameter realization, and
thereby it is local in nature. In contrast, the sensitivities in Section IV evaluate the range of
variability of the requirements functions as θ varies over the entire validation domain. The
results of local and global sensitivity analyses will coincide when the dependence of g on θ
is almost linear over the validation domain. Local and global sensitivities will likely differ in
most other cases.

The variation in the model predictions due to uncertainty in the model parameters is
commonly studied using Monte Carlo analysis. This analysis often uses a prescribed proba-
bilistic uncertainty model for θ, typically in the form of a joint probability density function
defined over some support set S ⊂ R

n. Ideally, the support set S should not extend beyond
the validation domain. This will guarantee that only the validated model parameters will be
taken into account during the analysis. Unfortunately, the complex geometry of V usually
precludes this practice. The best alternative is for S to contain the validation domain as
tightly as possible. This can be attained by making S equal to the outer bounding set of
V resulting from the free-m formulation proposed herein. While an analysis based on this
uncertainty model considers all the validated dynamic models as desired, parameter values
in S that are not in V , for which the model prediction is invalid, will also be included. When
V is not fully contained by S, elements of the unknown parameter space that adequately
predict the observations will be omitted from the study.

In the conventional approach the uncertainty set in Eqs. (12, 13) depends on the value
η, which, in turn, depends on the analyst’s choice for the confidence level. As such, the
results and conjectures derived from a subsequent Monte Carlo analyses for which S = Δ
will be subjective. By contrast, analyses for which S = B̃outer will be exempt from this type
subjectivity. To totally eliminate the subjectivity in the prescription of the support set,
the center of B̃outer, θc, must be an additional design variable in Eq. (27). Note that the
framework proposed does not relate the validation domain to the “true” value of θ, which
could well be an unknown constant or an aleatory variable, nor does it yield information
about likelihoods within V . The probabilistic distribution within the support set S, which
is usually set according to past experience and expert judgement, will remain subjective.

Knowledge of the validation domain for empirical parametric models has many practical
uses. For example, Monte Carlo analysis for evaluating mission success in the presence of
modeling uncertainty requires this information. The accuracy of model uncertainty charac-
terization affects not only the predicted probability of mission success, but also influences
mission cost and risk. Because the unknown parameters in empirical dynamic models for
aircraft typically represent aerodynamic characteristics (such as stability and control deriva-
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tives), knowledge of the uncertainty in the parameter estimates is essential for evaluating
correlation with results from ground-based aerodynamic prediction methods such as wind
tunnel testing and computational fluid dynamics. The resulting comparisons can inform
and guide efforts for improvement in the ground-based prediction methods by indicating
which results are in agreement, based on model performance, and which exhibit a meaning-
ful difference. Furthermore, many critical evaluations related to aircraft stability, control,
and fault detection depend on deciding when the values of dynamic model parameters cross
some threshold values. Distinguishing real parameter variations from random statistical
variations associated with the parameter estimation process is critical for these tasks, and
requires good uncertainty measures.

VIII. Concluding Remarks

This paper develops a framework for the parameter estimation and validation of empirical
dynamic models subject to an arbitrary set of validation criteria. The validation requirements
imposed upon the model, which might include several sets of input-output data and arbitrary
specifications in time and frequency domains, are used to determine if model predictions are
within admissible error limits. This analysis is used to calculate parameter estimates, to
characterize the uncertainty in their values, and to validate the resulting empirical model
against several figures of merit. In contrast to standard approaches in which the only source of
discrepancy between the observations and the prediction is assumed to be measurement noise,
this approach casts all discrepancies (e.g., those caused by measurement noise, model-form
uncertainty, unsteady aerodynamics, etc.) as parametric uncertainty. This work sets forth
a new paradigm for deriving, characterizing and validating empirical dynamic models.
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