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Abstract Software health management (SWHM) tech-

niques complement the rigorous verification and valida-

tion processes that are applied to safety-critical systems

prior to their deployment. These techniques are used

to monitor deployed software in its execution environ-

ment, serving as the last line of defense against the

effects of a critical fault. SWHM monitors use informa-

tion from the specification and implementation of the

monitored software to detect violations, predict pos-

sible failures, and help the system recover from faults.

Changes to the monitored software, such as adding new

functionality or fixing defects, therefore, have the po-

tential to impact the correctness of both the monitored

software and the SWHM monitor. In this work, we

describe how the results of a software change impact

analysis technique, Directed Incremental Symbolic Ex-

ecution (DiSE), can be applied to monitored software

to identify the potential impact of the changes on the

SWHM monitor software. The results of DiSE can then

be used by other analysis techniques, e.g., testing, de-

bugging, to help preserve and improve the integrity of

the SWHM monitor as the monitored software evolves.
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1 Introduction

The size and complexity of software in safety-critical

systems have increased considerably over time, due in

part to the addition of richer feature sets, more au-

tomation, and continued efforts to improve the safety

and reliability of these systems. As a result, the task of

verifying and validating these larger and more complex

software systems has become much more challenging

and time consuming, requiring new techniques to help

ensure the reliability1 and correctness of safety-critical

systems.

Software health management (SWHM) techniques

have recently been developed to complement the vari-

ous verification and validation processes applied to safety-

critical systems prior to their deployment [12,29,37–39].

Monitors are at the core of these techniques. SWHM

monitors observe and analyze the system in its execu-

tion environment during runtime to detect and respond

to violations, and to predict possible failures in the near

future. These monitors are often implemented as soft-

ware components, and as a result also require some level

of analysis to ensure their correctness and reliability.

The analysis of monitors is important because moni-

tors often serve as a last line of defense against the po-

tentially catastrophic effects of faults in safety-critical

systems.

Software changes are inevitable in most deployed

systems - successful software systems evolve as require-

ments change and defects are fixed. Even in safety-

critical systems, software is rarely exempt from change

after deployment. For example, the discovery of a crit-

ical defect (bug) in the system may require an update

to the operational software to avoid a system failure.

1 We use the term reliability to mean ‘continuity of correct
service’ as specified in [4].
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Systems also undergo change when new functionality

is added. Changing operational software, however, is

known to be risky. Even small changes to the code

can have a major impact on how the software executes.

Moreover, bug fixes may not always fix the defect and

can potentially introduce new defects. For example, a

recent study showed that 14.8%–24.4% of the sampled

fixes for post-release bugs in several large, mature oper-

ating systems were incorrect and had a negative impact

on the end users [48].

SWHM monitors use information from the specifi-

cation and implementation of the monitored software

to determine which values to analyze and to determine

tolerance ranges for those values. This tight coupling of

monitor and monitored software means that the impact

of a change to the monitored software has the potential

to also impact the SWHM monitor and its correctness

in the context of the change. Various change impact

analysis techniques have been developed to identify the

differences between two program versions in order to

guide testing and verification efforts on the changed

software [1,6,14,17,20,28,36,45]. The objective of these

techniques is to reduce the time and cost of testing and

verification of the changed system by guiding the anal-

ysis towards the parts of the system impacted by the

changes. However, to the best of our knowledge, change

impact analysis techniques have not been explored in

the context of how information about changes to mon-

itored software can be used to help identify the impact

of the changes on the SWHM monitor.

In previous work [28,34], we present Directed Incre-

mental Symbolic Execution (DiSE), a change impact

analysis technique for computing the effects of program

changes in terms of program execution behaviors. The

DiSE technique can be used throughout the software

development lifecycle, to help guide software engineer-

ing tasks such as testing, debugging, and regression ver-

ification tasks whenever software changes are necessary.

In this work, we explore how the results of DiSE, ap-

plied to the monitored software, can be further lever-

aged in order to maintain and improve the integrity of

SWHM monitor software. The main contributions of

our work include:

– We describe how the results of the DiSE change im-

pact analysis on monitored software can be used to

identify the impact of the changes on the SWHM

monitor software.

– We apply our technique to a system with a SWHM

monitor modeled as a Bayesian network and evalu-

ate its cost and effectiveness with the following two

research questions:

RQ1: How does the cost of applying DiSE to the

monitored software compare with using tradi-

tional symbolic execution to compute the impact

of the changes?

RQ2: How does the number of impacted path condi-

tions generated by DiSE compare with the num-

ber path conditions generated by traditional sym-

bolic execution?

– We describe how the results of DiSE on the mon-

itored software can be used to help validate and

update the SWHM monitor software to preserve

and improve its integrity as the monitored software

evolves.

2 Software Health Management

The size and complexity of software in safety-critical

systems is increasing rapidly as more components are

added to facilitate automation. The number of sensors

and actuators on aircraft has steadily increased over

time, as has the software to control and monitor these

devices. More sophisticated algorithms for the autopi-

lot, navigation, collision detection and avoidance, and

other on-board systems, have also contributed to the

increase in software. In recent times, we have also seen

a shift of responsibilities from pilots to automated sys-

tems for a large number of tasks. In the next generation

of aircraft, we expect to see continued growth in the size

and complexity of the software to enable even more au-

tomation in these systems.

Rigorous design, verification, and certification pro-

cesses have been established to check the correctness

of safety-critical software before it is deployed. How-

ever, the size and complexity of the systems prohibit

exhaustive testing and verification. Moreover, it may

not be possible to anticipate or re-create particular en-

vironmental conditions for verification purposes, and

therefore parts of the system may not be tested prior

to deployment. In order to address these limitations,

SWHM techniques have been proposed to monitor the

software after it is deployed.

Building on decades of research in systems and ve-

hicle management, together with research in software

runtime verification, SWHM techniques [12,29,38,39]

have been developed to support monitoring of software

as it executes and interacts with the hardware (sensors

and actuators) after deployment. SWHM monitors per-

form fault detection, isolation and recovery. They can

also monitor for assumption violations and other con-

ditions that are useful in post-flight analysis. Software

health management software often serves as a guardian

to the system during its operational phase, ensuring its

correct and safe operation.

Software health managers have been developed to

monitor the values of sensors and variables in software,
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as well as updates to these variables, the health of the

sensors and variables, and also to compute the likeli-

hood of failure using Bayesian networks [38,39]. Soft-

ware health managers have also been developed to mon-

itor the health of components in the system; detect-

ing anomalies, identifying and isolating the fault causes

of the anomalies (when feasible), prognosticating fu-

ture faults, and when possible, mitigating the effects of

faults [12]. Software monitors have also been generated

and used in embedded systems with hard real-time con-

straints, to sample variables in the monitored software

and implement fault tolerant algorithms to determine

the health of the monitored software [29].

SWHM systems have been implemented at both the

model-level [38,39] and at the code-level [12,29]. Model-

level systems are tested using model simulations on a

wide range of sensor inputs and various values for inter-

nal parameters. The analysis of the model is intended

to provide confidence in the correctness of the expected

behavior of the model. Code-level SWHM systems often

have the same V&V requirements as the monitored soft-

ware, e.g., to achieve a particular level of code coverage

during testing, and they are expected to satisfy similar

verification conditions as the monitored software.

In addition to functional properties, SWHM mon-

itor software is typically expected to preserve certain

non-functional properties, such as non-interference and

timing properties. For example, SWHM monitors must

not interfere with the monitored software, e.g., change

the behavior of the monitored software (unless the mon-

itored property has violated a contract). They must also

avoid corrupting any data or causing any crashes in

the system. SWHM monitors also must not miss vio-

lations or alarms, and should minimize the number of

false alarms.

The verification and validation of SWHM monitor

software, similar to any other software, is an ongoing

process that is necessary throughout the development

lifecycle to ensure changes to the system have their in-

tended effects and that no unintended behaviors were

introduced by the changes. In the case of SWHM moni-

tors, verification and validation of the monitor may also

be required when the monitored software is changed,

due to the tight coupling between the monitor and the

monitored software, e.g., through the values that are

monitored. Techniques that identify what is changed

and the impact of the changes on the SWHM moni-

tor play an important role in maintaining the health

(correctness) of SWHM monitor software. Before pre-

senting our technique for maintaining the health of soft-

ware monitors, we first provide background on software

change impact analysis techniques and discuss some of

the challenges associated with computing precise soft-

ware change impact information.

3 Change Impact Analysis

Software change impact analysis techniques [3] are used

to detect the parts of a program affected by the changes

made to the code. Given the evolutionary nature of

software development, these techniques play a critical

role in software development and maintenance, where

even a one line fix can potentially have unintended and

even disastrous consequences. The results computed by

change impact analysis techniques have been widely

used to support software maintenance tasks, such as re-

gression testing [21,23,33,41], regression verification [5,

40], studying changes in large code bases [32], and for

automated generation of program documentation [7].

Given two closely related program versions, change

impact analysis techniques are performed in two steps:

1) compute the differences between program versions,

i.e., the change set, and 2) using the change set as in-

put, compute the impact of the the differences, i.e., the

impact set. The change set can be computed based on a

variety of program representations. Computing changes

based on source code is commonly used in practise be-

cause it is efficient and automated. The differencing

techniques based on textual differences, however, are

often sensitive to formatting and syntactic changes that

may not affect the way the program executes.

Differences computed based on some graphical rep-

resentation of the code, e.g., Abstract Syntax Tree (AST),

Program Dependence Graph (PDG), Control-Flow Graph

(CFG), are in general, more precise than differences

computed on the source code as is. The graphical repre-

sentations of code encode additional information about

the program, e.g., control and data dependences, that

is useful for computing more precisely the impact of

source code changes. Any technique, however, that com-

putes change impact based strictly on differences in the

source code structure will have limited capabilities to

reason about the impact of the changes on the execution

of the code. This is especially true when dynamically

allocated data and complex control structures such as

loops and recursion are present in the program.

Once the change set is computed, change impact

analysis techniques compute which parts of the program

may be impacted by the changes. The impact of changes

can be computed using information from a static repre-

sentation of the program or using dynamic information

obtained through program execution. Techniques such

as [2] analyze a static representation of the program

to compute the impact set in terms of program state-

ments that may be directly or indirectly impacted by
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the changes to the source code. Godefroid et al. stati-

cally check whether previously-computed symbolic test

summaries are still valid, i.e., not impacted by code

changes, to support compositional dynamic test gener-

ation [13].

Techniques which use dynamic information [20,33]

have the potential to compute more precise impact sets

because they are based on actual program execution

paths. Dynamic analysis is typically driven using a set

of test cases, so the impact sets will be computed with

respect to the specific execution paths explored, which

may be a small subset of all feasible execution paths.

Other recent work has explored the use of symbolic ex-

ecution results to compute precise change impact char-

acterizations by systematically exploring the program

execution space [15,31,27,42,45]. The results of these

change impact analysis techniques have been used to

support a range of software evolution tasks, including

test case selection and test suite augmentation; how-

ever, scalability is an issue for these techniques.

The change impact analysis used in this work, Di-

rected Incremental Symbolic Execution (DiSE) [28,34],

combines the efficiency of static program analysis tech-

niques with the precision of dynamic analysis techniques

to compute the impact of software changes in terms of

program execution behaviors. This approach results in

a more precise impact set than using static analysis

alone, and also addresses the scalability issues associ-

ated with symbolic execution by using the results of the

static analysis to direct symbolic execution towards the

parts of the program impacted by the changes. This ef-

fectively ‘prunes’ the program behaviors that are not

impacted by the changes to the code. Because the re-

sults of DiSE are computed in terms of program exe-

cution paths, they can be used to support a range of

software maintenance tasks, including regression test-

ing, debugging and regression verification.

In the following sections we describe the DiSE al-

gorithm and illustrate how the impact set for a small

working example is computed. We then describe a novel

application of DiSE results computed on the monitored

software to help maintain and improve the integrity of

the SWHM monitor software.

4 Directed Incremental Symbolic Execution

Directed Incremental Symbolic Execution (DiSE) [28,

34] is a program analysis technique for computing the

impact of changes to software. The output of DiSE is a

characterization of the effects of code changes on pro-

gram execution behaviors. The effects are character-

ized in terms of the inputs to the program and the ef-

fects of execution on variables in the program. In pre-

vious work [5,28,34] we describe how DiSE is a general

change impact analysis and how the change impact re-

sults computed by DiSE can be used for various soft-

ware maintenance and evolution tasks, including test

case selection and prioritization for regression testing,

debugging, and regression verification. In this work we

describe a novel application of DiSE results to soft-

ware health management and discuss how the results

computed by DiSE can be used to help ensure the cor-

rect operation of a SWHMmonitor when the monitored

software is changed.

The novelty of the DiSE change impact analysis

is to leverage the efficiencies of static analysis tech-

niques for computing the impact of program changes to

guide a more precise analysis technique, symbolic exe-

cution, to explore and characterize program execution

paths that may be impacted by the changes. Our work

was inspired by Regression Model Checking (RMC),

a technique which uses the results of a static analysis

to explore the ‘dangerous’ elements in the state space

whose behavior may be impacted by the changes to

the code [46]. DiSE differs from RMC in that DiSE is

based on incremental symbolic execution, rather than

model checking, and DiSE does not require analysis re-

sults to be carried forward as the software evolves -

only the source code for two related program versions

is required.

An overview of the DiSE analysis is shown in Fig. 1.

The inputs to DiSE are two related program versions:

the original source (S) and the modified source (S′),
and a source-level syntactic diff between S and S′. The
source-level diff provides information about the source

code lines that are changed, added, and removed be-

tween S and S′. A control flow graph (CFG) for S′,
shown in Fig. 1, is constructed from the source of S′

and used to guide symbolic execution towards impacted

program behaviors.

There are two phases of analysis in DiSE. Phase I

estimates the impact of the differences on the source

code of S′. Phase II uses the information generated in

phase I to compute, with better precision, the impact of

the changes on the program execution behaviors. The

two phases are shown in Fig. 1. The output of DiSE

is the set of program behaviors in S′ impacted by the

differences between S and S′. The set of Impacted Pro-

gram Behaviors can then be used to identify the impact

of the changes on the software health manager (SWHM

Monitor) responsible for monitoring the software, as

demonstrated in Fig. 1.

In the remainder of this section we describe each

phase of DiSE. In Section 5 we describe how the results
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Fig. 1 Overview of DiSE. The inputs to DiSE are two syn-
tactically similar program versions, S and S′, and a source-
level diff between S and S′. The output of DiSE is a set of
impacted program behaviors that can be used to manage the
health of a SWHM monitor.

of DiSE can be used to help identify the impact of the

changes on the software health manager.

4.1 Source Impact Analysis

In the first phase of DiSE, information about the added,

removed and changed lines of code is used by data-

and control-flow analyses to mark additional lines of

code that may be impacted by the differences between

S and S′. The static analysis computes the impact of

the changes by analyzing a control-flow graph repre-

sentation of the source code. A data-flow analysis is

used to identify where variables are defined and used,

but the concrete (actual) values of variables in the pro-

gram that are possible within its environment are not

computed. This under-approximation of the execution

environment makes the analysis efficient and scalable to

larger programs. Furthermore, the analyses in phase I

are conservative, i.e., every source line of code that may

be impacted by the change, will be marked as impacted.

This ensures that the source impact analysis does not

miss marking any instructions that are impacted by the

changes, although it may also mark code as impacted,

when in fact, it is not.

Consider the annotated control flow graph (CFG)

for the modified source, S′ in Fig. 1. Each node in

the CFG (n0 . . . n9 and nend) represents a single line

of source code. Nodes n0 and nend are the respective

entry and exit nodes to the program. All nodes in the

CFG are reachable from n0, and nend is reachable from

all nodes in the CFG. The edges between the nodes

represent the flow of control between the different pro-

gram statements during execution. The shaded node,

n2, represents the changed source line of code based on

the results of the source-level diff comparing S and S′.
During the source impact analysis phase of DiSE,

impacted nodes are computed by starting with the set

of changed nodes and then using data- and control-flow

information to compute the impacted nodes (program

statements). In Fig. 1, the nodes annotated with ‘∗’ (n0,

n2, n4, n7, n8, n9, n10, and nend) represent the source

lines impacted by the change. The output of this anal-

ysis is the set of source lines of code in S′ impacted by

the differences between S and S′. This information is

used to direct the more precise analysis, symbolic ex-

ecution, in phase II of DiSE. In the remainder of this

section we provide a high-level description of the DiSE

algorithm. The reader is referred to [28,34] for a de-

tailed description of the analyses implemented in DiSE.

4.1.1 Estimating Impact Based on Control Flow

Conditional branch statements, e.g., if and while, com-

pare the values of the specified variables and constants

and then follow the appropriate branch based on the

results of the comparison. Explicit changes to a condi-

tional statement, i.e., changes to the comparison oper-

ator or the operands, may impact which code block is

executed as a result of the change. For example, con-

sider the following code fragment:

int condTest(int x){

1: if (x > 0)

2: return x + 1;

3: else

4: return x - 1;

5: }

This code returns x + 1 when the input value of x is

greater than 0, and when the input value of x is not

greater than 0, the code returns x−1. The execution be-

havior of this code can be summarized in various ways.

An example summarization based on the program in-

puts and outputs is: “for any input value of x, the pro-

gram never returns 0 or 1.” Suppose the comparison

operator at line 1 is changed to ‘>=’. As a result of the

change to the code, the execution behavior of the pro-

gram is impacted and can now be summarized as—“for
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any input value of x, the program never returns 0 or

−1.” This example demonstrates how a change to the

comparison operation of a conditional branch statement

impacts the behavior of the program.

Recall that the source impact analysis does not con-

sider the execution environment of the program, i.e.,

the possible values of x during runtime. Instead, the

analysis will conservatively estimate that the change in

the conditional branch statement will impact all state-

ments whose execution are dependent on the result of

the comparison operation. For the condTest example

shown above, when the comparison operator is changed

at line 1, the analysis estimates both line 2 and line 4 to

be impacted. The analysis considers all changes to con-

ditional branch statements, including the addition and

deletion of conditional branch statements, when esti-

mating the impact of the changes on the control flow of

the program.

4.1.2 Estimating Impact Based on Data Flow

Changes to an assignment statement in a program may

impact the value of program variables. And, as a result,

other assignment statements, return statements, and

comparison operations that execute after the changed

assignment statement and use (read) the changed value

may also be impacted by the change. Consider the fol-

lowing code fragment:

int dataTest(int x){

1: x = x + 1;

2: tmp = 0;

3: if (x > 0)

4: tmp = x + 1;

5: else

6: tmp = x - 1;

7: return tmp;

8: }

In this example, suppose the assignment to x at line

1 is changed to x = x − 1. Using a data-flow analy-

sis (which also takes into account the control flow of

the program), the analysis would then identify the im-

pacted statements as: (a) the assignment statements at

lines 4 and 6 where the value of x is used to compute

the value assigned to the tmp variable, (b) the condi-

tional branch statement at line 3 where the value of x

is read and compared with 0, and (c) the return state-

ment that reads the value of tmp. Note that the return

statement is marked as impacted because a transitive

closure is computed for the data-flow analysis.

The source impact analysis performed in phase I

of DiSE is guaranteed to terminate. In the worst case,

all of the source lines in the program are marked as

impacted. Such a case would generally be observed for

a program that has a very high coupling between its

components and variables. Another case is when the

change is made to a part of the program that interacts

with all of the other parts of the program. In general, we

do not expect the small, incremental changes made to a

system to impact the entire program. The complexity of

the source impact analysis is polynomial in the number

of source lines of code.

4.2 Directed Symbolic Execution

Before we present the details of the second phase of

DiSE, we first provide a brief description of symbolic

execution.

4.2.1 Symbolic Execution

Symbolic execution [9,19] is a non-standard approach

to program execution that uses symbolic values in place

of concrete (actual) values for program inputs. The out-

put values are computed as expressions defined over

constants and the symbolic input values, and using a

specified set of operators. To illustrate symbolic execu-

tion, we use the following code fragment:

int y;

...

int testX(int x){

1: if (x > 0)

2: return y + 1;

3: else

4: return y - 1;

5: }

To perform symbolic execution on this code fragment,

two symbolic variables are used: Y represents the sym-

bolic value of the integer field y, and X is the symbolic

integer value used to represent x, the integer argument

to testX. During symbolic execution, a path condition

is used to collect constraints on the program inputs

that will result in execution of the current path. In this

example, symbolic execution computes two path condi-

tions: (1) when X > 0, the value Y +1 is returned, and

(2) when ¬(X > 0), the value of Y −1 is returned. The

program behavior summarization would be as follows:

1. X > 0 ∧ ret == Y + 1

2. ¬(X > 0) ∧ ret == Y − 1

where ret indicates the return value of the method.

During symbolic execution, the current path condi-

tion is checked for satisfiability. A decision procedure
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is used to check if there exists an assignment of val-

ues to the program variables that will make the con-

straints in the path condition satisfiable (true). When

the constraints on the path condition are not satisfi-

able, the execution path is marked as infeasible. The

execution stops along an infeasible path and the search

backtracks. In programs with loops and recursion, in-

finitely long execution paths may be generated. In or-

der to guarantee termination of the execution in such

cases, a user-specified depth bound is provided as input

to symbolic execution. Whenever the size of the current

execution path reaches this user-specified depth bound,

the search backtracks.

At the end of symbolic execution, all of the path

conditions generated are collected into a symbolic sum-

mary. Each path condition in the symbolic summary

represents a set of (feasible) concrete execution paths.

The path conditions in a symbolic summary can be used

as input to other program analysis techniques, such as

regression testing. For example, the values of a solved

path condition form the set of concrete input values

that will cause the program to execute that path in the

program, and as such can be used to generate or select

regression tests.

4.2.2 Computing Impacted Path Conditions

The second phase of DiSE performs a form of incremen-

tal symbolic execution on the modified version of the

program. DiSE directs symbolic execution to explore

only the parts of the program that are impacted by the

changes to the code. DiSE leverages the set of impacted

source lines computed in the previous phase, and the

reachability information encoded in the CFG as input

in order to explore a subset of the feasible execution

paths. When no impacted statements are reachable on

the current path, symbolic execution backtracks, avoid-

ing the cost of unnecessarily exploring and characteriz-

ing execution paths in the modified version of the pro-

gram that are not impacted by the change(s) to the

program.

There is another important aspect of pruning within

DiSE that sets it apart from other change-impact anal-

ysis techniques. DiSE prunes certain symbolic execu-

tion paths by exploring only a subset of the possible

choices. DiSE may prune choices at conditional branch

statements, e.g., when these statements are not marked

as impacted in phase I, even if other impacted source

lines are reachable from the block. We demonstrate the

intuition for this pruning through an example:

int a, b;

int pruneTest(int x, int y){

1: if ( x > 0 )

2: a = x + 1;

3: else

4: a = x - 1;

5: if ( y > 0)*

6: b = y + 2;*

7: else*

8: b = y - 2;*

9: }

Suppose, the source lines of code identified with an

∗ are marked as impacted in phase I. There are two

conditional statement blocks, one block at lines 1 − 4

is controlled by the value of variable x, while the other

block at lines 5 − 8 is controlled by the value of vari-

able y. There are four possible symbolic paths in this

program:

1. (X > 0) ∧ (Y > 0)

2. (X > 0) ∧ ¬(Y > 0)

3. ¬(X > 0) ∧ (Y > 0)

4. ¬(X > 0) ∧ ¬(Y > 0)

Since the first conditional block is not impacted by the

change, DiSE explores only one choice for the value of

x, i.e., explores the same path through the unimpacted

code ( X > 0 or ¬(X > 0)) for all program executions

through the unimpacted code. As a result, DiSE prunes

two of the paths shown above, e.g., it prunes 1 and 2, or

3 and 4. Which paths are pruned is determined by the

search strategy implemented by the symbolic execution

engine, e.g., random, greedy, default.

The resulting set of path conditions computed by

DiSE then characterizes the set of program execution

behaviors in the modified version of the procedure that

are impacted by the change(s). These path conditions

serve as the input to the change-impact analysis pre-

sented in Section 5.

4.2.3 Scalability and Limitations of DiSE

Scalability The use of symbolic execution to compute

impacted program behaviors is the primary factor af-

fecting the scalability of the DiSE algorithm. Recent

advances in reduction and abstraction techniques, con-

straint solving, raw computing power, and in the devel-

opment of novel reuse techniques such as [43,47], have

helped to improve the scalability of symbolic execu-

tion. These improvements to symbolic execution can be

leveraged to help improve the scalability of DiSE. The

smaller symbolic summaries computed by DiSE bene-

fit the program analysis techniques which use the DiSE

results by reducing the scope of the analysis to the pro-

gram behaviors impacted by the differences.

Limitations The DiSE algorithm was originally im-

plemented as an intraprocedural analysis. In [34] we
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present iDiSE, an interprocedural version of our algo-

rithm. The current versions of the DiSE and iDiSE al-

gorithms do not compute the impact of changes to dy-

namically allocated data or changes to global data, e.g.,

fields in Java classes; however, we are working on a ver-

sion of the iDiSE algorithm to compute the impact of

these types of changes.

Other limitations of our change impact analysis are

related to the limitations inherent with the use of sym-

bolic execution. In Section 4.2.1 we explain how a user-

specified depth bound may be necessary to avoid in-

finitely long execution paths when the loop bounds are

unknown a priori. Other limitations related to symbolic

execution include the availability of the underlying the-

ories in the decision procedures used by the symbolic

execution engine. For example, to reason about non-

linear arithmetic and operations on complex data struc-

tures and library operations on those structures. It is

interesting to note that these limitations are actually

part of the motivation for DiSE – our goal was to avoid

the program structures which contribute to these lim-

itations whenever possible by exploring only the parts

of the symbolic execution space that is impacted by the

changes to the code.

5 Application

In previous work [28,34], we discuss how the results

of DiSE can be used to support regression testing tech-

niques and delta debugging techniques. The path condi-

tions generated by DiSE along impacted program state-

ments are solved to facilitate regression testing tasks.

We present an evaluation in [28,34] that demonstrates

how the solutions to the impacted path conditions can

be used for better test case selection and augmenting

the existing test suite compared to just using symbolic

execution. We also show how the output of DiSE can

be configured for generating test inputs that satisfy dif-

ferent coverage criteria, e.g., impacted branch coverage,

impacted statement coverage, among others. The infor-

mation about which constraints are generated at im-

pacted program locations can be used to improve the

efficiency of delta debugging as shown in [34]. We have

analyzed synchronous reactive components from the au-

tomotive as well as the avoinics domain. For example,

we have previously analyzed versions of the Altitude

Switch (ASW) application that turns power on to a

device of interest when the aircraft descents below a

threshold altitude above ground level. We have also an-

alyzed NASA’s On-board Abort Executive (OAE) that

models the Crew Exploration Vehicles’ prototype as-

cent abort handling software.

In this section, we discuss a new application of DiSE,

demonstrating its utility in maintaining a software health

management framework that uses a Bayesian network.

We demonstrate the value of the change-impact infor-

mation computed by DiSE in facilitating the process

of managing the health of the SWHM monitor as the

monitored software is changed. We first present back-

ground information on Bayesian networks and discuss

the advantages of using Bayesian networks for software

health management. We then present an example soft-

ware health management system modeled as a Bayesian

network, and describe how the change-impact infor-

mation about the monitored software can be used to

help update and test the software health manager rep-

resented as a Bayesian network.

5.1 Bayesian Networks

Bayesian networks are used to reason about data in

the presence of uncertainty [11,25]. A Bayesian net-

work is a directed acyclic graph where the nodes in the

graph represent statistical variables in the system, and

the edges between the nodes represent dependencies be-

tween the different variables in the system. Recent work

has explored using Bayesian networks to model soft-

ware health management systems [37–39]. The software

health manager monitors various software and hard-

ware systems. Data from the hardware and software

sensors is presented as evidence to the nodes in the

Bayesian network. Based on the data, the Bayesian net-

work reasons about failures and root causes for the fail-

ures in the system (hardware or software) being moni-

tored.

Bayesian networks contain multiple types of nodes

as used in this approach for SWHM. Each type of node

has a specific role in the system. Command nodes re-

ceive signals that are interpreted as commands. Sensor

nodes receive signals that provide data about the vari-

ables in the monitored hardware or software. Health

nodes indicate the health status of a sensor. Status

nodes encode the unobservable status of a particular

sub-system. And, behavior nodes connect various nodes

in the network in order to recognize behavioral pat-

terns.

Bayesian networks have several advantages for mod-

eling software health management systems. For exam-

ple, they have full forward and backward reasoning ca-

pabilities. In forward reasoning, the network calculates

the probabilities on the status of the health nodes based

on the values of the sensor nodes; this provides diag-

nosis and ‘most likely’ root cause explaining the cur-

rent data. In backward reasoning, when the network
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observes a certain diagnosis, it can reason about which

sensors are most likely broken.

5.2 Example Program

We use the example source code shown in Fig. 2 to

demonstrate the challenges of maintaining the health

of a software health manager in the context of evolving

systems (in this case, software changes). The code frag-

ment shown in Fig. 2 is a simplified version of the Wheel

Brake System (WBS). The WBS is a synchronous re-

active component derived from the WBS case example

found in ARP 4761 [18,35]. The Java code is based on

a Simulink model translated to C using tools developed

at Rockwell Collins and manually translated to Java.

The goal of this code is to determine how much braking

pressure to apply based on the environment. It consists

of one Java class and a total of 231 source lines of code.

The code shown in Fig. 2 is a simplified version of the

Java program.

Two versions of the method update(int PedalPos,

int BSwitch, int PedalCmd) are shown in Fig. 2. In

both versions of the program, the update method sets

the value of two global variables, AltPress and Meter,

based on the input values of its arguments. The ver-

sion on the left, Fig. 2(a), is the original version, and

the version on the right, Fig. 2(b), is the modified ver-

sion. The change to the code is on line 9 of the update

method in Fig. 2(b), where an additional else clause

is added to the update method. This code creates an

additional case for checking the value of PedalPos and

setting the value of PedalCmd.

An example Bayesian network for the code example

in Fig. 2 is shown in Fig. 3. The sensor nodes for the

input variables PedalPos, BSwitch, and PedalCmd are

labeled respectively in Fig. 3. The nodes in the Bayesian

network labeled with the prefix H are health nodes. For

example, H PedalPos is a health node that monitors the

health of the sensor node PedalPos. The node’s proba-

bilities give an indication about the health of the com-

ponent. The node usually has two states “healthy” and

“bad” where the summation of their probabilities is one:

p(healthy) + p(bad) = 1. The nodes in the Bayesian

network labeled with the prefix U are command nodes

that represent update variables in the system. Variables

in the system are identified by their node label. The fi-

nal updates to the global variables flow to the nodes

labeled AltPress and Meter in Fig. 3. The edges be-

tween the nodes represent dependencies. For example,

the updates to the PedalCmd variable in Fig. 2(a) are

only possible for certain values of PedalPos. The as-

signment of the value is contingent on the conditional

statements at line 5 or 7 in Fig. 2(a) evaluating to true.

U_AltPress

U_Meter

H_U_Meter

BSwitch Meter

AltPress

H_U_AltPressH_U_PedalCmd

PedalCmd H_PedalCmd

H_PedalPos

PedalPos

H_BSwitch

U_PedalCmd

Fig. 3 The Bayesian network for the example in Fig. 2.

For the purposes of maintaining the health of the

SWHM monitor, it is useful to identify the areas in the

Bayesian network that are not impacted by the changes

to the monitored code; these parts of the network do

not need to be re-analyzed or re-tested, potentially lead-

ing to a considerable savings in the maintenance costs.

Even just the basic ability to mark the impacted nodes

in the Bayesian network is useful because it facilitates

manual inspection of the network. In large Bayesian

networks, the impact analysis can be especially useful

to detect the parts of the network that are impacted by

the changes made to the monitored software.

By visual inspection of the graph in Fig. 3, we can

see that there are two disjoint graphs. The change at

line 9 in Fig. 2(b) corresponds to the shaded nodes

in Fig. 3. Without any additional information, we can

infer that all of the nodes in the top graph are impacted

by the changes, whereas the nodes in the bottom graph

are not impacted by the changes. In the next section,

we illustrate how the change-impact results computed

by DiSE can be used to mark the subset of the nodes

in the top graph of the Bayesian network in Fig. 3 as

impacted.

5.3 Running DiSE

The input to DiSE for the example shown is Fig. 2

is the modified program in Fig. 2(b) and the set of

modified source lines of code, which for this example is a

singleton set: {9 : else PedalCmd = PedalPos ∗1}. This
additional statement is added to the code in order to

cover all of the possible cases within the first conditional

block. The set of modified source lines can be efficiently

computed using any source-level diff tool.

The static analysis algorithm in DiSE is applied to

the modified version of the source code. The change to
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1: /∗ Global State Variables ∗/
2: int AltPress := 0
3: int Meter := 2
4:
int update(int PedalPos, int BSwitch, int PedalCmd)
5: if PedalPos == 0 then
6: PedalCmd = PedalPos + 1
7: else if PedalPos >= 1 then
8: PedalCmd = PedalPos + 2
9:
10: if PedalCmd == 1 then
11: AltPress = 0
12: else if PedalCmd == 2 then
13: AltPress = 1/4
14:
15: if BSwitch == 0 then
16: Meter = 1
17: else if BSwitch == 1 then
18: Meter = 2

1: /∗ Global State Variables ∗/
2: int AltPress := 0
3: int Meter := 2
4:
int update(int PedalPos, int BSwitch, int PedalCmd)
5: if PedalPos == 0 then
6: PedalCmd = PedalPos + 1
7: else if PedalPos >= 1 then
8: PedalCmd = PedalPos + 2
9: else PedalCmd = PedalPos ∗ 1
10:
11: if PedalCmd == 1 then
12: AltPress = 0
13: else if PedalCmd == 2 then
14: AltPress = 1/4
15:
16: if BSwitch == 0 then
17: Meter = 1
18: else if BSwitch == 1 then
19: Meter = 2

(a) (b)

Fig. 2 Code fragments from a simplified WBS example: (a) original version and (b) modified version.

the assignment of PedalCmd does not have any impact

on the block of statements at lines 16− 19 in Fig. 2(b)

because the value of PedalCmd is not used (read) at

those lines; however, the block of statements at lines

11−14 may potentially be impacted by the assignment

to PedalCmd at line 9. The value of PedalCmd at lines

11 and 13 is used to determine which code is to be ex-

ecuted, i.e., line 12 or line 14. As a result, at the end

of phase I of DiSE, the set of impacted statements will

include the following statements:

{
9 : else PedalCmd = PedalPos ∗ 1,
11 : if PedalCmd == 1 then,

12 : AltPress = 0,
13 : else if PedalCmd == 2 then,
14 : AltPress = 1/4

}
This set of impacted statements will then be used to di-

rect symbolic execution during the next phase of DiSE.

Recall that during symbolic execution of the modified

version of the code, checks are made to determine if any

impacted program statements are reachable from the

current program location. This ensures that only the

impacted execution behaviors are explored and charac-

terized. Let us consider the part of a path condition gen-

erated during symbolic execution along the impacted

set of program locations:

PedalPos �= 0 ∧ PedalPos < 1 ∧ (PedalPos ∗ 1) == 1

The variable PedalCmd is replaced with the value as-

signed to it at line 9, PedalPos∗1. The constraint shown
above is, however, not satisfiable, i.e., no assignment to

PedalPos will make the constraint satisfiable. The first

two constraints on PedalPos essentially specify that

PedalPos is a negative number which contradicts the fi-

nal constraint. Similarly another partial path condition

generated along the impacted set of program locations

is:

PedalPos �= 0 ∧ PedalPos < 1 ∧ (PedalPos ∗ 1) == 2

This path condition is also not satisfiable. Based on the

results of symbolic execution we can then state conclu-

sively that the change made to the assignment of Ped-

alCmd does not impact the assignment to the global

variable AltPress. Both path conditions generated along

the impacted program locations in Fig. 2(b) show that

the change made to the assignment of PedalCmd does

not impact any other part of the program.

5.4 Impact of changes

The results of DiSE can now be used to color the im-

pacted nodes in the Bayesian network. Nodes PedalCmd

and U PedalCmd are initially marked as impacted by

the change in Fig. 3 based on the syntactic diff. The

results of DiSE indicate that no additional nodes are

impacted by the change made to the monitored pro-

gram. This is a safe estimation of the impact of the

change, in the sense that the analysis does not miss

marking any impacted nodes. In other words, DiSE is

a precise and conservative technique for generating the

set of impacted program execution behaviors.

The application of DiSE results to the coloring of

the nodes in the Bayesian network is quite useful for
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manually inspecting the effects of a change to the mon-

itored system. The size of the Bayesian network can

be very large when the monitored system is composed

of large numbers of variables. In such cases, the color-

ing of nodes is a helpful tool for visualizing the impact

of the changes. When only a small number of nodes is

impacted, it is easy to identify the parts of the net-

work that do not need to be re-analyzed and tested in

order to check their correctness. This can result in a

significant savings while maintaining the health of the

monitor.

5.5 WBS Results

In this section, we present a subset of the results of an

evaluation of DiSE performed in [28]. Here we present

the results for theWBS example to illustrate how changes

to the code may impact the program execution behav-

iors. Note that the entire WBS program consists of one

method that is invoked from a main method. We refer

to the WBS method and WBS program interchange-

ably in this section. DiSE is implemented as an exten-

sion of the Java Pathfinder toolkit [44]. The details of

the implementation are described in Section 6. The goal

of the evaluation was to answer two research questions:

(RQ1) How does the cost of applying DiSE compare to

full symbolic execution on the changed WBS program?

(RQ2) How does the number of impacted path condi-

tions generated by DiSE compare with the number of

path conditions generated by full symbolic execution?

In Table 1, we list the results of running DiSE and

full symbolic execution on each version of the WBS ex-

ample. For each mutant (changed) version of WBS, we

list the number of CFG nodes changed (Changed) and

the number of CFG nodes impacted by the changes

(Impacted). We also present the following metrics—the

time to perform DiSE and the time to perform tradi-

tional symbolic execution of the mutant version as re-

ported by SPF, the number of states explored during

execution of each technique, and the number of path

conditions generated by each technique in the resulting

method summary. The results for DiSE are listed un-

der the subheading DiSE and the results for traditional

symbolic execution are listed under the subheading Full

Symbc.

To evaluate DiSE on the WBS program we needed

multiple versions of the program. We generated versions

of the WBS program by manually creating mutants of

the base version (v0) of WBS because multiple versions

of the WBS program are not available. When creating

mutants, we considered a broad range of changes that

can be applied to the code: change location, change

type and number of changes. We introduced changes

at the beginning, middle and end of the WBS method.

We also considered the control structures in the code,

and make changes at various depths in nested control

structures. Each mutant has one, two or three changed

Java statements, resulting in up to nine changed nodes

in the CFG for the changed version of the WBS pro-

gram as shown in Table 1. Versions 1–6 contain a single

changed Java source statement, versions 7–11 contain

two changed statements, and versions 12–16 contain

three changed statements.

5.5.1 Results and Analysis

RQ1 (Cost). In Table 1, we can see that for the major-

ity of versions in the WBS program, DiSE takes consid-

erably less time than full symbolic execution. In many

cases, the differences in time is several orders of magni-

tude. In the versions where the changes to the program

do not impact all path conditions (program paths),

DiSE takes at most 20% of the time taken by full sym-

bolic execution. In the versions v1, v7, v10, v14, and

v15, where DiSE explores the same number of states as

full symbolic execution, the time taken by DiSE is 9%–

30% longer than symbolic execution. This extra execu-

tion time accounts for the overhead of computing the

impacted locations and supporting data structures.

RQ2 (Effectiveness). The number of path con-

ditions computed by DiSE varies greatly between the

different versions of WBS. In the versions that DiSE

generates the same number of states as full symbolic

execution, the number of impacted path conditions are

the same as the ones generated by full symbolic execu-

tion. For most of the WBS versions, there fewer path

conditions generated by DiSE than full symbolic exe-

cution, e.g., DiSE generates half the number of path

conditions than full symbolic execution. There is a re-

duction in the number of path conditions generated for

other versions: v2, v4, v5, v6, etc.

Overall, the comparison demonstrates that DiSE

has potential application for detecting and character-

izing impacted program behaviors in evolving software.

In the WBS program, DiSE correctly identifies and

characterizes the subset of path conditions computed

by full symbolic execution as impacted. In some in-

stances, the change impacted only a small percentage

of path conditions, and in others, the change(s) had a

much greater impact. When only a subset of the path

conditions were impacted by the changes, DiSE is able

to consistently compute the impacted path conditions

in less time—often several orders of magnitude—than

full symbolic execution; when all of the path conditions

were impacted by the changes, the overhead incurred by

DiSE is between nine and 30% for the WBS mutants.
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Version CFG Nodes Time (mm:ss) States Explored Path Conditions
Changed Impacted DiSE Full Symbc DiSE Full Symbc DiSE Full Symbc

v1 1 39 03:19 02:30 677,976 677,976 24 24
v2 1 7 00:08 02:22 93 677,976 17 24
v3 1 3 00:27 02:41 65,976 677,976 12 24
v4 1 0 00:08 02:44 17 677,976 1 24
v5 7 56 00:23 03:44 59,610 1,317,048 14 24
v6 1 1 00:08 02:44 17 677,976 1 24
v7 1 39 03:07 02:51 677,976 677,976 24 24
v8 8 57 00:29 03:45 59,610 1,317,048 14 24
v9 2 4 00:33 02:41 65,976 677,976 12 24
v10 2 39 03:40 02:51 677,976 677,976 24 24
v11 7 56 00:28 03:43 59,610 1,317,048 14 24
v12 8 65 00:31 03:54 70,129 1,317,048 6 24
v13 9 57 00:29 03:44 59,610 1,317,048 14 24
v14 3 39 03:39 02:51 677,976 677,976 24 24
v15 3 42 03:37 02:51 677,976 677,976 24 24
v16 8 56 00:28 03:43 59,610 1,317,048 14 24

Table 1 DiSE results for WBS

The entire WBS program is 231 lines of Java source

code. Since the WBS example is a single method, some

changes could impact the entire method. In larger ex-

amples, we expect that changes are more likely to be

localized to certain methods or components.

The results in this section illustrate the effectiveness

of DiSE at characterizing the impact of changes on the

execution behaviors of the modified code. In the context

of software health management, these results illustrate

the potential to reduce the cost and effort of maintain-

ing the correctness of the SWHM monitor when the

monitored code is changed by using DiSE.

6 Tool Support

DiSE is implemented within the Java Pathfinder [44]

toolkit. It is an extension of the symbolic execution en-

gine, Symbolic PathFinder [24,30].

6.1 Java PathFinder

The Java PathFinder (JPF) model checker is an open-

source Java bytecode analysis framework. The core of

JPF is an explicit state model checker for Java byte-

code. JPF is a customized Virtual Machine that sup-

ports state storage, state matching, and configurable

execution semantics of bytecode instructions. It sup-

ports controlled scheduling choices in concurrent pro-

grams, and monitoring of program executions with Ob-

server design patterns. It checks for properties such as

deadlock, race conditions, and the absence of unhandled

exceptions. One of the defining qualities of JPF is its ex-

tensibility. JPF has been extended to support symbolic

execution, directed automated random testing, config-

urable state abstractions, various heuristics for enabling

bug detection, configurable search strategies, checking

of temporal properties and much more. JPF supports

these extensions at the design level through a set of

stable, well-defined interfaces.

6.2 Symbolic PathFinder

Symbolic Pathfinder (SPF) is the symbolic execution

engine for JPF. SPF is an open-source execution en-

gine that symbolically executes Java bytecode. SPF

supports a variety of constraint solvers/decision pro-

cedures for solving path conditions such as Choco [8],

IASolver [16], and CVC3 [10]. In general, state match-

ing is undecidable when states represent path condi-

tions on unbounded input data. Hence, SPF does not

perform any state matching and explores the symbolic

execution tree using a stateless search. Furthermore, if

the solver is unable to determine the satisfiability of

the path condition within a certain time bound, SPF

treats the path condition as unsatisfiable. This limita-

tion of the constraint solvers may cause symbolic exe-

cution to not generate path conditions for feasible exe-

cution paths. Loops and recursion can be bounded by

placing a depth limit on the search depth in SPF or

by limiting the number of constraints encoded for any

given path; SPF indicates when one of these bounds

has been reached during symbolic execution.
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6.3 Directed Incremental Symbolic Execution

DiSE extends SPF by implementing the custom data-

flow and control-flow analyses used to compute the set

of impacted program statements. The control- and data-

flow analyses compute a conservative approximation of

the impacted Java bytecode instructions in changed

methods in the modified program. The implementation

supports both intra-procedural analysis (data and con-

trol flow within a method) and inter-procedural analy-

sis (data and control flow across different method calls).

The impacted Java bytecode instructions are used to di-

rect symbolic execution along execution paths leading

to impacted Java bytecode instructions, while the other

paths are pruned. DiSE is implemented in an extension

called jpf-regression. The output of DiSE is a set of

path conditions that describe the constraints over the

input and global variables. These constraints represent

the impacted program behaviors of the modified pro-

gram.

We use the impacted program behaviors to charac-

terize the impacted parts of the SWHM system manu-

ally. As part of our future work, we plan to automate

this process.

7 Conclusions and Future Work

Software health management techniques monitor de-

ployed software in its execution environment to detect

violations, predict possible failures, and to help the sys-

tem recover from faults. When the monitored software

is changed, the SWHM monitor software may also need

to change in order to continue to operate correctly. In

this work we describe how the results of Directed In-

cremental Symbolic Execution, a general change im-

pact analysis technique we developed previously, can

be used to maintain the correctness of a SWHM moni-

tor when the monitored software is changed. To the best

of our knowledge, existing software health management

techniques have not addressed the issue of maintaining

the correctness of the SWHM monitor over time as the

monitored software evolves.

The particular SWHM monitor software analyzed

in this work is based on Bayesian Networks. Although

we have automated the analysis to compute the impact

of the changes on the monitored software, we have not

yet automated the process for updating the nodes in the

Bayes Network to indicate the impact of the changes.

For future work, we plan to automate this step and to

apply DiSE to larger programs to empirically evaluate

the effectiveness of this approach to maintaining the

health of the SWHM monitor software. We also plan to

explore how the results of DiSE can be used to support

other aspects of software health management, and to

apply DiSE results to other SWHM frameworks.

We believe that the core concept of DiSE can be

adapted and applied to other SWHM techniques as

well. An approach has been described for the formal

verification for the diagnostics systems using symbolic

model checking [26]. The diagnosis system observes a

physical system that is modeled as a Kripke structure.

The DiSE algorithm could be adapted to generate the

set of affected behaviors on the Kripke structure. The

impacted behaviors can then be used to check the cor-

rectness of the diagnosis system. There is another model-

based prognostic technique that uses a simulation of a

system collected under nominal, as well as degraded

conditions [22]. DiSE could be adapted to generate im-

pacted simulations of a system based on the changes.

The impacted simulations could then be used to help

maintain the prognostics system.
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