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ABSTRACT

The Painlevé-Gullstrand coordinates provide a convenient framework for pre-

senting the Schwarzschild geometry because of their flat constant-time hyper-

surfaces, and the fact that they are free of coordinate singularities outside r=0.

Generalizations of Painlevé-Gullstrand coordinates suitable for the Kerr geome-

try have been presented by Doran and Natário. These coordinate systems feature

a time coordinate identical to the proper time of zero-angular-momentum ob-

servers that are dropped from infinity. Here, the methods of Doran and Natário

are extended to the five-dimensional rotating black hole found by Myers and

Perry. The result is a new formulation of the Myers-Perry metric. The proper-

ties and physical significance of these new coordinates are discussed.
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Introduction

By using the Birkhoff theorem, the Schwarzschild geometry has been shown to be the

unique vacuum spherically symmetric solution of the four-dimensional Einstein equations.

The Kerr geometry, on the other hand, has been shown only to be the unique stationary,

rotating vacuum black hole solution of the four-dimensional Einstein equations. No distri-

bution of matter is currently known to produce a Kerr exterior. Thus the Kerr geometry

does not necessarily correspond to the spacetime outside a rotating star or planet [1]. This

is an indication of the complications encountered upon trying to extend results found for

the Schwarzschild spacetime to the Kerr spacetime.

One such extension of particular relevance for the present investigation involves the

Painlevé-Gullstrand form of the metric of the Schwarzschild black hole [2, 3]. This met-

ric has attracted renewed interest of late, due to its useful properties, which include the

following: (i) its hypersurfaces of constant time are flat; (ii) its coordinates are well-behaved

at the horizon; (iii) its time coordinate (which is timelike everywhere) coincides with the

proper time of a freely-falling observer dropped from infinity. With these desirable charac-

teristics, it would be natural to broaden this scheme to include the Kerr black hole, and

approaches for doing so have been presented by Doran [4] and more recently by Natário

[5]. These coordinate systems retain the feature (ii) and partially retain (iii) although,

unsurprisingly, they do not possess trait (i).

Given the current interest in black holes in dimensions higher than four, it is also of

interest to consider the higher-dimensional analogs of the Doran and Natário coordinate

systems. General Relativity in dimensions higher than four has added complexity; the

black hole uniqueness theorems of four dimensions do not apply and event horizons with

nonspherical topology can be realized. A review of these black objects is given in, e.g. [6],

and we shall reserve the term “black hole” for objects with horizons of spherical topology.

The general higher-dimensional solutions of the Einstein equations that represent rotating

black holes in a vacuum spacetime were found in 1986 by Myers and Perry [7]. Our attention

here will be focused on the specific case of a rotating black hole in 4+1 dimensions, which

we term the Myers-Perry geometry.

Painlevé-Gullstrand coordinates are presented in Section 1, and the relevant formulations

of the Kerr geometry are reviewed in Section 2. The extension to the Myers-Perry black
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hole begins in Section 3, and is given in Kerr-Schild coordinates in Section 4. Section 5 gives

some results for the special case of Myers-Perry black holes with equal angular momenta.

In this paper, c = 1 and a similar convention applies to the four-dimensional and five-

dimensional gravitational constants: G4 = 1 and G5 = 1, except where otherwise specified.

Four-dimensional quantities will be taken to have Latin indices (i, j, ..) while five-dimensional

quantities will have Greek indices (κ, ν, ...).

1. PAINLEVÉ-GULLSTRAND COORDINATES

The Schwarzschild solution is most often given as

ds2 = −(1− 2M/r)dt2s +
dr2

1− 2M/r
+ r2dθ2 + r2 sin2 θdφ′2. (1.1)

The conversion to Painlevé-Gullstrand (PG) coordinates involves the relation

dt̄ = dts +

√
2M/r

1− 2M/r
dr, (1.2)

so that the metric takes the form

ds2 = −dt̄2 + (dr − v̄dt̄)2 + r2dθ2 + r2 sin2 θdφ′2. (1.3)

Here v̄ = −
√

2M/r is identical to the proper velocity of a particle dropped from rest at

infinity in this geometry.1 The proper time of such a particle corresponds to t̄, so that the

four-velocity of the particle is given by

dxi

dτ
:= ẋi = (1, v̄, 0, 0). (1.4)

The time t̄ is related to Schwarzschild time by ts by

t̄ = ts + 2
√
2Mr + 2M ln

∣∣∣∣∣
√

r/(2M)− 1√
r/(2M) + 1

∣∣∣∣∣ + C, (1.5)

with C being a constant of integration. Setting C = 0 implies that t̄ = ts at r = 0. It

can be seen from (1.3) and the form of v that hypersurfaces of constant t̄ are spatially flat

and that there are no coordinate singularities away from r = 0. Thus these coordinates

are well-behaved at the horizon, and indeed can be extended inward all the way to the

singularity.

1 Strictly speaking, of course, the observer begins a large finite distance from the black hole. The phrase

“at infinity” refers to the fact that certain physical quantities of such an observer have mathematically

well defined limits as the observer’s initial position becomes infinitely far from the black hole.
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2. REVIEW OF THE KERR SOLUTION

One familiar form of the Kerr solution is that of Boyer-Lindquist (BL) coordinates

(t′, r, θ, φ′) [8]:

ds2 = −(1− 2Mr

ρ2
)dt′2 +

ρ2

Δ
dr2 + ρ2dθ2 + Σsin2 θdφ′2 − 4Mra sin2 θ

ρ2
dt′dφ′ (2.1)

where

ρ2 = r2 + a2 cos2 θ, Δ = r2 − 2Mr + a2 and Σ = r2 + a2 +
2Mra2

ρ2
sin2 θ.

It will be useful to rewrite this metric in the form

ds2 = −dt′2 +
ρ2

Δ
dr2 + ρ2dθ2 +

2Mr

ρ2
(dt′ − a sin2 θdφ′)2 + (r2 + a2) sin2 θdφ′2. (2.2)

The outer stationary limit surface, or ergosurface, is given by outer solution of gt′t′ = 0 ↔
ρ2 = 2Mr. There are two radii at which Δ = 0; the outer one, r+, is the event horizon and

the inner one, r−, is a Cauchy horizon. The curvature scalar RijklR
ijkl diverges at the “ring

singularity” specified by ρ2 = 0, i.e. (r = 0, θ = π/2). The principal null directions of the

Kerr metric in BL coordinates are given by

	i±∂i =
r2 + a2

Δ
∂t′ ± ∂r +

a

Δ
∂φ′ . (2.3)

Photons for which dxi/dλ = 	i± follow principal null geodesics, with the plus and minus

signs corresponding to outgoing and ingoing directions, respectively.

Due to the presence of the azimuthal killing vector in the Kerr geometry, any observer

moving along a geodesic will have a conserved (azimuthal component of) angular momentum.

Consider a freely falling observer (FREFO) whose trajectory starts from rest at infinity. The

conserved angular momentum of this observer is zero. In BL coordinates, such an observer

has a proper velocity given by

ẋi = (1 +
2Mr(r2 + a2)

ρ2Δ
, v, 0,

2Mar

ρ2Δ
). (2.4)

A new form of the Kerr solution was found by Doran [4] in which the motion of such an

observer takes the same form as (1.4). In terms of the Doran coordinates (t, r, θ, φ′′) the

metric is given by

ds2 = −dt2 +
ρ2

r2 + a2
[dr − v(dt− a sin2 θdφ′′)]2 + ρ2dθ2 + (r2 + a2) sin2 θdφ′′2 (2.5)
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in which

v = −
√

2Mr(r2 + a2)

ρ2
(2.6)

is the radial proper velocity of the FREFO. The four-velocity of such a FREFO in Doran

coordinates is

ẋi = (1, v, 0, 0). (2.7)

The utility of this coordinate system is seen in the physical significance of the coordinates t

and φ′′, with t corresponding to the proper time of the FREFO dropped from infinity, and

φ′′ constructed so that she has a radially directed four-velocity. The principal null directions

in Doran coordinates are given by

	i±∂i = (r2 + a2)∂t +
(
−
√

2Mr(r2 + a2)± (r2 + a2)
)
∂r + a∂φ′′ . (2.8)

For future convenience, we now take the intermediate step of introducing the coordinates

(v, r, θ,Φ), in the spirit of the original work of Kerr [9]. This produces what is often called

the advanced Eddington-Finkelstein form of the geometry:

ds2 = −(1− 2Mr

ρ2
)(dv + a sin2 θdΦ)2 + 2(dv + a sin2 θdΦ)(dr + a sin2 θdΦ)

+ ρ2(dθ2 + sin2 θdΦ2). (2.9)

After performing the substitution v = T + r we obtain

ds2 = −dT 2 + dr2 + 2a sin2 θdrdΦ+ ρ2dθ2 + (r2 + a2) sin2 θdΦ2

+
2Mr

ρ2
(dT + dr + a sin2 θdΦ)2. (2.10)

These coordinates can be transformed into the BL coordinates via

dT = dt′ +
2mr

Δ
dr, dΦ = −dφ′ − a

Δ
dr. (2.11)

We now relate the Doran coordinates (t, r, θ, φ′′) to the advanced Eddington-Finkelstein

coordinates (v, r, θ,Φ) as follows:

dv = dt+
(r2 + a2)dr

r2 + a2 − ρ2v
(2.12)

dΦ = −dφ′′ − adr

r2 + a2 − ρ2v
. (2.13)

Natário introduced another form of the Kerr metric in [5] using the coordinates (t, r, θ, φ):

ds2 = −dt2 +
ρ2

Σ
(dr − vdt)2 + ρ2dθ2 + Σsin2 θ(dφ+ δdθ − Ωdt)2, (2.14)
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for which

Ω(r, θ) =
2Mar

ρ2Σ
(2.15)

is the familiar BL angular velocity dφ′

dt′
of any observer with zero angular momentum at given

(r, θ). The details of the derivation are omitted here, but can be found in the appendix of

[5]. The function δ, which vanishes for r = +∞, is given by2

δ(r, θ) = −a2 sin 2θ

∫ +∞

r

vΩ

Σ
dr̃, (2.16)

where r̃ has been introduced as a dummy variable of integration. The coordinates are related

through the transformations

dt′ = dt+
ρ2v

Δ
dr, (2.17)

dφ′ = dφ+
ρ2v

Δ
Ωdr + δdθ = dφ′′ +

a

r2 + a2
ρ2v

Δ
dr. (2.18)

Both the Doran form of the Kerr metric in (2.5) and the Natário form in (2.14) are well

behaved at the horizons, when they exist. In the limit of a → 0 both the Doran and Natário

metrics reduce to the PG metric. Namely, in such a limit, {t → t̄, v → v̄, φ′′ → φ′, φ → φ′}.
Interestingly, the use of the Painlevé-Gullstrand coordinates allows for an interpretation

of a “river model” [10] in which one views space as flowing radially inward to the black

hole through a flat background. In the Schwarzschild geometry, the velocity of the river at

a given point is the Newtonian escape velocity at that point. The magnitude of the river

velocity reaches the speed of light at the event horizon and exceeds the speed of light inside

the horizon, making it impossible for objects or photons to stay still. In the process of

extending this scheme to the Kerr geometry, the Doran coordinates were used and a “twist

field” was introduced in [10]. The Natário coordinate system provides an alternative this

method. In the Natário framework there is no twist field, the overall magnitude of the river

velocity reaches the speed of light at the ergosurface, and the radial component of the river

velocity reaches the speed of light at the event horizon.

2 Here we mention that the form of δ obtained here is the negative of that presented in [5].
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3. OVERVIEW OF THE FIVE-DIMENSIONAL RESULTS

The five-dimensional analog of the Schwarzschild solution is the D=5 version of the

Tangherlini metric [11],

ds2 = −(1−M/r2)dt2s +
dr2

1−M/r2
+ r2dθ2 + r2 sin2 θdφ′2

1 + r2 cos2 θdφ′2
2 , (3.1)

where the parameter M is related to the mass M via M = 8G5M/(3π) and G5 is the five-

dimensional gravitational constant. The angles satisfy 0 ≤ θ ≤ π/2 and 0 ≤ φ1, φ2 < 2π.

The metric can be written in PG-style coordinates thusly:

ds2 = −dt̄2 + (dr − v̄5dt̄)
2 + r2dθ2 + r2 sin2 θdφ′2

1 + r2 cos2 θdφ′2
2 , (3.2)

where v̄5 = −√M/r2 is again the proper velocity of a particle dropped from rest at infinity.

Meanwhile, the four spatial directions give rise to two independent planes of rotation, and

thus to two independent azimuthal coordinates, each with its associated angular momentum.

A rotating black hole in this spacetime is the five-dimensional version of the general solution

discovered by Myers and Perry (MP)[7]. This solution is characterized by a mass M and

two angular momenta J1 and J2. It is convenient to introduce the parameters a and b such

that [12]

a =
3

2

J1

M
, b =

3

2

J2

M
. (3.3)

When written in terms of BL-type coordinates (t′, r, θ, φ′
1, φ

′
2), the MP metric is as follows

[13]:

ds2 = −dt′2 +
r2ρ25
Δ5

dr2 + ρ25dθ
2 +

M
ρ25

(dt′ − a sin2 θdφ′
1 − b cos2 θdφ′

2)
2

+ (r2 + a2) sin2 θdφ′
1
2
+ (r2 + b2) cos2 θdφ′

2
2
, (3.4)

where ρ25 = r2 + a2 cos2 θ + b2 sin2 θ and Δ5 = (r2 + a2)(r2 + b2)−Mr2.

A shortcoming of these coordinates is that they do not they do not encompass the entire

spacetime, and a coordinate singularity occurs at r = 0. It was pointed out in [7] that if we

label the angular momenta such that a2 ≥ b2, the introduction of the variable X = r2, where

X ∈ [−b2,∞], remedies this problem. The origin now corresponds to (X = −b2, θ = 0).

The ring singularity, which is the genuine curvature singularity, occurs at ρ25 = 0, i.e.

(X = −b2, θ = π/2). As with four dimensions, the ergosurface is given by gt′t′ = 0, i.e.
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ρ25 = M. The outer and inner horizons r± are the solutions of Δ5 = 0. The principal null

directions in BL coordinates are

nν
±∂ν =

(r2 + a2)(r2 + b2)

Δ5
∂t′ ± ∂r +

a(r2 + b2)

Δ5
∂φ′

1
+

b(r2 + a2)

Δ5
∂φ′

2
. (3.5)

We now construct new coordinates for the MP geometry, following a procedure analogous

to that discussed for the Kerr case in Section 2. Expressing the MP metric in advanced

Eddington-Finkelstein form gives:

ds2 = −(1− M
ρ25

)(dv + a sin2 θdΦ1 + b cos2 θdΦ2)
2 (3.6)

+ 2(dv + a sin2 θdΦ1 + b cos2 θdΦ2)(dr + a sin2 θdΦ1 + b cos2 θdΦ2)

+ ρ25dθ
2 + (r2 + a2 cos2 θ) sin2 θdΦ2

1 + (r2 + b2 sin2 θ) cos2 θdΦ2
2 (3.7)

− 2ab cos2 θ sin2 θdΦ1dΦ2.

The substitution v = T + r yields

ds2 = −dT 2 + dr2 + 2dr(a sin2 θdΦ1 + b cos2 θdΦ2) (3.8)

+ ρ25dθ
2 + (r2 + a2) sin2 θdΦ2

1 + (r2 + b2) cos2 θdΦ2
2

+
M
ρ25

(dT + dr + a sin2 θdΦ1 + b cos2 θdΦ2)
2.

These coordinates can be transformed into the BL coordinates via

dT = dt′ +
Mr2

Δ5
dr, (3.9)

dΦ1 = −dφ′
1 −

a(b2 + r2)

Δ5
dr, dΦ2 = −dφ′

2 −
b(a2 + r2)

Δ5
dr.

One of the main results of this investigation is the expression of the Myers-Perry metric

in Doran-type coordinates:

ds2 = −dt2 + ρ25
r2

(r2 + a2)(r2 + b2)
(dr − v5(dt− a sin2 θdφ′′

1 − b cos2 θdφ′′
2))

2

+ ρ25dθ
2 + (r2 + a2) sin2 θdφ′′

1
2
+ (r2 + b2) cos2 θdφ′′

2
2
, (3.10)

where v5 = −
√

M(r2 + a2)(r2 + b2)

rρ25
.

In five dimensions, an freely falling observer dropped from from rest at infinity will have a

proper velocity
dxν

dτ
:= ẋν = (1, v5, 0, 0, 0). (3.11)
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Since dt/dτ = 1 we see that these are a privileged class of observers whose proper time

corresponds to coordinate time t. The principal null directions in Doran coordinates are

given by

nν
±∂ν =

(r2 + a2)(r2 + b2)

r2
∂t +

(
−
√M(r2 + a2)(r2 + b2)

r
± (r2 + a2 + b2 +

a2b2

r2
)

)
∂r

+ a(1 +
b2

r2
)∂φ′′

1
+ b(1 +

a2

r2
)∂φ′′

2
. (3.12)

The transformation from (v, r, θ,Φ1,Φ2) to the Doran coordinates has the form

dv = dt+
(r2 + a2)(r2 + b2)dr

(r2 + a2)(r2 + b2)− r2ρ25v5
(3.13)

dΦ1 = −dφ′′
1 −

a(r2 + b2)dr

(r2 + a2)(r2 + b2)− r2ρ25v5

dΦ2 = −dφ′′
2 −

b(r2 + a2)dr

(r2 + a2)(r2 + b2)− r2ρ25v5
.

Meanwhile, the MP geometry in Natário-type coordinates has the form

ds2 = −dt2 +
ρ25
Ξ
(dr − v5dt)

2 + ρ25dθ
2 + λ1(dφ1 + δ5dθ − Ω1dt)

2 (3.14)

+ λ2(dφ2 + ζ5dθ − Ω2dt)
2 + 2�(dφ1 + δ5dθ − Ω1dt)(dφ2 + ζ5dθ − Ω2dt),

in which we have

δ5(r, θ) = (b2 − a2) sin 2θ

∫ +∞

r

v5Ω1

Ξ
dr̃ and (3.15)

ζ5(r, θ) = (b2 − a2) sin 2θ

∫ +∞

r

v5Ω2

Ξ
dr̃, (3.16)

again using r̃ as a dummy variable. We have introduced the following quantities:

λ1 = (r2 + a2) sin2 θ +
a2M sin4 θ

ρ25
,

λ2 = (r2 + b2) cos2 θ +
b2M cos4 θ

ρ25
,

� =
abM cos2 θ sin2 θ

ρ25
,

ς = (r2 + a2)(r2 + b2)ρ25 +Mb2(r2 + a2) cos2 θ +Ma2(r2 + b2) sin2 θ,

Ξ =
λ1λ2 −�2

r2 sin2 θ cos2 θ
=

ς

r2ρ25
,

Ω1 =
aM(r2 + b2)

ς
,

Ω2 =
bM(r2 + a2)

ς
,
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with Ω1 and Ω2 representing the φ1 and φ2 angular velocities of a FREFO. Both the Doran-

like form (3.10) and Natário-like form (3.14) of the metric are well behaved at the horizons,

but both also require the substitution X = r2 with X ∈ [−b2,∞] to span the full spacetime.

These three sets of coordinates share the same r and θ but have differing combinations

of time and azimuthal coordinates, namely (t′, φ′
1, φ

′
2), (t, φ

′′
1, φ

′′
2) and (t, φ1, φ2). These are

related through the transformations

dt′ = dt+
r2ρ25v5
Δ5

dr, (3.17)

dφ′
1 = dφ1 +

r2ρ25v5
Δ5

Ω1dr + δ5dθ = dφ′′
1 +

a

r2 + a2
r2ρ25v5
Δ5

dr, (3.18)

dφ′
2 = dφ2 +

r2ρ25v5
Δ5

Ω2dr + ζ5dθ = dφ′′
2 +

b

r2 + b2
r2ρ25v5
Δ5

dr. (3.19)

The stationarity and bi-azimuthal symmetry of the geometry are evident in each of these

systems.

4. KERR-SCHILD-LIKE FORM OF THE METRICS

A metric written such that

gij = ηij + 2Hkikj (4.1)

is in Kerr-Schild form [14]. The Kerr metric itself can be cast in such a form using several dif-

ferent coordinate systems; see e.g. [1]. One of the better-known Kerr-Schild decompositions

uses Cartesian-type coordinates (T, x, y, z). These are related to the coordinates (T, r, θ,Φ)

of (2.10) by the relations

x = (r cosΦ + a sinΦ) sin θ =
√
r2 + a2 sin θ cos(Φ− arctan(a/r)), (4.2)

y = (r sinΦ− a cosΦ) sin θ =
√
r2 + a2 sin θ sin(Φ− arctan(a/r)), (4.3)

z = r cos θ, (4.4)

so that
x2 + y2

r2 + a2
+

z2

r2
= 1. (4.5)

The Kerr metric is obtained by setting

H =
Mr3

r4 + a2z2
, ki =

(
1,

rx− ay

r2 + a2
,
ry + ax

r2 + a2
,
z

r

)
. (4.6)
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Doran’s version of the Kerr metric has a representation in Cartesian-type coordinates some-

what reminiscent of the Kerr-Schild form. The coordinates (t, x′′, y′′, z′′) are related to

Doran’s (t, r, θ, φ′′) using

x′′ =
√
r2 + a2 sin θ cosφ′′, (4.7)

y′′ =
√
r2 + a2 sin θ sinφ′′, (4.8)

z′′ = r cos θ. (4.9)

The Kerr metric can be written in these coordinates as [4]

gij = ηij +
2
√
2Mr

ρ2
a(iVj) +

2Mr

ρ2
ViVj, (4.10)

where ηij is the 4D Minkowski metric. 3 In the above we have

Vi =

(
1,

ay′′

r2 + a2
,
−ax′′

r2 + a2
, 0

)
, (4.11)

ai = (r2 + a2)1/2
(
0,

rx′′

r2 + a2
,

ry′′

r2 + a2
,
z′′

r

)
, (4.12)

with r defined implicitly via (4.5), and our symmetrization convention is such that

a(ibj) :=
1

2
(aibj + ajbi). (4.13)

The principal null directions of this geometry 	± can be related to Vi and ai by

	i± = (r2 + a2)1/2Vi ± (
√
2MrVi + ai). (4.14)

It turns out that analogous results hold for the Myers-Perry solution. We first introduce

the Cartesian-type coordinates (T, x, y, z, w) such that

x = (r cosΦ1 + a sinΦ1) sin θ =
√
r2 + a2 sin θ cos(Φ1 − arctan(a/r)), (4.15)

y = (r sinΦ1 − a cosΦ1) sin θ =
√
r2 + a2 sin θ sin(Φ1 − arctan(a/r)), (4.16)

z = (r cosΦ2 + b sin Φ2) cos θ =
√
r2 + b2 cos θ cos(Φ2 − arctan(b/r)), (4.17)

w = (r sinΦ1 − b cosΦ2) cos θ =
√
r2 + b2 cos θ sin(Φ2 − arctan(b/r)), (4.18)

which have the property that
x2 + y2

r2 + a2
+

z2 + w2

r2 + b2
= 1. (4.19)

3 Reference [4] used (+,-,-,-) signature, whereas (-,+,+,+) is used here.
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The metric expressed in Kerr-Schild form,

gκν = ηκν + 2Hkκkν , (4.20)

is such that

H =
Mr2

r4 + a2(w2 + z2) + b2(x2 + y2)− a2b2
, (4.21)

kν =

(
1,

rx+ ay

r2 + a2
,
ry − ax

r2 + a2
,
rz + bw

r2 + b2
,
rw − bz

r2 + b2

)
. (4.22)

Moving to five dimensions, the Doran form of the MP metric can be written in a form

analogous to that in (4.10). After introducing

x′′ =
√
r2 + a2 sin θ cosφ′′

1, (4.23)

y′′ =
√
r2 + a2 sin θ sinφ′′

1, (4.24)

z′′ =
√
r2 + b2 cos θ cosφ′′

2, (4.25)

w′′ =
√
r2 + b2 cos θ sinφ′′

2, (4.26)

the result is

gκν = ηκν +
2
√M
ρ25

b(κWν) +
M
ρ25

WκWν , (4.27)

in which ηκν is the 5D Minkowski metric, and the parameters bν and Wν satisfy

Wν =

(
1,

ay′′

r2 + a2
,
−ax′′

r2 + a2
,

bw′′

r2 + b2
,
−bz′′

r2 + b2

)
and (4.28)

bν =

√
(r2 + a2)(r2 + b2)

r

(
0,

rx′′

r2 + a2
,

ry′′

r2 + a2
,

rz′′

r2 + b2
,

rw′′

r2 + b2

)
. (4.29)

Meanwhile, the principal null directions are given by

nν± =

√
(r2 + a2)(r2 + b2)

r
Wν ± (

√
MWν + bν). (4.30)

As discussed above for BL coordinates, if a and b are nonzero, these (x, y, z, w) do not extend

inside the spheroid given by x2+y2

a2
+ z2+w2

b2
= 1, i.e. inside the region r = 0; an analogous

statement holds for (x′′, y′′, z′′, w′′).

5. THE CASE OF EQUAL ANGULAR MOMENTA

Five-dimensional MP black holes with a2 = b2 	= 0, i.e. J1 = J2 	= 0, have more symmetry

than the generic ones; their horizons take the form of “squashed” three-spheres. Setting
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b2 = a2 enhances the spatial symmetry from U(1) × U(1) to U(2). There is no analog of a

squashed three-sphere in lower dimensions, so this situation affords us the opportunity to

consider new phenomena.

We begin with the form of the metric, taking b = +a = 3J
2M

. In BL-type coordinates we

obtain

ds2 = −dt′2 +
r2(r2 + a2)

Δ̃5

dr2 +
M

(r2 + a2)
(dt′ − a(sin2 θdφ′

1 + cos2 θdφ′
2))

2

+ (r2 + a2)(dθ2 + sin2 θdφ′
1
2
+ cos2 θdφ′

2
2
), (5.1)

where Δ̃5 = (r2 + a2)2 −Mr2. In Doran-type coordinates the metric becomes

ds2 = −dt2 +
r2

r2 + a2

(
dr − ṽ5(dt− a(sin2 θdφ′′

1 + cos2 θdφ′′
2) )

)2

+ (r2 + a2)(dθ2 + sin2 θdφ′′
1
2
+ cos2 θdφ′′

2
2
), (5.2)

and we see that v5 has reduced to ṽ5 = −√M/r, which has no dependence on θ.

Perhaps the simplification is most striking in Natário-type coordinates, because there, when

b = a, δ5 and ζ5 both vanish:

ds2 = −dt2 +
(r2 + a2)

Ξ̃
(dr − ṽ5dt)

2 + (r2 + a2)dθ2 + λ̃1(dφ1 − Ωdt)2

+ λ̃2(dφ2 − Ω̃dt)2 + 2�̃(dφ1 − Ω̃dt)(dφ2 − Ω̃dt), (5.3)

where we now have

λ̃1 = (r2 + a2) sin2 θ +
a2M sin4 θ

(r2 + a2)
,

λ̃2 = (r2 + a2) cos2 θ +
a2M cos4 θ

(r2 + a2)
,

�̃ =
a2M cos2 θ sin2 θ

(r2 + a2)
,

ς̃ = (r2 + a2)((r2 + a2)2 +Ma2),

Ξ̃ =
λ̃1λ̃2 − �̃2

r2 sin2 θ cos2 θ
=

(r2 + a2)2 +Ma2

r2
,

Ω̃ =
aM(r2 + a2)

ς
=

aM
(r2 + a2)2 +Ma2

.

Like ṽ5, Ω̃ has no θ dependence.

The relations between the coordinate systems (t′, φ′
1, φ

′
2), (t, φ

′′
1, φ

′′
2) and (t, φ1, φ2) also sim-
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plify when b = a:

dt′ = dt− r(r2 + a2)
√M

Δ̃5

dr, (5.4)

dφ′
1 = dφ1 − r(r2 + a2)

√M
Δ̃5

Ω̃dr = dφ′′
1 −

ar
√M
Δ̃5

dr, (5.5)

dφ′
2 = dφ2 − r(r2 + a2)

√M
Δ̃5

Ω̃dr = dφ′′
2 −

ar
√M
Δ̃5

dr. (5.6)

Here too, the θ-dependence has vanished.

Conclusion

Doran in [4] and Natário in [5] have found ways of extending some of the virtues of the

Painlevé-Gullstrand coordinate system to the Kerr geometry. It has been demonstrated

herein that it is possible to extend each system to the 4+1 Myers-Perry geometry, although

the presence of two independent angular momenta makes this extension nontrivial. As

expected, the slices are not spatially flat but they do penetrate the horizon, and the time

coordinate corresponds to the proper time of an object dropped from infinity. The extension

of these coordinate systems to spacetimes with charge Q and/or cosmological constant Λ is

not the subject of the present work, but we note that Lin and Soo [15] have argued that such

an extension would require the use of an additional adjustable function f(r) in the coordinate

transformation. In recent years Doran coordinates have found use in describing phenomena

in the vicinity of rotating black holes in 3+1 dimensions that include Hawking radiation [15],

e−e+ pair creation [16], and EPR correlations [17]. Thus, the fact that analogous coordinate

systems can be constructed in 4+1 dimensions offers promise for alternative and potentially

useful viewpoints on higher-dimensional black hole physics.

Acknowledgments

The author gratefully acknowledges support from the Department of Physics and Astron-

omy at Howard University; support from a NASA Postdoctoral Fellowship from the Oak

Ridge Associated Universities; and discussions with James Lindesay.

14



Appendix A: Tetrad and pentad

In [4] several tetrads and inverse tetrads with respect to the Doran coordinates (t, r, θ, φ′′)

were introduced. Among these was the following inverse tetrad (ω̃0, ω̃1, ω̃2, ω̃3):

ω0
idx

i = dt, (A.1)

ω1
idx

i =

√
2Mr

ρ
dt+

ρ√
r2 + a2

dr −
√
2Mr

ρ
a sin2θ dφ′′, (A.2)

ω2
idx

i = ρ dθ, (A.3)

ω3
idx

i =
√
r2 + a2 sinθ dφ′′ . (A.4)

Such a basis satisfies the relation ωK
iω

L
jηKL = gij, where ηKL = diag(−1, 1, 1, 1). The

corresponding tetrad (�e0, �e1, �e2, �e3) is

e0
i∂i = ∂t −

√
2Mr(r2 + a2)

ρ2
∂r , (A.5)

e1
i∂i =

√
r2 + a2

ρ
∂r , (A.6)

e2
i∂i =

1

ρ
∂θ , (A.7)

e3
i∂i =

√
2Mra sin θ

ρ2
∂r +

1

sin θ
√
r2 + a2

∂φ′′ , (A.8)

and the vectors satisfy �eK · �eL = ηKL.

This inverse tetrad has an analogous Myers-Perry inverse pentad (ω̃0, ω̃1, ω̃2, ω̃3, ω̃4):

ω0
νdx

ν = dt, (A.9)

ω1
νdx

ν =

√M
ρ5

dt+
rρ5√

(r2 + a2)(r2 + a2)
dr −

√M
ρ5

a sin2θ dφ′′
1 −

√M
ρ5

b cos2θ dφ′′
2, (A.10)

ω2
νdx

ν = ρ5 dθ, (A.11)

ω3
νdx

ν =
√
r2 + a2 sin θ dφ′′

1 , (A.12)

ω4
νdx

ν =
√
r2 + b2 cos θ dφ′′

2 , (A.13)
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whose corresponding tetrad (�e0, �e1, �e2, �e3, �e4) is given by

e0
ν∂ν = ∂t −

√M(r2 + a2)(r2 + b2)

rρ25
∂r , (A.14)

e1
ν∂ν =

√
(r2 + a2)(r2 + b2)

rρ5
∂r , (A.15)

e2
ν∂ν =

1

ρ5
∂θ, (A.16)

e3
ν∂ν =

a
√M(r2 + b2) sin θ

rρ25
∂r +

1

sin θ
√
r2 + a2

∂φ′′

1
, (A.17)

e4
ν∂ν =

b
√

M(r2 + a2) cos θ

rρ25
∂r +

1

cos θ
√
r2 + b2

∂φ′′

2
. (A.18)
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