@ https:/Intrs.nasa.gov/search.jsp?R=20140012072 2019-08-31T18:11:47+00:00Z

Sioe 9105 Je siaded Jejiwis pue uoneud ‘eyepelaw MaIA

pFUnit 3.0 Tutorial
Advanced

Tom Clune

Advanced Software Technology Group
Computational and Information Sciences and Technology Office
NASA Goddard Space Flight Center

April 10, 2014

ne (ASTG)

=]
=}
(=}
<
o
@
o
=
<
z
>
0
>
=
[v]
2
5
E
o
=3
o
o
o
S

340D T7 4q nok o1 3ybnoig

https://core.ac.uk/display/42725268?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Outline @/

© Introduction

Tom Clune (ASTG)

Outline @/

© Introduction
@ Overview

Tom Clune (ASTG)

Class Overview @

Primary Goals:
@ Learn how to use pFUnit 3.0 to create and run unit-tests
@ Learn how to apply test-driven development methodology
Prerequisites:
@ Access to Fortran compiler supported by pFUnit 3.0
o Familiarity with F95 syntax
e Familiarity with MPI!
Beneficial skills:
@ Exposure to F2003 syntax - esp. OO features

@ Exposure to OO programming in general

IMPI-specific sections can be skipped without impact to other topics.

Tom Clune (ASTG) April 10, 2014 4 /90

Syllabus @

@ Thursday PM - Introduction to pFUnit
Overview of pFUnit and unit testing
Build and install pFUnit

Simple use cases and exercises

Detailed look at framework API

e Friday AM - Advanced topics (including TDD)
User-defined test subclasses

» Parameterized tests

» Introduction to TDD

» Advanced exercises using TDD

vV vyYvYyy

v

o Friday PM - Bring-your-own-code
» Incorporate pFUnit within the build process of your projects
» Apply pFUnit/TDD in your own code
» Supplementray exercises will be available

Tom Clune (ASTG) April 10, 2014 5 /90

Materials

&

@ You will need access to one of the following Fortran compilers to do

the hands-on portions
» gfortran 4.9.0 (possibly available from cloud)
> Intel 13.1, 14.0.2 (available on jellystone)
» NAG 5.3.2
@ Last resort - use AWS

> ssh keys are at ftp://tartaja.com
> user name: pfunit@tartaja.com passwd: iuse.PYTHON.1969
> login: ssh -i userl user1©@54.209.194.237
© You will need a copy of the exercises in your work environment
» Browser: https://modelingguru.nasa.gov/docs/D0OC-2529
> Jellystone:
/picnic/u/home/cacruz/pFUnit.tutorial/Exercises.tar
@ These slides can be downloaded at
https://modelingguru.nasa.gov/docs/DOC-2528

Tom Clune (ASTG) April 10, 2014

6/ 90

Outline @/

© API - Advanced

Tom Clune (ASTG)

Peeking under the hood - what is inside pFUnit? @/

www .shescribes.com

Tom Clune (ASTG)

Outline @/

© API - Advanced
@ API: pFUnit test Hierarchy

Tom Clune (ASTG)

Hierarchy of Test Classes

Test
[}
|]
TestSuite TestCase
4
|]
TestMethod ParameterizedTestCase
MpiTestCase
AbstractTestParameter |« 3
T MpiTestMethod
MpiTestParameter

Tom Clune (ASTG)

-

User
Extension

April 10, 2014

10 / 90

Test @r

Role: Abstract base class for all test objects.

Implementation: Framework provides various subclasses for
common/generic cases. Users can define custom subclasses for specific
purposes. Provided subclasses include:

@ TestCase

@ TestMethod

o MpiTestCase

o MpiTestMethod
@ TestSuite

Tom Clune (ASTG) April 10,2014 11 /90

TestSuite @r

Role: Aggregates collection of tests into single entity.
Implementation: TestSuite objects are simultaneously Test objects and
collections of tests. Run() method applies run() to each contained test.

Tom Clune (ASTG) April 10,2014 12 /90

TestCase class @/

Role: Abstract Test subclass that provides some services that are common
to most Test subclasses.
Implementation:

Tom Clune (ASTG)

TestMethod class @

Role: Simple concrete Test subclass that supports the common case
where test procedure receives no arguments.

Implementation: Constructor stores a procedure pointer to vanilla
Fortran subroutine with no arguments. A restricted form of test fixture is
permitted by specifying setUp() and tearDown() methods that also have
no arguments. (l.e. fixture is not encapsulated.)

Tom Clune (ASTG) April 10, 2014 14 / 90

TestMethod API @/

Constructor:

function TestMethod (name, method[, setUp, tearDown])

character (len=%), intent(in) :: name
procedure (empty) :: method

procedure (empty) :: setUp

procedure (empty) :: tearDown

Methods:

Tom Clune (ASTG)

Parameterized TestCase class @,

Role: Allows a single test procedure to be execute multiple times with

different input values.
Implementation: Parameterized TestCase objects contain an

Abstract TestParameter object that encapsulates input. Subclasses of
Parameterized TestCase must generally also subclass
Abstract TestParameter.

Tom Clune (ASTG) April 10, 2014 17 / 90

MpiTestCase class @

Role: (Abstract) Extends Parameterized TestCase with support for MPI.
Implementation: MpiTestCase modifies the runBare() launch mechanism
to create an appropriately sized MPI group and corresponding
subcommunicator. Processes within that group then call the user’s test
procedure, while any remaining processes wait at a barrier.

MPI based tests must not use MPI_COMM_WORLD, and must instead obtain
MPI context from the passed test object.

The following convenient type-bound procedures are provided:

getProcessRank () I returns rank within group
getNumProcesses () ! returns stize of group
getMpiCommunicator () ! returns the bare MPI com

Tom Clune (ASTG) April 10,2014 19 / 90

MpiTestMethod class @,

Role: Simple concrete Test subclass that supports common MPI cases

that just need basic MPI context.
Implementation: Analogous to the vanilla TestMethod, except that user

test procedures are now passed an object which must be queried for any
MPI context that the test needs.

Tom Clune (ASTG) April 10,2014 20 / 90

MpiTestMethod API

Constructor:

function MpiTestMethod (name, method, numProcesses,

character (len=%*), intent(in) :: name
procedure (empty) :: method

integer :: numProcesses ! requested
procedure (empty) :: setUp

procedure (empty) :: tearDown

Tom Clune (ASTG)

&

setUg

22 /90

Outline @/

© API - Advanced

e API: Misc

Tom Clune (ASTG)

TestResult class @

Role: “Scorecard” — accumulates information about tests as they run.
Implementation: Each run() method for Test objects has a mandatory
TestResult argument. The Visitor pattern is used to allow the TestResult
object to manage and monitor the test as it progresses.

Note: Visitor is a somewhat advanced pattern and uses OO capabilities in
a nontrivial manner. Users should not need to be aware of this, but
developers of framework extensions likely will.

Tom Clune (ASTG) April 10, 2014 24 / 90

Abstract BaseTestRunner class @,

Role: Runs a test (usually a TestSuite).
Implementation: Run() method constructs and configures a TestResult
object, then runs the passed Test object.

Tom Clune (ASTG) April 10, 2014 25 / 90

TestRunner class @/

Role: Default Runner for pFUnit.

Tom Clune (ASTG)

RobustRunner class @,

Role: Runner subclass that executes tests within a separate process.
Implementation: Collaborates with SubsetRunner. RobustRunner restarts
SubsetRunner if it detects a hang or a crash. Currently a bit unreliable.

(Irony)

Tom Clune (ASTG) April 10,2014 27 / 90

Outline @/

© API - Advanced

@ Parser: Advanced

Tom Clune (ASTG)

Annotations: @testCase @

@testCase
@testCase (<options>)

@ Indicates next line defines a new derived type which extends TestCase.

@ All test procedures in file must accept a single argument of that
extended type.

@ Accepts the following options:

» constructor=<name> Specifies the name of the function to construct
corresponding test object. Default is a constructor with same name as
derived type?

» npes=[<list-of-integers>] Indicates that extension is a subclass
of MpiTestCase, and provides a default set of values for NPES for all
test procedures in the file. Individual tests can override.

» esParameters={expr} Indicates that extension is a subclass of
Parameterized TestCase, and provides a default set of parameters for all
tests in the file. Can be overridden by each test.

> cases=[<list-of-integers>] Alternative mechanism for specifying
default test parameters where a single integer is passed to the test

April 10, 2014 30 / 90

Annotations: @testParameter @/

Tom Clune (ASTG)

Encapsulated test fixture

module SomeTests_mod
use pFUnit_mod
implicit none

Q@testCase

type, extends(TestCase) :: MyTestCase
real , allocatable :: xlInitial (:)

contains
procedure :: setUp
procedure :: tearDown

end type MyTestCase

contains

subroutine setup(this)
class (MyTestCase), intent(inout)
xInitial = [1.,3.,5.,3.,1.]

end subroutine setup

subroutine tearDown(this)
class (MyTestCase), intent(inout)
deallocate (this%xInitial)

end subroutine tearDown

Tom Clune (ASTG)

this

this

April 10, 2014

34 /90

Encapsulated test fixture (cont'd) @/

; Qtest

. subroutine anotherTest(this)

i class (MyTestCase), intent(inout) :: this
)

' real , allocatable :: x(:)

) x = oneStep(this%xInitial)
) Q@assertEqual (...)

! end subroutine anotherTest

end module MyTests_mod

Tom Clune (ASTG)

Encapsulated test fixture (cont'd)

What you need to know:
@ Declare derived type that EXTEND’s TestCase
@ Annotate TestCase extention with @testCase
@ Declare TYPE-BOUND procedures: setUp and tearDown
@ Annotate test procedure in usual way with @test

@ Declare single test procedure argument as

class (<your type>), intent(inout) :: <dummy>

Tom Clune (ASTG) April 10, 2014

38 /90

MPI test fixture

module SomeMpiTests_mod
use pFUnit_mod
implicit none

OtestCase(npes=[1,3,5])

type, extends(MpiTestCase) :: MyTestCase
integer :: rank, npes
integer :: peEast, peWest
contains
procedure :: setUp
procedure :: tearDown

end type MyTestCase
contains

subroutine setup(this)
class (MyTestCase), intent(inout) :: this
integer :: rank, npes
this%rank = this%getProcessRank ()
this%npes = this%getNumProcesses()
this%peWest = mod(this%rank + this%npes — 1,
this%peEast = mod(this%rank + 1, this%npes)
end subroutine setup

Tom Clune (ASTG)

this%npes)

April 10, 2014

40 / 90

MPI test fixture (cont'd)

Qtest
subroutine anotherTest(this)
class (MyTestCase), intent(inout) :: this

integer :: comm
real :: x(0:2)

comm = this%getMpiCommunicator ()
call someMpiProcedure(comm, x)
@mpiAssertEqual (this%peWest, x(0))
@mpiAssertEqual (this%rank, x(1))
@mpiAssertEqual (this%peEast, x(2))

end subroutine anotherTest

end module MyTests_mod

Tom Clune (ASTG) April 10, 2014

42 /90

MPI test fixture (cont'd) @

What you need to know:

@ Declare derived type that EXTEND’s MpiTestCase
@ Annotate TestCase extention with @testCase

» Optionally specify default npes list: (npes=[...])
Declare TYPE-BOUND procedures: setUp and tearDown

Annotate test procedure in usual way with @test

Declare single test procedure argument as

class (<your type>), intent(inout) :: <dummy>

@ Use @mpiAssert+ to synchronize returns

Tom Clune (ASTG) April 10, 2014 44 / 90

Parameterized tests @/

Suppose you want to test an interface using variant input data:

Tom Clune (ASTG)

Parameterized tests

Suppose you want to test an interface using variant input data:
E.g. sorting a list ...

list
list
list
list

sort ([1,2,3,4])
sort ([4,3,2,1])
sort ([1,4,2,3])
sort ([1,2,3,1]1)

Tom Clune (ASTG)

April 10, 2014

46 / 90

Parameterized tests

Suppose you want to test an interface using variant input data:
E.g. sorting a list ...

list
list
list
list

sort ([1,2,3,4])
sort ([4,3,2,1])
sort ([1,4,2,3])
sort ([1,2,3,1]1)

or varying boundary conditions...

call solve(x,
call solve(x,

Tom Clune (ASTG)

BC=’dirichlet ’)
BC=’neumann ’)

April 10, 2014

46 / 90

Parameterized tests (cont'd)

One simple strategy is to just duplicate tests:

Qtest
subroutine testi ()

@assertEqual ([1,2,3,4], sort([1,2,3,4]))
end subroutine testl

Qtest
subroutine test2 ()

@assertEqual ([1,2,3,4], sort([4,3,2,1]1))
end subroutine test2

Tom Clune (ASTG)

April 10, 2014

48 / 90

Parameterized tests (cont'd) @

One simple strategy is to just duplicate tests:

Q@test
subroutine testl ()

@assertEqual ([1,2,3,4], sort([1,2,3,4]1))
end subroutine testl

Otest
subroutine test2()

@assertEqual ([1,2,3,4], sort([4,3,2,1]1))
end subroutine test2

This can be quite tedious if there are many cases and/or the tests are
more complex.

Tom Clune (ASTG) April 10, 2014 48 / 90

Parameterized tests (cont'd)

Another approach is to loop within a test

Q@test

subroutine test ()
real , allocatable :: x(:)
call

checkDeriv(x, x**0)
call checkDeriv(x#%2, 2%x)
call checkDeriv(x**3, 3%x%%2)

contains

subroutine checkDeriv(fx, dfx)
real ,intent(in) :: fx
real ,intent(in) :: dfx
Q@assertEqual (dfx, deriv(fx))
end subroutine checkDeriv

end subroutine testl

Tom Clune (ASTG) April 10, 2014

50 / 90

Parameterized tests (cont'd)

Another approach is to loop within a test

Q@test

subroutine test ()
real , allocatable :: x(:)
call

checkDeriv(x, x**0)
call checkDeriv(x#%2, 2%x)
call checkDeriv(x**3, 3%x%%2)

contains

subroutine checkDeriv(fx, dfx)
real ,intent(in) :: fx
real ,intent(in) :: dfx
Q@assertEqual (dfx, deriv(fx))
end subroutine checkDeriv

end subroutine testl

Here we lose information about which case(s) failed.

Tom Clune (ASTG) April 10, 2014

50 / 90

Parameterized tests (cont'd) @

pFUnit provides custom support for parameterized tests:

@ Exercise tests across list of user-defined parameters
@ User EXTEND's two classes:

» ParameterizedTestCase (analog of TestCase)
» AbstractTestParameter

@ Annotation argument: testParameters={<expr>}

» Specifies default parmeter list for @testCase
» Override with argument to @test

@ Failures indicate parameter caused failing assert.

» Provided through type-bound interface toString() on
AbstractTestParameter

Tom Clune (ASTG) April 10, 2014 52 / 90

Example: Parameterized test

10
11

13
14

&

@testParameter
type, extends(AbstractTestParameter) :: StringTestParameter
character (:), allocatable :: string
character(:), allocatable :: lowerCase
character (:), allocatable :: upperCase
contains
procedure :: toString

end type StringTestParameter

function toString(this) result(string)

class (StringTestParameter), intent(in) this
character (:), allocatable :: string
string = '{' // this%string // ',' // this%lowerCase //
", // this%upperCase // '}’
end function toString
Tom Clune (ASTG) April 10, 2014

54 /90

Example: Parameterized test (cont'd) @,

16 OtestCase(testParameters = {getParams()},constructor=
newTest_StringUtilities)

17 type, extends(ParameterizedTestCase) :: Test_StringUtilities

18 character(:), allocatable :: string

19 character (:), allocatable :: lowerCase

20 character (:), allocatable :: upperCase

21 end type Test_StringUtilities

24

25 function getParams() result(params)

26 type (StringTestParameter), allocatable :: params(:)

27

28 params = [&

29 StringTestParameter('a’,’'a’','A"), &

30 StringTestParameter('b’,'b’,'B"), &

31 StringTestParameter ('A’,’a"','A"), &

32 StringTestParameter('1’,'1",'1"), &

33 StringTestParameter('+','+','+"), &

34 StringTestParameter ('alB2c3D4’', 'alb2c3d4’', 'A1B2C3D4')

&

35 |

36

37 end function getParams

Tom Clune (ASTG) April 10, 2014 56 / 90

Example: Parameterized test (cont'd)

&

48 Qtest

49 subroutine test_-toLowerCase(this)

50 class (Test_StringUtilities), intent(inout) this
51

52 QassertEqual(this%lowerCase, toLowerCase(this%string))
53

54 end subroutine test_toLowerCase

55

56

57 Qtest

58 subroutine test_-toUpperCase(this)

59 class (Test_StringUtilities), intent(inout) this
60

61 @assertEqual (this%upperCase, toUpperCase(this%string))
62

63 end subroutine test_toUpperCase

Tom Clune (ASTG)

April 10, 2014 58 / 90

Example: Parameterized test (cont'd) @'

To specify a variant list of parameters:

Otest (testParameters={getOtherParams()})

subroutine test_toUpperCase(this)
class (Test_StringUtilities), intent(inout) :: this
@assertEqual (this%upperCase, toUpperCase(this%string))

end subroutine test_-toUpperCase

Tom Clune (ASTG) April 10, 2014 60 / 90

Combining MPI and Parameterized Test @/

Tom Clune (ASTG)

Combining MPI and Parameterized Test @/

Good news:
MpiTestCase is a subclass of ParameterizedTest

Tom Clune (ASTG)

Combining MPI and Parameterized Test @/

Good news:
MpiTestCase is a subclass of ParameterizedTest

@ Extend MpiTestCase

Tom Clune (ASTG)

Combining MPI and Parameterized Test @/

Good news:
MpiTestCase is a subclass of ParameterizedTest

@ Extend MpiTestCase
@ Extend MpiTestParameter (invisible with simple MPI)

Tom Clune (ASTG)

Combining MPI and Parameterized Test @r

Good news:
MpiTestCase is a subclass of ParameterizedTest

@ Extend MpiTestCase
@ Extend MpiTestParameter (invisible with simple MPI)

e Framework augments toString() to ensure that rank/npes is always
included in failure messages

Tom Clune (ASTG) April 10, 2014 62 / 90

Outline @/

© Test-driven development

Tom Clune (ASTG)

TDD @/

Tom Clune (ASTG)

Old paradigm:
@ Tests written by separate team (black box testing)

o Tests written after implementation

Tom Clune (ASTG)

Old paradigm:
@ Tests written by separate team (black box testing)
@ Tests written after implementation
Consequences:
@ Testing schedule compressed for release

o Defects detected late in development ($$)

Tom Clune (ASTG) April 10, 2014 65 / 90

Old paradigm:
@ Tests written by separate team (black box testing)
@ Tests written after implementation
Consequences:
@ Testing schedule compressed for release
o Defects detected late in development ($$)

New paradigm - Test-driven development (TDD)
@ Developers write the tests (white box testing)
@ Tests written before production code
@ Enabled by emergence of strong unit testing frameworks

Tom Clune (ASTG) April 10, 2014 65 / 90

The TDD cycle @/

focus on interface focus on algorithm

Tom Clune (ASTG)

Anecdotal Testimony @r

@ Many professional SEs are initially skeptical

» High percentage refuse to go back to the old way after only a few days
of exposure.

@ Some projects drop bug tracking as unnecessary
@ Often difficult to sell to management
> “What? More lines of code?”

Tom Clune (ASTG) April 10, 2014 67 / 90

Not a panacea @/

Tom Clune (ASTG)

Not a panacea @/

@ Requires training, practice, and discipline

Tom Clune (ASTG)

Not a panacea @/

@ Requires training, practice, and discipline

@ Need strong tools (framework + refactoring)

Tom Clune (ASTG)

Not a panacea @«

@ Requires training, practice, and discipline
@ Need strong tools (framework + refactoring)

@ Does not invent new algorithms (e.g. FFT)
» No such thing as magic

Tom Clune (ASTG) April 10, 2014 68 / 90

Not a panacea @r

Requires training, practice, and discipline

Need strong tools (framework + refactoring)
Does not invent new algorithms (e.g. FFT)
» No such thing as magic
@ Maintaining tests difficult during a major re-engineering effort.

Tom Clune (ASTG) April 10, 2014 68 / 90

Not a panacea @r

Requires training, practice, and discipline

Need strong tools (framework + refactoring)
Does not invent new algorithms (e.g. FFT)
» No such thing as magic
@ Maintaining tests difficult during a major re-engineering effort.
» But isnt the alternative is even worse?!!

Tom Clune (ASTG) April 10, 2014 68 / 90

Experience to date @

TDD has been used heavily within several projects at NASA

@ Mostly for “infrastructure” portions - relatively little numerical
pFUnit itself
Snowfake - virtual snowfakes; Multi-lattice Snowfake
DYNAMO - spectral MHD code on shperical shell
GTRAJ - offline trajectory integration (C++)
SpF - OO parallel spectral framework

Observations:
@ ~ 1:1 ratio of test code to source code
o Works very well for infrastructure

@ Learning curve

» 1-2 days for technique
» Weeks-months to wean old habits

Tom Clune (ASTG) April 10, 2014 69 / 90

TDD - Talking Points @/

@ How large of a step at each cycle?

Tom Clune (ASTG)

TDD - Talking Points @/

@ How large of a step at each cycle?
» Gauge by time
> If steps are going quickly try larger changes
» If iteration > 10 min, start iteration over (repository is your friend)

Tom Clune (ASTG)

TDD - Talking Points @,

@ How large of a step at each cycle?
» Gauge by time
> If steps are going quickly try larger changes
» If iteration > 10 min, start iteration over (repository is your friend)

@ Triangulation

» Start with simple tests
> Add tests that probe weaknesses in existing implementation
» Stop when it is apparent than new tests will all pass

@ Don't test constructors and accessors

Tom Clune (ASTG) April 10, 2014 70 / 90

TDD - Talking Points @,

@ How large of a step at each cycle?
» Gauge by time
> If steps are going quickly try larger changes
» If iteration > 10 min, start iteration over (repository is your friend)

@ Triangulation

» Start with simple tests
> Add tests that probe weaknesses in existing implementation
» Stop when it is apparent than new tests will all pass

@ Don't test constructors and accessors

e Commit/backup frequently

Tom Clune (ASTG) April 10, 2014 70 / 90

TDD - Talking Points @

@ How large of a step at each cycle?
» Gauge by time
> If steps are going quickly try larger changes
» If iteration > 10 min, start iteration over (repository is your friend)

@ Triangulation

» Start with simple tests
> Add tests that probe weaknesses in existing implementation
» Stop when it is apparent than new tests will all pass

@ Don't test constructors and accessors
e Commit/backup frequently

@ Use synthetic data to make results obvious

Tom Clune (ASTG) April 10, 2014 70 / 90

TDD - Talking Points @

@ How large of a step at each cycle?
» Gauge by time
> If steps are going quickly try larger changes
» If iteration > 10 min, start iteration over (repository is your friend)

@ Triangulation

» Start with simple tests
> Add tests that probe weaknesses in existing implementation
» Stop when it is apparent than new tests will all pass

Don't test constructors and accessors
Commit/backup frequently

Use synthetic data to make results obvious
Private vs testable

Tom Clune (ASTG) April 10, 2014 70 / 90

TDD - Talking Points @

@ How large of a step at each cycle?
» Gauge by time
> If steps are going quickly try larger changes
» If iteration > 10 min, start iteration over (repository is your friend)

@ Triangulation

» Start with simple tests
> Add tests that probe weaknesses in existing implementation
» Stop when it is apparent than new tests will all pass

Don't test constructors and accessors
Commit/backup frequently
Use synthetic data to make results obvious

Private vs testable

» One module has everything PUBLIC
» 2nd module is default private - just export the things you want PUBLIC
» Tests use first module; application uses 2nd.

Tom Clune (ASTG) April 10, 2014 70 / 90

TDD - Talking Points @

@ How large of a step at each cycle?
» Gauge by time
> If steps are going quickly try larger changes
» If iteration > 10 min, start iteration over (repository is your friend)

Triangulation

» Start with simple tests
> Add tests that probe weaknesses in existing implementation
» Stop when it is apparent than new tests will all pass

Don't test constructors and accessors
Commit/backup frequently
Use synthetic data to make results obvious

Private vs testable

» One module has everything PUBLIC
» 2nd module is default private - just export the things you want PUBLIC
» Tests use first module; application uses 2nd.

@ Think when writing tests; autopilot when writing implementation

Tom Clune (ASTG) April 10, 2014 70 / 90

TDD - process reminder @/

@ Extend test (new test procedure, new assert, etc)
@ Verify test fails Red Light

© Alter implementation to pass test

@ Refactor to eliminate redundancy Green Light
© Repeat

Tom Clune (ASTG)

TDD Demonstration: Factorial @/

Instructions:
Use TDD to implement factorial function

To make it interesting, we'll add tests to guard against illegal inputs and
overflow.

Tom Clune (ASTG)

@ Change into the directory ./Exercises/TDD_Warmup
@ Set PFUNIT for a serial build

e J, make tests (ensure that make is working for you)

Tom Clune (ASTG)

TDD Demonstration: Dynamical System @r

Instructions:

We are going to build a set of classes that will integrate a simple
dynamical system:

@ State of system is specified by a scalar, t, and 2 vectors: x and v
Denote timestep with h
Force (F) on system is any function of x, v, t
Initial integration will be via forward Euler: Y11 = Y, + hF(Yn, t)
Then we will “upgrade” to RK4

Tom Clune (ASTG) April 10, 2014 75/ 90

Possible unit tests for Dynamical System @r

Forward Euler integration

F(t) =0,v(t =0) =0 leaves xp+1 = X0

F(t) =0,v(t =0) = vp has x,+1 = nhy

F(t) =0,v(t =0) = v has vp41 = vy
F(t)=F(t=0)=a,v(t=0)=x(t=0)=0 has v,11 = v, + ha
Vil = Vo + hF(t,)

Xpt1 = Xp + hv,

If h=0, x, = xp and v,, = v for any F

Vary number of dimensions

Tom Clune (ASTG) April 10, 2014 77 / 90

)

@ Change into the directory ./Exercises/TDD DnamicalSystem
@ Set PFUNIT for a serial build

e J, make tests (ensure that make is working for you)

Tom Clune (ASTG)

Runge-Kutta (RK4) @/

1
Y1 = Ynt gh(kl + 2ky + 2ks + ka)

tht1 = tn+h
kl = f(tm}/n)
ke = Fltat 2hyn+ 2ky)
2 = n) yYn > 1
1 h
ks = f(th+=h,ya+ =k
3 (tn + Shiyn+ 3 2)

k3 = f(tn + h?}/n + hk3)

Tom Clune (ASTG)

Demo: Build a Linear 1D Interpolator @«

(XYeu) (x.y)

r 9
y @
0¥ |*? ¢
) ® @
X1 X X3 X, X
X

Tom Clune (ASTG) April 10, 2014 82 /90

Interpolation ... @/

What are some potential tests?

Tom Clune (ASTG)

Interpolation ... @/

What are some potential tests?

@ Bracket: Find i such that x; <= x < xj41

Tom Clune (ASTG)

Interpolation ... @/

What are some potential tests?
@ Bracket: Find i such that x; <= x < xj41
@ Computing weights:

Xi4+1 — X
Xit1 — Xj
wp, = 1—w;,

Tom Clune (ASTG)

Interpolation ... @/

What are some potential tests?
@ Bracket: Find i such that x; <= x < xj41
@ Computing weights:

Xi4+1 — X
Xit1 — Xj
wp, = 1—w;,

@ Combining weighted sum: y = w,y; + wpYyit1

Tom Clune (ASTG)

Tests for finding enclosing bracket

’ {x1,x,x3} x ‘ Expect ‘ Comment
{1.2.,3.} 15 i=1 vanilla
{1.,2.,3.} 25 =2 vary x
{1.2.,4} 30 i=2 irregular spacing
{1.,2.,4.5.} 25 =2 vary # of nodes
{1.2.,3.} 20 i=2 edge case
{1.2.3.} 1.0 i=17 edge case
{1.,2.,3.} 3.0 =27 edge case
{1.,2.,3.} 0.5 | exception? | out-of-bounds
{3.,2,1.} 1.5 | exception? | support inverted order?

Tom Clune (ASTG)

April 10, 2014

84 /90

Tests for compute weights @/

Xi Xi+1 X | expected | Comment |
1. 2 1.0 w,; =1.0 | left end

1. 2. 20| w;=0.0 | right end

1. 2 15| w,; =05 | middle

1. 3. 15| wy =0.75 | vary interval

1. 2. 00 wy, =7 out-of-bounds
1. 1. 1.0 ? duplicate node

Tom Clune (ASTG)

Tests for combine weights @/

| Wa ya b | expected | Comment |

1. 1. 2.| y=1.0 | left end
0. 1. 2. | y=2.0 | right end
05 1. 2. | y=15 | middle
05 3. 2. | y=25 | vary data

Tom Clune (ASTG)

Live Demo: Cross Fingers

Tom Clune (ASTG)

References @'

pFUnit: http://sourceforge.net/projects/pfunit/

Tutorial materials
» https://modelingguru.nasa.gov/docs/DOC-1982
» https://modelingguru.nasa.gov/docs/DOC-1983
» https://modelingguru.nasa.gov/docs/DOC-1984

e TDD Blog
https://modelingguru.nasa.gov/blogs/modelingwithtdd

Test-Driven Development: By Example - Kent Beck

@ Mller and Padberg,” About the Return on Investment of Test-Driven
Development,” http://www.ipd.uka.de/mitarbeiter/muellerm/
publications/edser03.pdf

Refactoring: Improving the Design of Existing Code - Martin Fowler

JUnit http://junit.sourceforge.net/

Tom Clune (ASTG) April 10, 2014 89 / 90

Acknowledgements @

@ This work has been supported by NASA's High End Computing
(HEC) program and Modeling, Analysis, and Prediction Program.

@ Many thanks to team members Carlos Cruz and Mike Rilee for
helping with implementation, regression testing and documentation.

@ Special thanks to members of the user community that have made
contributions.

» Sean Patrick Santos
» Matthew Hambley
» Evan Lezar

Tom Clune (ASTG) April 10, 2014 90 / 90

