

A PHYSICS-BASED MODELING FRAMEWORK FOR PROGNOSTIC STUDIES

Chetan S. Kulkarni

Stinger Ghaffarian Technologies, Inc. NASA Ames Research Center, Moffett Field CA 94035

Presented at

Indian Institute of Technology - Bombay

Powai, Mumbai

February 7th , 2014

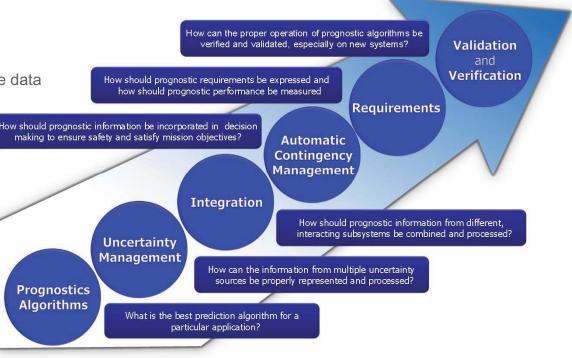
PROGNOSTICS CENTER OF EXCELLENCE

Prognostics Center of Excellence

NASA Ames Research Center, CA

Mission: Advance state-of-the-art in prognostics technology development

- Investigate algorithms for estimation of remaining life
 - Investigate physics-of-failure
 - Model damage initiation and propagation
 - Investigate uncertainty management
- Validate research findings in hardware testbeds
 - Hardware-in-the-loop experiments
 - Accelerated aging testbeds
 - HIL demonstration platforms
- Disseminate research findings
 - Public data repository for run-to-failure data
 - Actively publish research results
- Engage research community



Prognostics Center of Excellence, NASA Ames Research Center, CA [http://www.prognostics.nasa.gov]

Introduction to Prognostics

PROGNOSTICS CENTER OF EXCELLENCE

Today we will discuss...

- What is prognostics?
 - It's relation to health management
 - Significance to the decision making process
- How is prognostics used?
 - Reliability
 - Scheduled maintenance based on reliability
 - Kinds of prognostics interpretation & applications
 - Type I, Type II, and Type III prognostics
 - Various application domains
- Condition based view of Prognostics
- Prognostic Framework

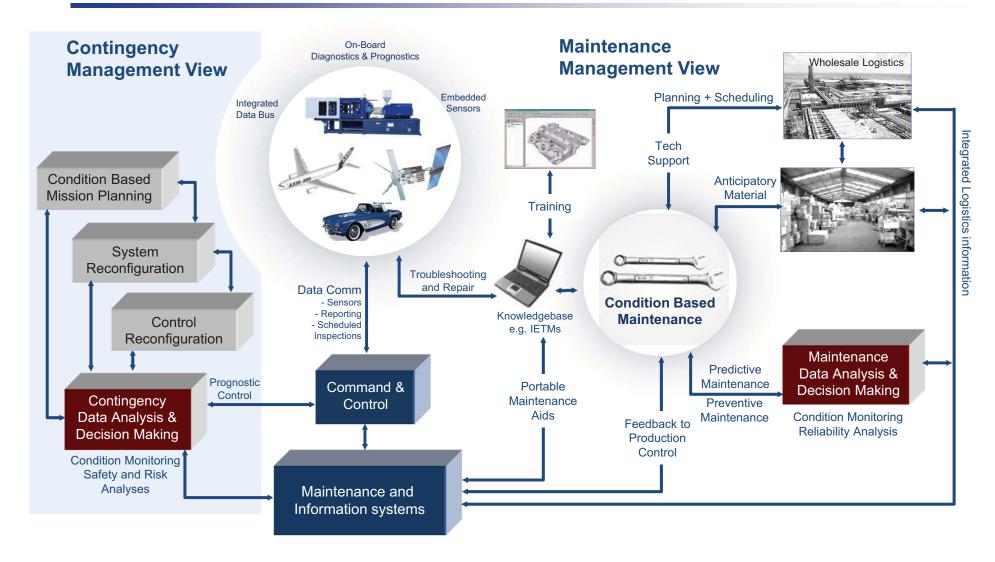
Also...

- What are the key ingredients for prognostics
 - Requirements specifications Purpose
 - Cost-benefit-risk
 - Condition Monitoring Data sensor measurements
 - Collect relevant data
 - Prognostic algorithm
 - Tons of them examples
 - Fault growth model (physics based or model based)
 - Run-to-failure data
- Challenges in Validation & Verification
 - Performance evaluation
 - Uncertainty
 - representation, quantification, propagation, and management

Prognostics and Health Management

The Perspective

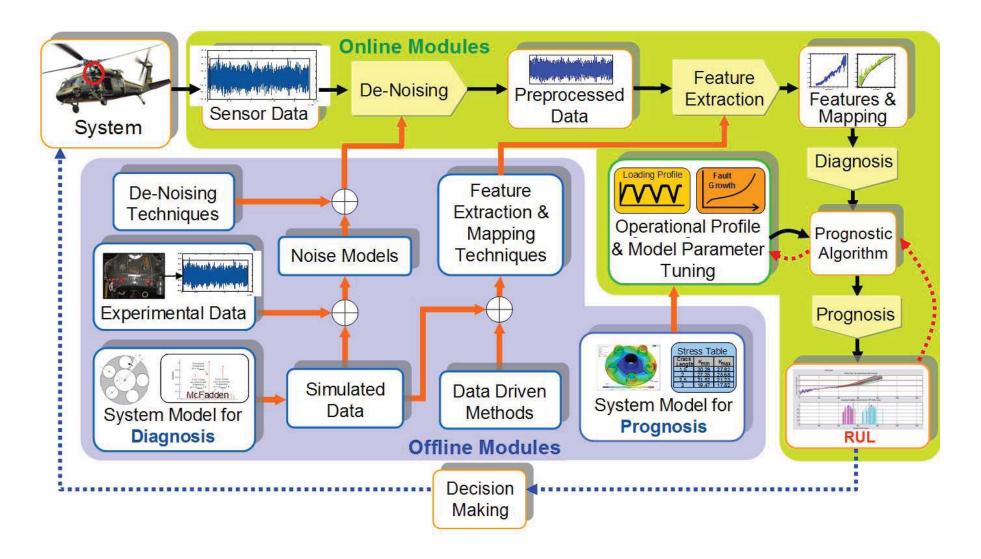
Health Management



 Schematic adapted from: A. Saxena, Knowledge-Based Architecture for Integrated Condition Based Maintenance of Engineering Systems, PhD Thesis, Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta May 2007.

• Liang Tang, Gregory J. Kacprzynski, Kai Goebel, Johan Reimann, Marcos E. Orchard, Abhinav Saxena, and Bhaskar Saha, *Prognostics in the Control Loop*, Proceedings of the 2007 AAAI Fall Symposium on Artificial Intelligence for Prognostics, November 9-11, 2007, Arlington, VA.

Data Analysis & Decision Making



Adapted from presentations and publications from Intelligent Control Systems Lab, Georgia Institute of Technology, Atlanta [http://icsl.gatech.edu/]

Prognostics

- Dictionary definition "foretelling" or "prophecy"
- PHM definition –
 "Estimation of remaining life of a component or subsystem"
- Prognostics evaluates the *current health* of a component and, conditional on *future load* and *environmental exposure*, estimates at what time the component (or subsystem) will no longer operate within its *stated specifications*.

These predictions are based on

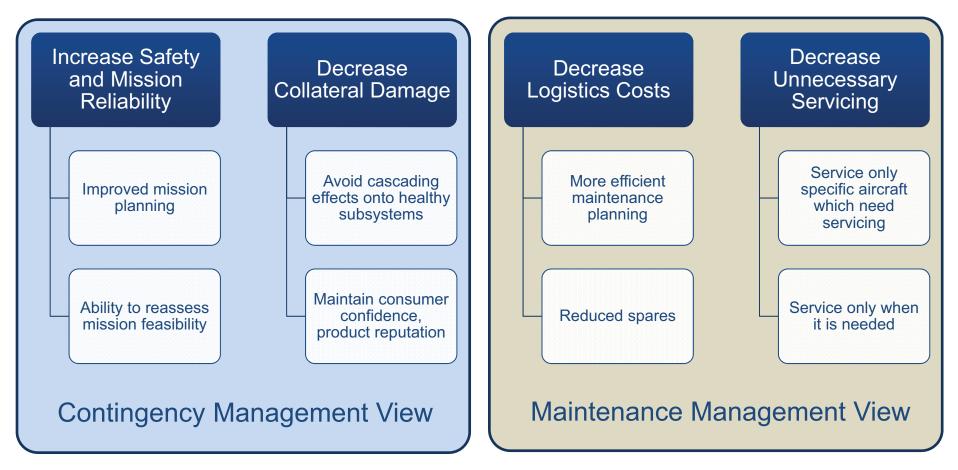
- Analysis of failure modes (FMECA, FMEA, etc.)
- Detection of early signs of wear, aging, and fault conditions and an assessment of current damage state
- Correlation of aging symptoms with a description of how the damage is expected to increase ("damage propagation model")
- Effects of operating conditions and loads on the system

Prognostics Center of Excellence, NASA Ames Research Center, CA [http://www.prognostics.nasa.gov]

Prognostics [http://en.wikipedia.org/wiki/Prognostics]

Goals for Prognostics

What does prognostics aim to achieve?



- Prognostics goals should be defined from users' perspectives
- Different solutions and approaches apply for different users

User Centric View on Prognostics Goals

Category	End User	Goals	Metrics
Operations	Program Manager	Assess the economic viability of prognosis technology for specific applications before it can be approved and funded	Cost-benefit type metrics that translate prognostics performance in terms of tangible and intangible cost savings
	Plant Manager	Resource allocation and mission planning based on available prognostic information	Accuracy and precision based metrics that compute RUL estimates for specific UUTs. Such predictions are based on degradation or damage accumulation models
	Operator	Take appropriate action and carry out re-planning in the event of contingency during mission	Accuracy and precision based metrics that compute RUL estimates for specific UUTs. These predictions are based on fault growth models for critical failures
	Maintainer	Plan maintenance in advance to reduce UUT downtime and maximize availability	Accuracy and precision based metrics that compute RUL estimates based on damage accumulation models
Engineering	Designer	Implement the prognostic system within the constraints of user specifications. Improve performance by modifying design	Reliability based metrics to evaluate a design and identify performance bottlenecks. Computational performance metrics to meet resource constraints
	Researcher	Develop and implement robust performance assessment algorithms with desired confidence levels	Accuracy and precision based metrics that employ uncertainty management and output probabilistic predictions in presence of uncertain conditions
Regulatory • Saxena, A., Celaya, J., 3 • Wheeler, K. R., Kurtoglu	Policy Makers	To assess potential hazards (safety, economic, and social) and establish policies to minimize their effects	Cost-benefit-risk measures, accuracy and precision based measures to establish guidelines & timelines for phasing out of aging fleet and/or resource allocation for future projects

Conferences and Computers and Information in Engineering Conference (IDETC/CIE), San Diego, CA

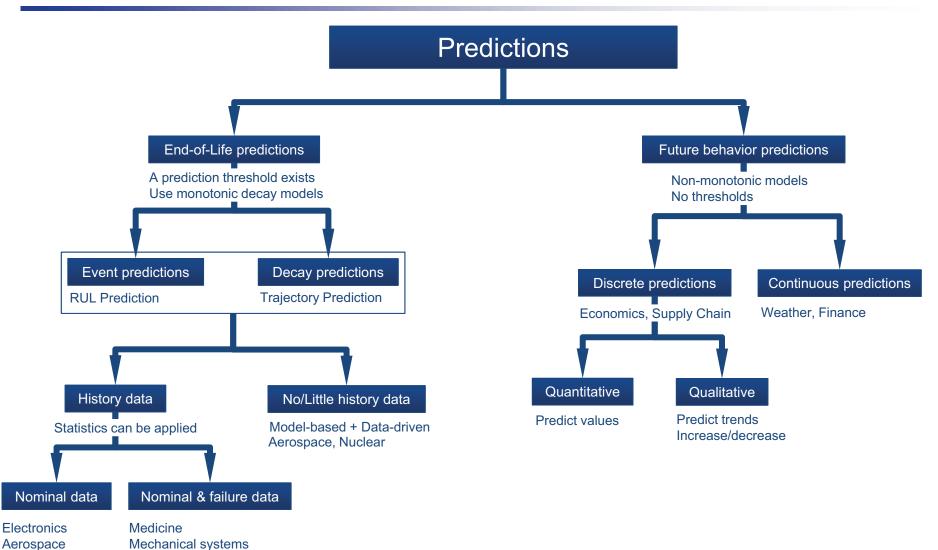
Prognostics Categories

• Type I: Reliability Data-based

- Use population based statistical model
- These methods consider historical time to failure data which are used to model the failure distribution. They estimate the life of a typical component under nominal usage conditions
- Example: Weibull Analysis
- Type II: Stress-based
 - Use population based fault growth model learnt from accumulated knowledge
 - These methods also consider the environmental stresses (temperature, load, vibration, etc.) on the component. They estimate the life of an average component under specific usage conditions
 - Example: Proportional Hazards Model
- Type III: Condition-based
 - Individual component based data-driven model
 - These methods also consider the measured or inferred component degradation. They estimate the life of a specific component under specific usage and degradation conditions
 - Example: Cumulative Damage Model, Filtering and State Estimation

[•] For more details please refer to last year's PHM09 tutorial on Prognostics by Dr. J. W. Hines: [http://www.phmsociety.org/events/conference/phm/09/tutorials]

Forecasting Applications



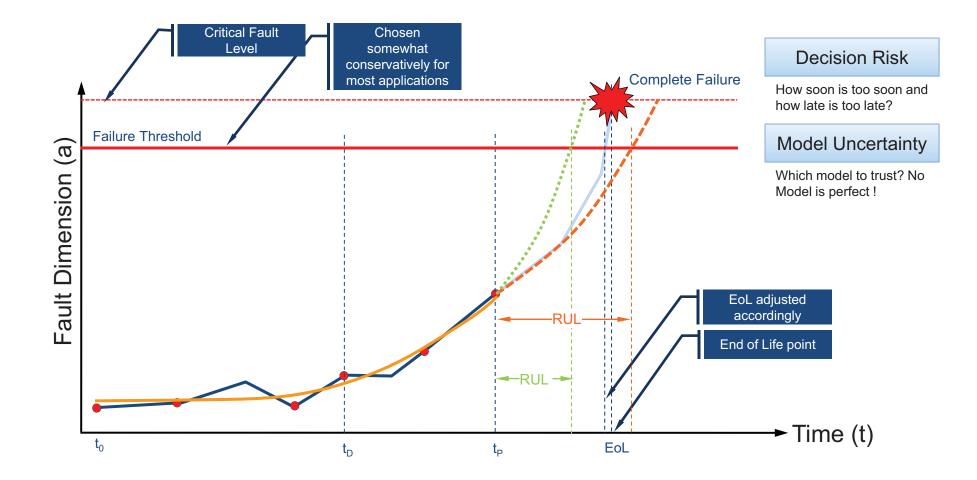
Saxena, A., Celava, J., Saha, B., Saha, S., Goebel, K., "Metrics for Offline Evaluation of Prognostics Performance", International Journal of Prognostics and Health Management (JPHM), vol.1(1) 2010.

 Saxena, A., Celaya, J., Balaban, E., Goebel, K., Saha, B., Saha, S., and Schwabacher, M., "Metrics for Evaluating Performance of Prognostics Techniques", 1st International Conference on Prognostics and Health Management (PHM08), Denver CO, pp. 1-17, Oct 2008.

Predicting Remaining Useful Life

Understanding the Prognostic Process

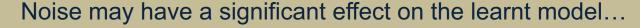
PROGNOSTICS CENTER OF EXCELLENCE

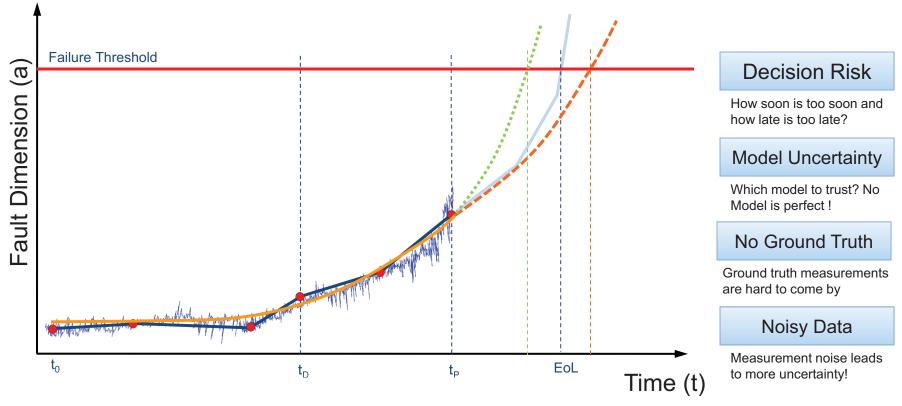


We hardly have access to ground truth

Instead we have measurements, appropriate features of which may correlate to damage. such data are usually noisy!

We use these data to learn the model, which may be noisy





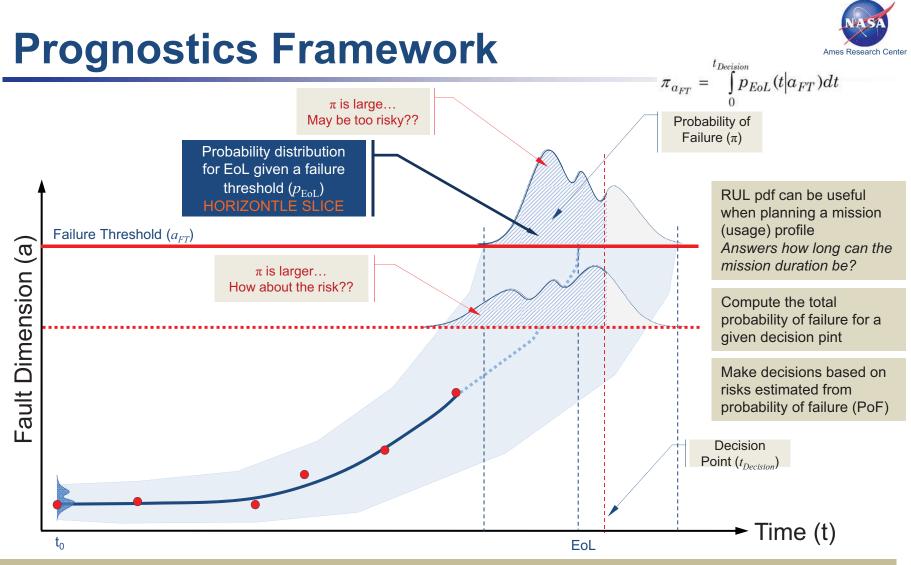
Uncertainties in Prognostics

- Uncertainties arise from a variety of sources
 - Modeling uncertainties Epistemic
 - Numerical errors
 - Unmodeled phenomenon
 - System model & Fault propagation model
 - Input data uncertainties Aleatoric
 - Initial state (damage) estimate
 - Variability in the material
 - Manufacturing variability
 - Measurement uncertainties Prejudicial
 - Sensor noise
 - Sensor coverage
 - Loss of information during preprocessing
 - Approximations and simplifications
 - Operating environment uncertainties Combination
 - Unforeseen future loads
 - Unforeseen future environments
 - Variability in the usage history data

Unknown level of uncertainties arising due lack of knowledge or information

Inherent statistical variability in the process that may be characterized by experiments

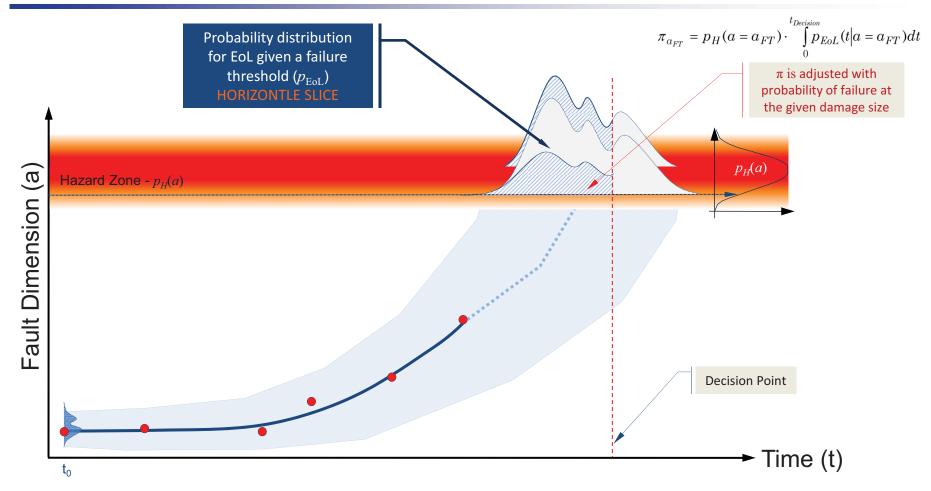
Unknown level of uncertainties arising due to the way data are collected or processed



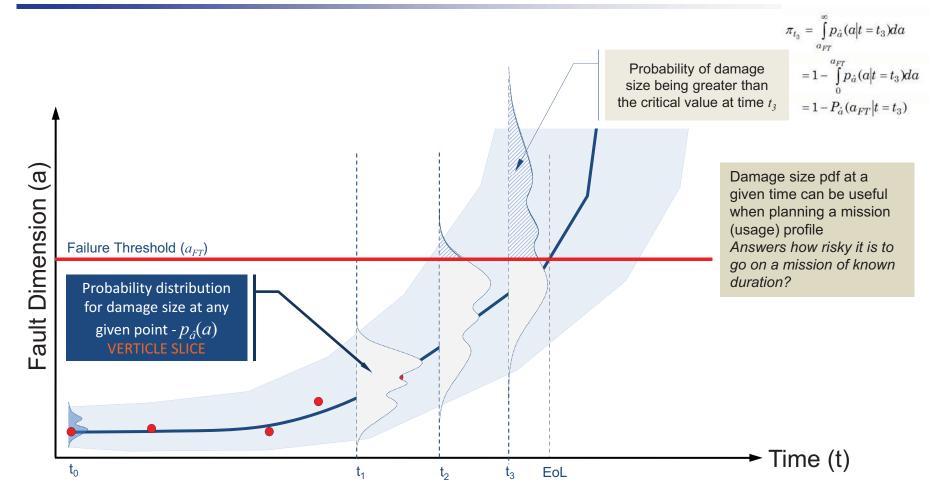
These uncertainties can be represented as a probability distribution on the initial state. Probability distribution need not be Normal "always".

we can propagate the learnt model along with a confidence bound until the Failure Threshold is reached

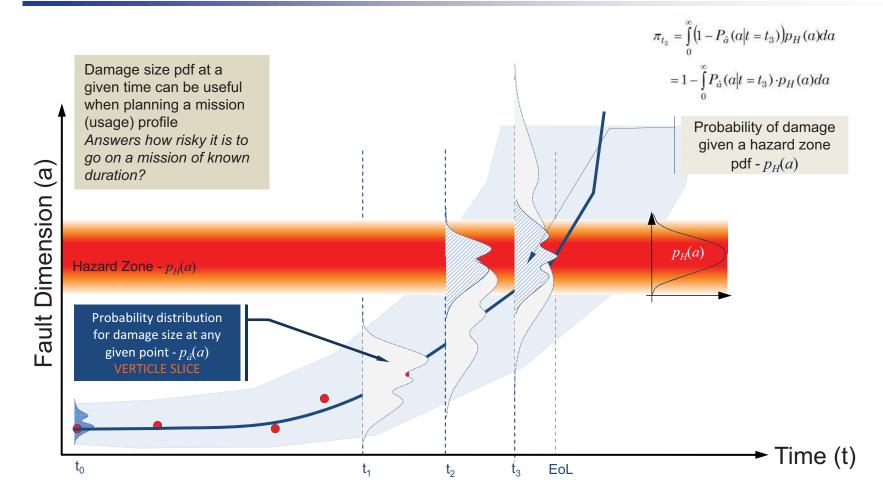
The Horizontal slice tells us when the system can be expected to reach a specified failure threshold given "all" uncertainties considered



Risk is now a compound function of chosen failure threshold and the decision point



We can figure out if the system would withstand by the time mission is completed



We can figure out if the system would withstand by the time mission is completed

Prognostics Applications

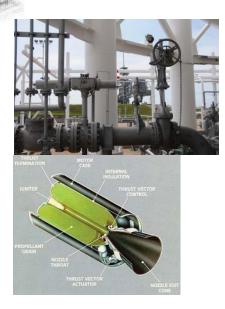
Examples

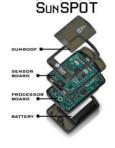
Application Examples

- Electro-Mechanical Actuators
- Electrochemical Stora
- Electronics
- Valves, Pumps

- Composite Materials
- Solid Rocket Motor Casing
- Rover
- UAV

Distributed Health Management





Setting up the Problem

Prognostics Modeling

PROGNOSTICS CENTER OF EXCELLENCE

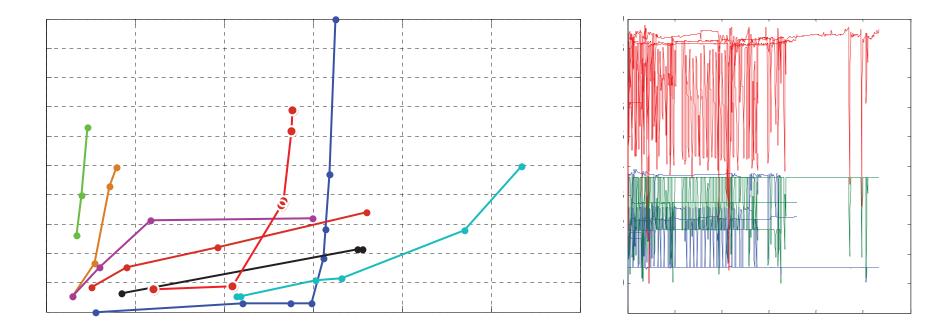
Data-Driven Prognostic Methods

Primarily use data obtained from the system for predicting failures

- What kind of data?
 - Something that indicates a fault and fault growth or is expected to influence fault growth
 - Sensor measurement to assess system state
 - Sensor measurements and communication logs to identify operational modes and operational environment
 - Process data to extract features that "clearly" indicate fault growth
 - · Preferably monotonically changing since faults are expected to grow monotonically
 - Predictions can be made in many ways
 - Use raw measurement data to map onto RULs
 - Use processed data to trend in feature domain, health index domain, or fault dimension domain against a set threshold
- How?
 - Learn a mathematical model to fit changing observations
 - Regression or trending
 - Learnt model may not be transparent to our understanding but explains observed data
 - Use statistics if volumes of run-to-failure data is available
 - Map remaining useful life to various faulty states of the system
 - Reliability type RUL estimates

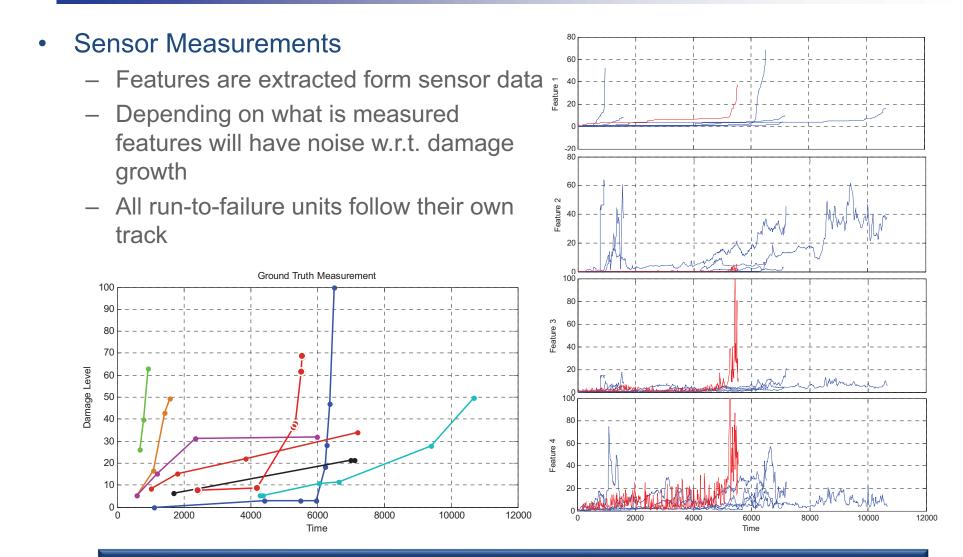
Example - Data-Driven Prognostics Model

- Operational conditions
 - Indicate level of stress on the system
- Ground truth measurements
 - Ground truth measurements are less frequent



Operational conditions seem to make an impact on how fast the damage grows !

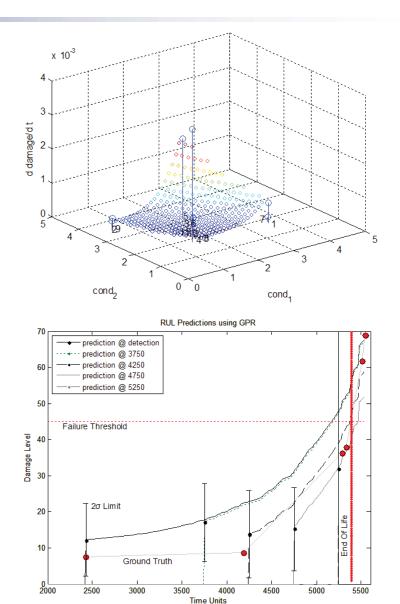
Example - Data-Driven Prognostics Model



Generally speaking features indicate the level of damage at any given time

Approach

- Learning/training
 - Learn a mapping (M1) between features and the damage state
 - Learn a mapping (M2) between operational conditions and damage growth rate
- Prediction
 - At any given time use M1 & latest measurements to estimate damage state
 - Assuming a future load profile (if unknown) estimate damage accumulation for all future instants using M2



Goebel, K., Saha, B., and Saxena, A., "A Comparison of Three Data-Driven Techniques for Prognostics", Proceedings of the 62nd Meeting of the Society For Machinery Failure Prevention Technology (MFPT), pp. 119-131, Virginia Beach VA, May 2008

Data-Driven Prognostic Methods

• Advantages

- Relatively Simple to implement and faster
 - Variety of generic data-mining and machine learning techniques are available
- Helps gain understanding of physical behaviors from large amounts of data
 - These represent facts about what actually happened all of which may not be apparent from theory

• Disadvantages

- Physical cause-effect relationships are not utilized
 - E.g. different fault growth regimes, effects of overloads or changing environmental conditions
- Difficult to balance between generalization and learning specific trends in data
 - Learning what happened to several units on average may not be good enough to predict for a specific unit under test
- Requires large amounts of data
 - We never know if we have enough data or even how much is enough

• Examples

- Regression
- Neural Networks (NN)
 - RNN, ARNN, RNF
- Gaussian process regression (GPR)
- Bayesian updates
- Relevance vector machines (RVM)

Physics-Based Models for Prognostics

- What kind of models?
 - A model that explains the failure mode of interest
 - A model that maps the effects of stressors onto accumulation of damage Physics of failure driven
 - e.g. fatigue cycling increases the crack length, or continuous usage reduces the battery capacity over a long term can be modeled in a variety of ways
 - Finite Element Models
 - Empirical models
 - High fidelity simulation models, etc.
 - Modeled cause-effect phenomenon may be directly observable as a fault or not
 - Structural cracks are observable faults
 - Internal resistance changes in a battery causing capacity decay are not directly observable
- How?
 - Given the current state of the system simulate future states using the model
 - Recursive one step ahead prediction to obtain k-steps ahead prediction
 - Propagate fault until a predefined threshold is met to declare failure and compute RUL

Physics-Based Models for Prognostics

• Advantages

- Prediction results are intuitive based on modeled case-effect relationships
 - Any deviations may indicate the need to add more fidelity for unmodeled effects or methods to handle
 noise
- Once a model is established, only calibration may be needed for different cases
- Clearly drives sensing requirements
 - Based on model inputs, its easy to determine what needs to be monitored

• Disadvantages

- Developing models is not trivial
 - Requires assumptions regarding complete knowledge of the physical processes
 - Parameter tuning may still require expert knowledge or learning from field data
- High fidelity models may be computationally expensive to run, i.e. impractical for real-time applications

• Examples

- Population growth models like Arrhenius, Paris, Eyring, etc.
- Coffin-Manson Mechanical crack growth model

Engineering Statistics Handbook [http://www.itl.nist.gov/div898/handbook/apr/section1/apr15.htm]

Hybrid Approaches

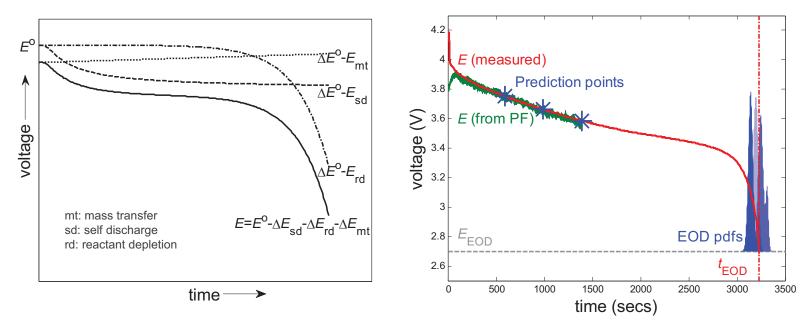
Use knowledge about the physical process and information from observed data together

- How?
 - Learn/fine-tune parameters in the model to fit data
 - Use model to make prediction and make adjustment based on observed data
 - Learn current damage state from data and propagate using model
 - Use knowledge about the physical behavior to guide learning process from the data
 - Improve initialization parameters for learning
 - Decide on the form for a regression model
 - Use understanding from data analysis to develop models
 - Discover the form of the fault growth model
 - Fuse estimates from two different approaches
 - or any other creative way you can think of...

Example1 – Physics Model Tuned with Data

Predicting Battery Discharge – Short Term

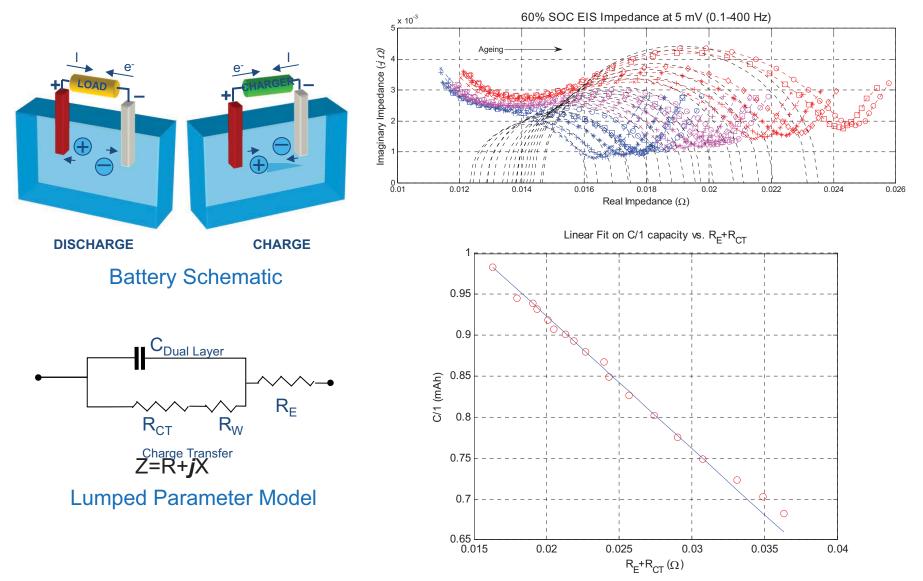
- Objective: Predict when Li-ion battery voltage will dip below 2.7 volts
- Hybrid approach using Particle Filter
 - Model non-linear electro-chemical phenomena that explain the discharge process
 - Learn model parameters from training data
 - Let the PF framework fine tune the model during the tracking phase
 - Use the tuned model to predict EOD



Data Source: NASA PCoE Data Repository [http://ti.arc.nasa.gov/tech/dash/pcoe/prognostic-data-repository/]

• B. Saha, K. Goebel, Modeling Li-ion Battery Capacity Depletion in a Particle Filtering Framework, Proceedings of Annual Conference of the PHM Society 2009

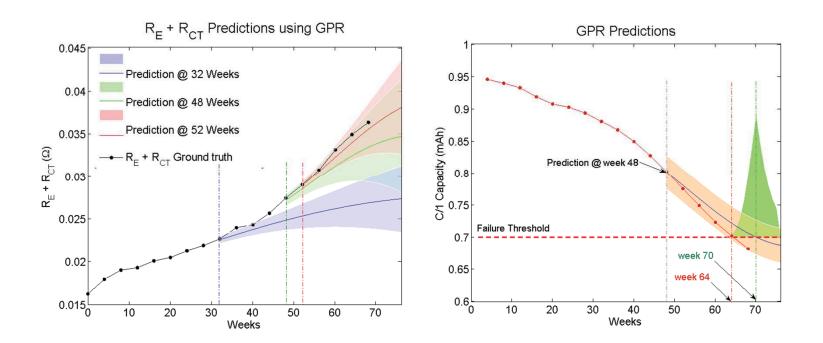
Example2 – Develop Empirical Model from Data



Source: Goebel, K., Saha, B., Saxena, A., Celaya, J. R., Christopherson, J. P., "Prognostics in Battery Health Management", IEEE Instrumentation and Measurement Magazine, Vol. 11(4), pp. 33-40, August 2008

Example2 – Data-driven Regression

- Use a regression algorithm to make predictions
 - Gaussian Process Regression



Hybrid Approaches

Advantages

- Does not necessarily require high fidelity models or large volumes of data works in a complementary fashion
- Retains intuitiveness of a model but explains observed data
- Helps in uncertainty management
- Flexibility

Disadvantages

- Needs both data and the models
- An incorrect model or noisy data may bias each other's approach

Otherwise, it's a compromise to get the best out of both so any disadvantage may be alleviated

Examples

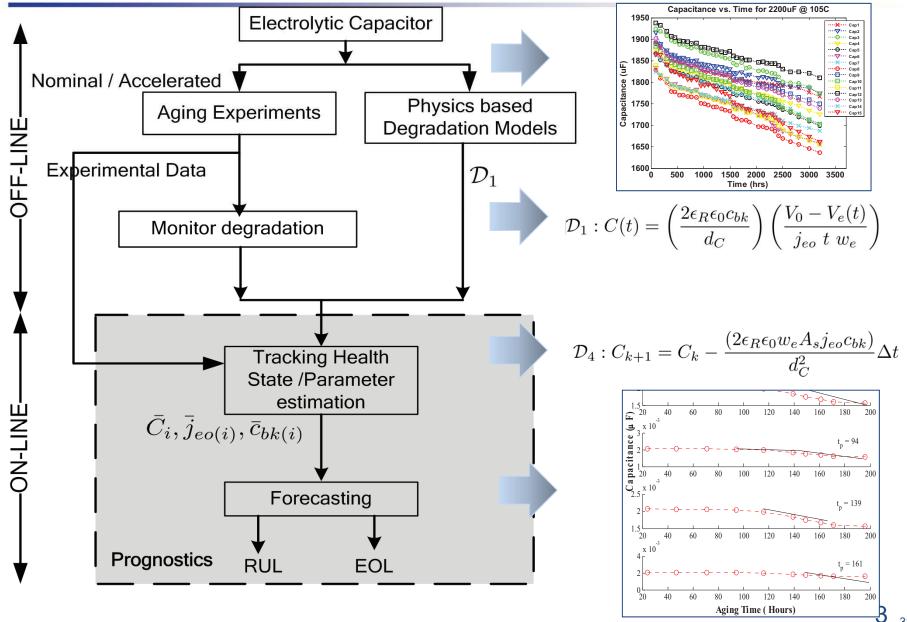
- Particle Filters, Kalman Filters, etc.
- or any clever combination of different approaches...

Example 1

Electrolytic Capacitors

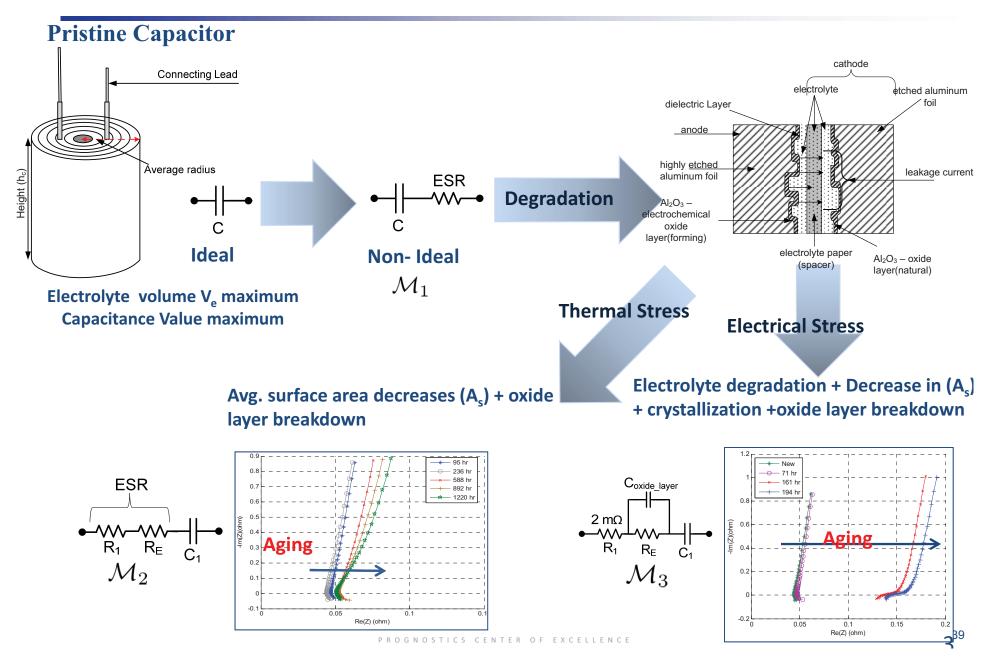
PROGNOSTICS CENTER OF EXCELLENCE

Research Approach



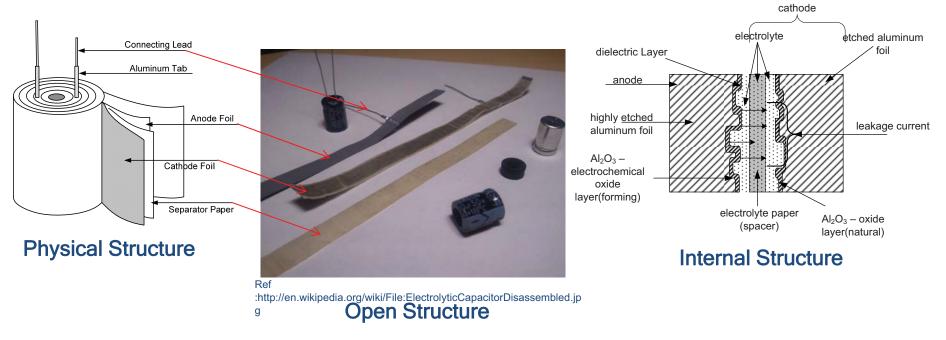
PROGNOSTICS CENTER OF EXCELLENCE

Capacitor Degradation Model

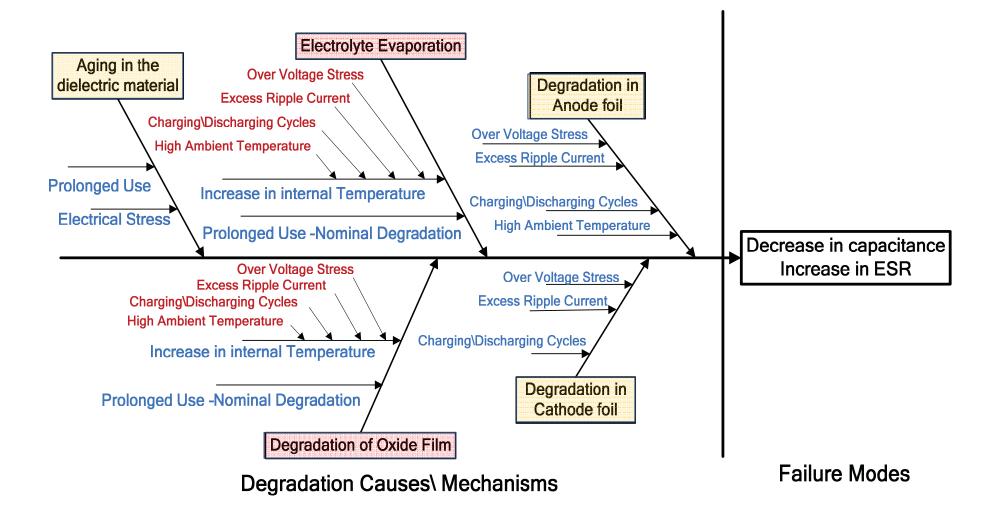


Capacitor Structure

- An aluminum electrolytic capacitor, consists of
 - Cathode aluminum foil,
 - Electrolytic paper, electrolyte
 - Aluminum oxide layer on the anode foil surface, which acts as the dielectric.
 - Equivalent series resistance (ESR) and capacitance(C) are electrical parameters that define capacitor health



Degradation Mechanisms



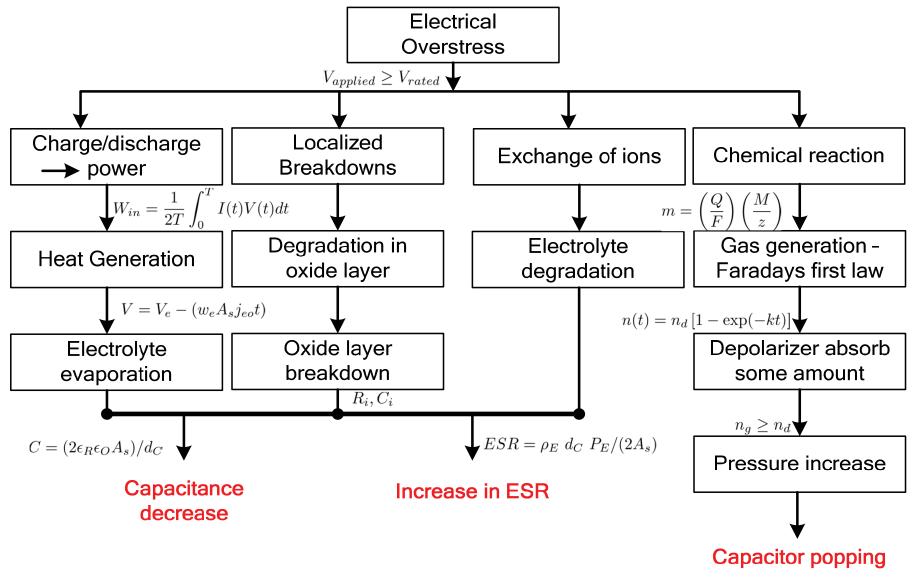
Experimental Setups

- Conditions under investigation
 - Nominal Degradation
 - Electrical Over Stress
 - Thermal Over Stress
- Characterization of capacitors at regular intervals
- Impedance measurement instrument used to characterize the capacitors.
- ESR and Capacitance values are computed using a system identification tool.

Accelerated Aging Studies

- Under normal operating conditions
 - Device lasts for several years
 - Process of condition based monitoring becomes difficult
- Advantage of accelerated stressors
 - We can run the component to failure
 - Allows for the understanding of the effects of failure mechanisms,
 - Identification of leading indicators of failure
 - The development of physics-based degradation models and RUL prediction

Accelerated Electrical Aging



(1)

Capacitance Degradation Model

Decrease in electrolyte volume :

 $Ve(t) = V_{e0} - (w_e A_s j_{eo} t)$

where:

- V: dispersed volume at time t, V_e : initial electrolyte volume
- A_s : surface area of evaporation, j_{eo} : evaporation rate
- t : time in minutes, w_e = volume of ethyl glycol molecule
- Capacitance (C)): Physics-Based Model:

$$C = (2\epsilon_R \epsilon_O A_s)/d_C \tag{2}$$

- Electrolyte evaporation dominant degradation phenomenon
 - First principles: Capacitance degradation as a function of electrolyte loss

$$\mathcal{D}_1: C(t) = \left(\frac{2\epsilon_R \epsilon_0}{d_C}\right) \left(\frac{V_{e0} - V_e(t)}{j_{eo} \ t \ w_e}\right),\tag{3}$$

where:

C : capacitance of the capacitor,

 ϵ_R : relative dielectric constant,

 ϵ_O : permittivity of free space,

 $d_{\mathcal{C}}$: oxide thickness.

Capacitance Degradation Model

- Oxide breakdown observed experimental data
- The breakdown factor is exp. function of electrolyte evaporation

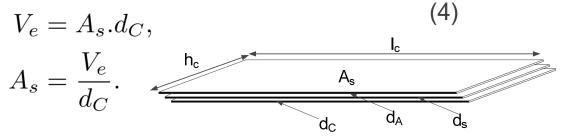
$$C_{bk(t)} = exp f(V_{eo} - V_{e(t)})$$

• Updated in capacitance degradation model :

$$C = (2\epsilon_R\epsilon_0 A_s c_{bk})/d_C,$$
$$\mathcal{D}_{11}: C(t) = c_{bk(t)} \left(\frac{2\epsilon_R\epsilon_0}{d_C}\right) \left(\frac{V_{e0} - V_e(t)}{j_{eo} \ t \ w_e}\right)$$

Dynamic Model of Capacitance

From the structure of capacitor we have the electrolyte volume (V_e) expressed in the form of oxide surface area (A_s) as :



The first order discrete approximation for change in electrolyte volume can be expressed as:

$$\frac{dV_e}{dt} = -(w_e A_s j_{eo}),$$

$$V_{e(k+1)} = V_{e(k)} + \frac{dV_e}{dt} \Delta t,$$

$$V_{e(k+1)} = V_{e(k)} - (w_e A_s j_{eo}) \Delta t.$$
(5)

PhD Dissertation Defense Lence

Dynamic Model of Capacitance

$$V_{e(k)} = \frac{C_k}{2\epsilon_R\epsilon_0 c_{bk}} d_C^2,$$

$$V_{e(k)} = (C_k)\alpha$$
(6)

Similarly Capacitace can be expressed as :

$$C_{k+1}\alpha = C_k\alpha + \frac{dV_e}{dt}\Delta t,$$

$$C_{k+1}\alpha = C_k\alpha - (w_eA_sj_{eo})\Delta t, \text{ hence}$$

$$C_{k+1} = C_k - \frac{(w_eA_sj_{eo})}{\alpha}\Delta t.$$
(7)

The complete discrete time dynamic model for capacitance degradation can be summarized as :

$$\mathcal{D}_4: C_{k+1} = C_k - \left(\frac{2\epsilon_R\epsilon_0 w_e A_s j_{eo} c_{bk}}{d_C^2}\right) \Delta t$$

Dynamic Model of ESR

• Decrease in electrolyte volume :

$$Ve(t) = V_{e0} - (w_e A_s j_{eo} t)$$

- ESR
 - Based on mechanical structure and electrochemistry.
 - With changes in R_E (electrolyte resistance)

$$ESR = \frac{1}{2} \left(\frac{\rho_E d_C P_E e_{bk(t)}}{A_s} \right)$$

$$\mathcal{D}_2 : ESR(t) = \frac{1}{2} \left(\rho_E \ d_C \ P_E \right) \left(\frac{j_{eo} \ t \ w_e e_{bk(t)}}{V_e(t)} \right)$$
(8)

Dynamic ESR degradation Model :

$$\mathcal{D}_5: \frac{1}{ESR_{k+1}} = \frac{1}{ESR_k} - \left(\frac{2w_e A_s j_{eo}}{\rho_E \ P_E \ d_C^2 \ e_{bk(t)}}\right) \Delta t$$

where:

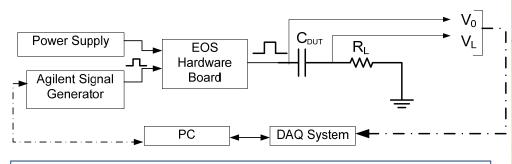
 ρ_E : electrolyte resistivity,

 ${\cal P}_E$: correlation factor related to electrolyte spacer porosity and average liquid pathway,

 $e_{bk(t)}$: resistance dependence oxide breakdown factor

Electrical Overstress Experiment

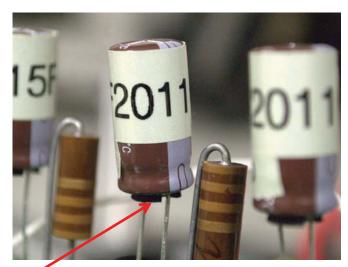
- Electrolytic capacitors of 2200µF, 10V, 1A and at 85°C
- Stress voltages
 - 120%, 150% of rated voltage
- Under Electrical Overstress
 - Capacitance Health Threshold 20%
 - ESR Health Threshold 250 280%
- Charging / discharging cycle 15V



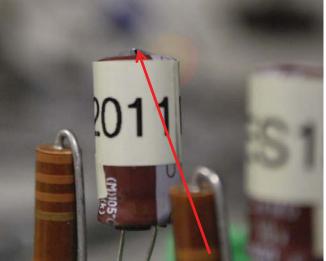
For this experiment ESR (> 55%) and capacitance decrease (> 22-24%)

Electrical Overstress Experiment

- EOS Experiments :
 - 3 Capacitors failed due to vent opening.
 - Pressure increase in other devices observed.



Increase in pressure

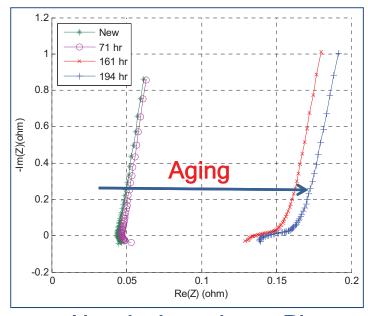


PhD Dissertation Defense Lence

Opening of the pressure vents1

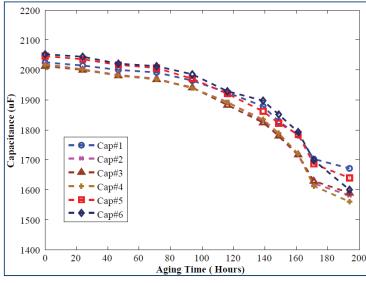
Electrical Overstress Degradation Dat

- Devices were characterized at regular intervals.
- Impedance data shows degradation in C and ESR with aging
- C and ESR values were computed from the impedance data



0.21 0.2 • 😑 🗕 Cap#1 Cap#2 0.19 🔺 🗕 Cap#3 Cap#4 0.18 - 🗖 – Cap#5 0.17 0.16 UIII 0.15 **- 🔶 –** Cap#6 0.14 50 100 150 200 Aging Time (Hours)

ESR Increase

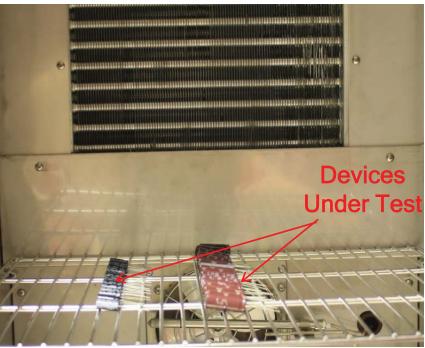


Nyquist Impedance Plots PhD Dissertation Defense - Capacitance Decrease

Thermal Overstress Experiment

- Exposure of the capacitors to temperatures T_{applied} (105 C) ≥ T_{rated} (85 C) results in accelerated aging of the devices
- High temperature on the surface causes heat to flow radially towards the core of the capacitor
- Temperature increase leads to electrolyte evaporation
- Health Threshold Storage condition
 capacitance decreases > 10%)
- Oxide breakdown observed

Thermal Chamber



2200uF,10V,85°C

10,000uF,**15/nai**mC

 T_{RT}

+25°C

Capacitance decrease (> 15 - 17%) Linear decrease till 2800 hrs

PhD Dissertation Defense -----

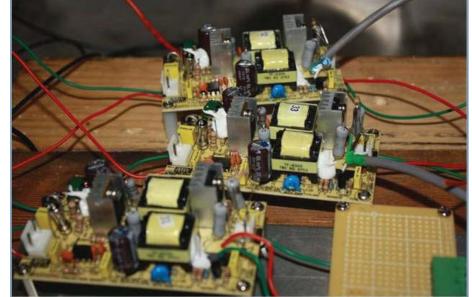
2

105°C - 3400 hrs

+25°C-3400 hrs

Nominal Operation Experiment

- Three sets of DC-DC converters with electrolytic capacitors under test
- Main components include MOSFET's, isolating transformers, PWM controller chip and an electrolytic capacitor
- Characterization of capacitors done at regular time intervals.
 - Voltage source shut down, capacitors discharged
 - Experiment was started with Input DC v conditions intact again till the next (22V) measurement



For this experiment ESR increase (> 103%) and capacitance decrease (> 8%)

RUL and Validation – EOS -Experiment – ESR Degradation Model \mathcal{D}_5



PhD Dissertation Defense -----

55

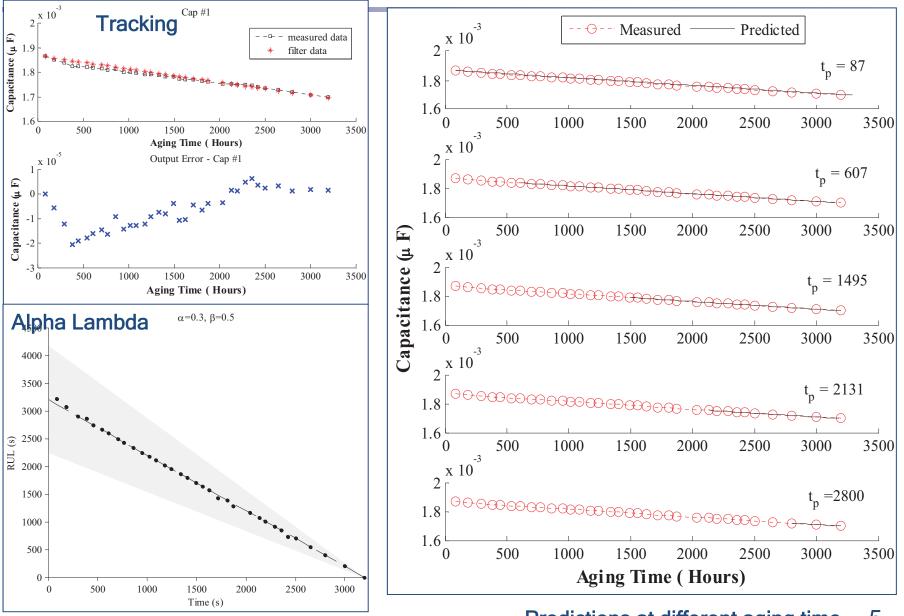
Summary of RUL forecasting results TO

- 2200µF capacitors at 105°C
- Capacitance Degradation Model

 \mathcal{D}_4

Aging	Evporation	Evap. Rate and
Time	Rate (j_{eo})	Oxide Breakdown
	\overline{RA}_{a1}	\overline{RA}_{a2}
2421.92	90.15	94.47
2500	85.71	97.86
2650	78.18	94.76
2800	65.00	95.15
3000	43.18	95.00
\overline{RA}_b	92.32	93.52

RUL and Validation – TOS -Experiment -Capacitance



Predictions at different aging time 5 57

Example 2

Li-lon Batteries

PROGNOSTICS CENTER OF EXCELLENCE

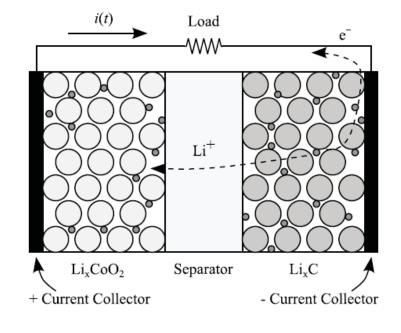
Background

- For Li-ion, a common chemistry
 - positive electrode consisting of lithium cobalt oxide (Li_xCoO2)
 - negative electrode of lithiated carbon (Li_xC).
- Electrolyte enables lithium ions (Li⁺) to diffuse between the positive and negative electrodes.
- Intercalation/charging and deintercalation/discharging process

Background - Discharging

- On connecting to load
 - current flow leads to oxidation reaction $\operatorname{Li}_{x}\operatorname{C} \xrightarrow{\operatorname{discharge}} \operatorname{C} + x\operatorname{Li}^{+} + x\operatorname{e}^{-}$
 - liberation of Li ions and electrons
 - positive electrode the reduction reaction takes place

$$\operatorname{Li}_{1-x}\operatorname{CoO}_2 + x\operatorname{Li}^+ + xe^- \xrightarrow{\operatorname{discharge}} \operatorname{LiCoO}_2$$



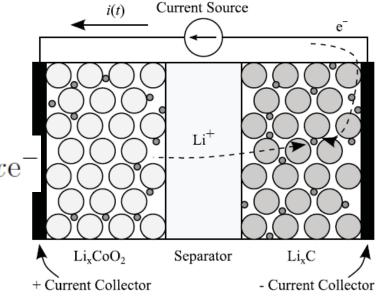
Background - Charging

- During charging
 - active material in the positive electrode (anode) is oxidized and Li ions are deintercalated

 $\text{LiCoO}_2 \xrightarrow{\text{charge}} \text{Li}_{1-x} \text{CoO}_2 + x \text{Li}^+ + x \text{e}^-$

 results in the loss of Li ions and electrons, which can then move to the negative electrode (cathode).

$$C + xLi^+ + xe^- \xrightarrow{\text{charge}} Li_xC$$



Aging Process

- Solid-electrolyte interface (SEI) layer
 - degradation in the negative electrode
 - increase in impedance
- Lithium corrosion
 - degradation with aging
 - decrease in capacity.
- Lithium plating
 - irreversible loss due to plating formation
- Contact Loss
 - SEI layer disconnects from the negative electrode, impedance increase

Problem Formulation

Prognostics goal

- Compute EOL = time point at which component no longer meets specified performance criteria
- Compute RUL = time remaining until EOL
- System model

$$\begin{split} \dot{\mathbf{x}}(t) &= \mathbf{f}(t, \mathbf{x}(t), \boldsymbol{\theta}(t), \mathbf{u}(t), \mathbf{v}(t)) \\ \text{Output} \quad \mathbf{y}(t) &= \mathbf{h}(t, \mathbf{x}(t), \boldsymbol{\theta}(t), \mathbf{u}(t), \mathbf{n}(t)) \end{split} \text{Sensor Noise}$$

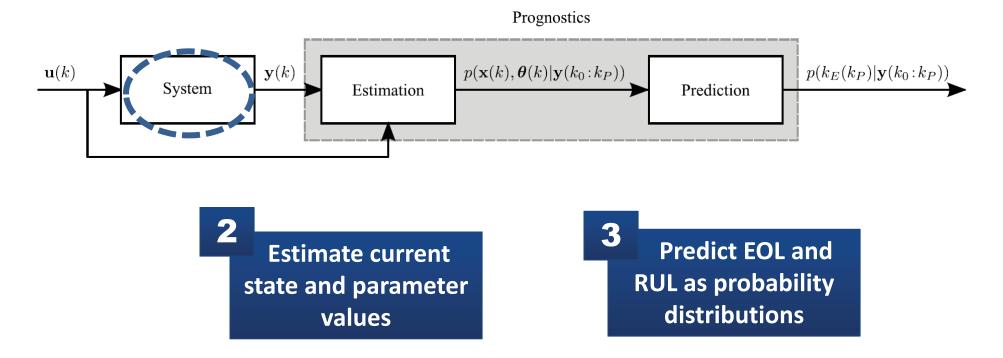
Define threshold that determines if EOL has been reached

 $T_{EOL}(\mathbf{x}(t), \boldsymbol{\theta}(t)) = \begin{cases} 1, & \text{if EOL is reached} \\ 0, & \text{otherwise.} \end{cases}$

• EOL and RUL defined as $EOL(t_P) \triangleq \underset{t \ge t_P}{\text{arg min } T_{EOL}(\mathbf{x}(t), \boldsymbol{\theta}(t)) = 1}$ $RUL(t_P) \triangleq EOL(t_P) - t_P$

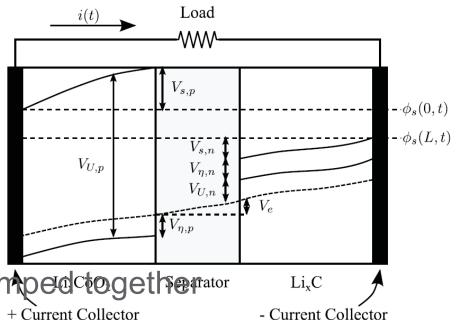
Compute $p(EOL(t_P)|\mathbf{y}_{0:t_P})$ and/or $p(RUL(t_P)|\mathbf{y}_{0:t_P})$

Prognostics Architecture



Battery Modeling

- Overall Battery Voltage
 - potential at positive current collector
 - potential Negative current collector
 - resistance losses
- Equilibrium potential
 - Nernst Equation
- Surface over-potential ^{V(t)}
 - Butler-Volmer
- Solid-phase resistance
 - treated as constant and lumped togetherator



Battery Voltage

where

• The total battery voltage can be given as :

$$V = V_{U,p} - V_{U,n} - V_o - V_{\eta,p} - V_{\eta,n}.$$

Change in voltage levels and transients

$$V = V_{U,p} - V_{U,n} - V'_{o} - V'_{\eta,p} - V'_{u,p}$$

$$\dot{V}'_{o} = (V_{o} - V'_{o})/\tau_{o}$$

$$\dot{V}'_{\eta,p} = (V_{\eta,p} - V'_{\eta,p})/\tau_{\eta,p}$$

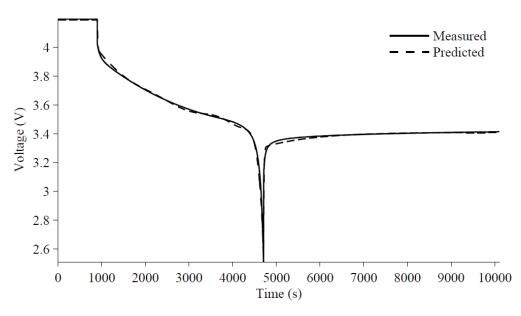
$$\dot{V}'_{\eta,n} = (V_{\eta,n} - V'_{\eta,n})/\tau_{\eta,n}$$

$$\dot{V}'_{u,n} = (V_{\eta,n} - V'_{\eta,n})/\tau_{\eta,n}$$

$$\dot{V}'_{u,n} = (V_{u,n} - V'_{u,n})/\tau_{u,n}$$

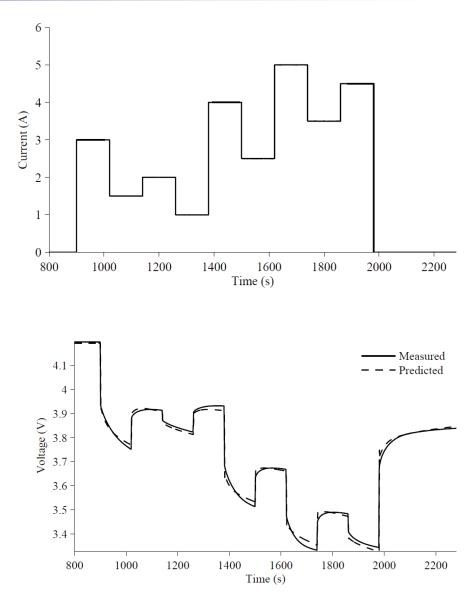
Constant 2A discharge

- Model fits very well
- The accuracy towards the end of discharge is most sensitive to the
 - Redlich-Kister parameters
 - Diffusion constant
 - Volume of surface
 layer



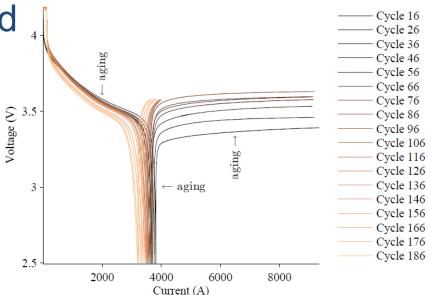
Variable Loading

- Load changes every 2 mins
- Results in corresponding changes in voltage
- Predictions are fairly accurate
- Some errors still present possibly accounted by thermal effects



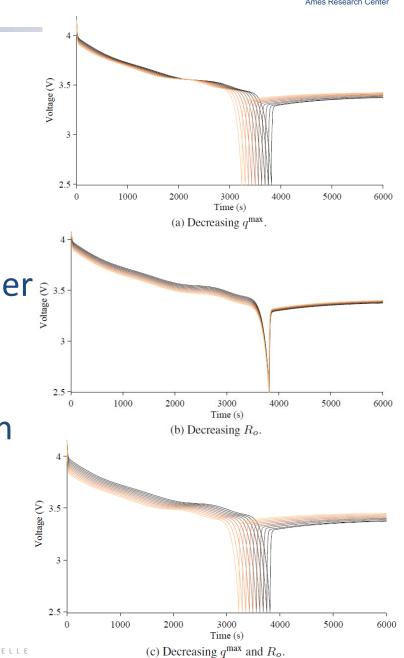
Battery Aging - Experiments

- EOD point moves earlier in time due to diminished capacity.
- Voltage drops down during discharge due to increased resistance
- Steady-state voltage after after discharge increases



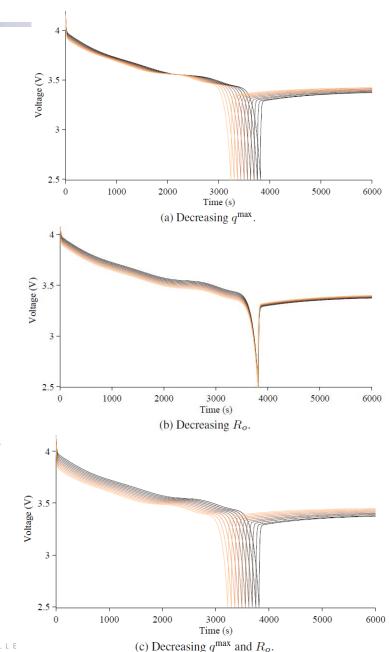
Battery Aging Model

- Total available charge in the battery is represented through q^{max}
- Loss of active material
- Decrease in voltage due to Butler Volmer term
- Increase in internal resistance captured through an increase in the Ro parameter



Battery Aging Model

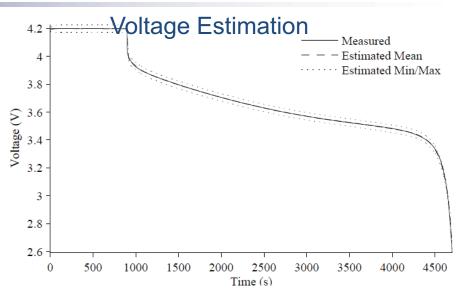
- Dynamics near EOD are dominated mainly by the equilibrium potential contribution with some contribution from the Butler-Volmer dynamics
- combined effects, with qmax decreasing by 1% and Ro increasing by 5% with each new discharge.
- Similar to observed in experimental data

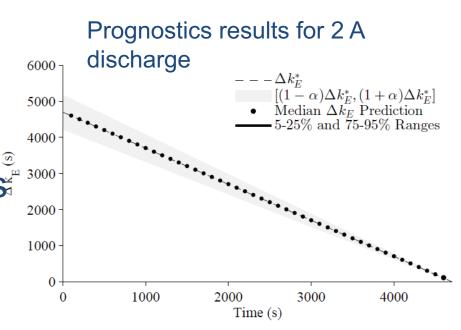


Prognostics Performance

- UKF is used for state estimation
- Each sigma point is simulated forward using the model until EOD is reached
- We assume future loading points
- Model tracks very well under different conditions

PROGNOSTICS CENTE





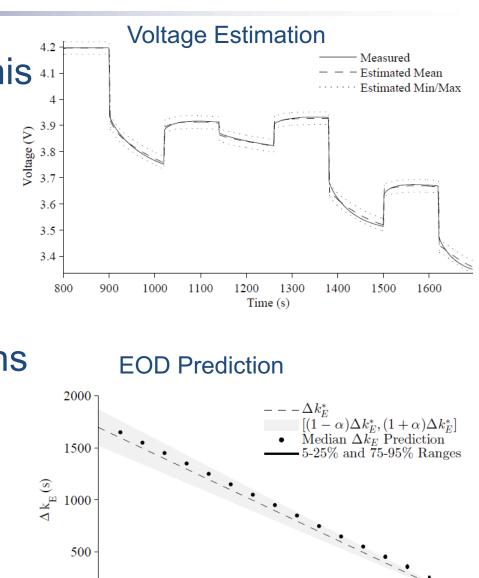
Prognostics Performance

- Each sigma point is simulated forward using the model until EOD is reached
- We assume future loading points are knowr
- Model tracks very well
 under different conditions

i_{app}	PRMSE	RA	$\overline{\text{RMAD}}_{RUL}$
1.0	0.19	92.77	1.07
1.5	0.17	96.02	0.88
2.0	0.17	99.38	0.75
2.5	0.26	97.75	0.82
3.0	0.41	96.08	0.92

Prognostics Performance

- EOD being defined in this 4.1 case as 3:35 V.
- In the open loop, the model slightly overestimates EOD
- Model tracks very well
 under different conditions
- RA averages 88:41%



500

1000

Time (s)

1500

0

PROGNOSTICS CENTER C

0

Conclusions

- Discussed the lumped parameter electrical equivalent models
 - Study the links between the equivalent models and different degradation conditions.
- Stressors leading to degradation in capacitors are electrical and thermal overstress conditions respectively
- Developed appropriate experimental setups,
 - conducted laboratory experiments
 - Simulating capacitors under different operating conditions.
- Development of generalized physics based degradation models for C and ESR
 - Structural and manufacturing data
 - First principles of operation
 - Experimental Data

Discussion

- Electrochemistry based model discussed
- Prognostics results for EOD predictions are accurate
- The model can be applied to battery packs
- Two approaches
- Either each battery modeled individually
- Battery pack lumped to a single cell

Acknowledgements

Member of the Prognostics Center of Excellence (PCoE) at Ames Research Center

Contact: chetan.s.kulkarni@nasa.gov

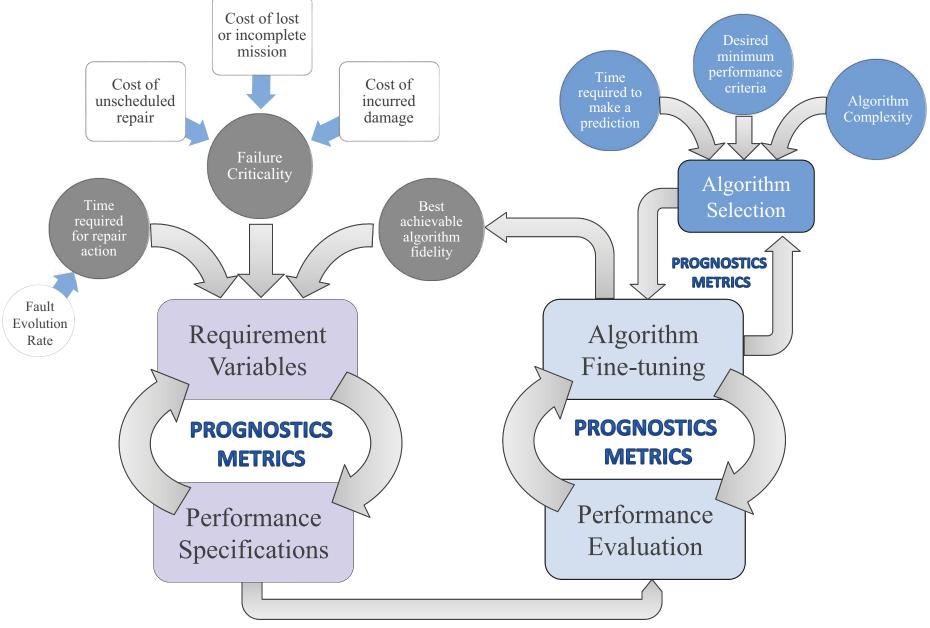
http://prognostics.nasa.gov

THANK YOU !!!

Prognostic Performance Evaluation

Prognostics Metrics

Role of Prognostics Metrics



Prognostic Performance Metrics

- New metrics were proposed specific to prognostics for PHM •
- These metrics were applied to •
 - A combination of different algorithms and different datasets
- Metrics were evaluated and refined
- **Prognostics horizon** •
- α - λ performance •
- **Relative accuracy** •
- Cumulative relative accuracy .

 PH^2

Time

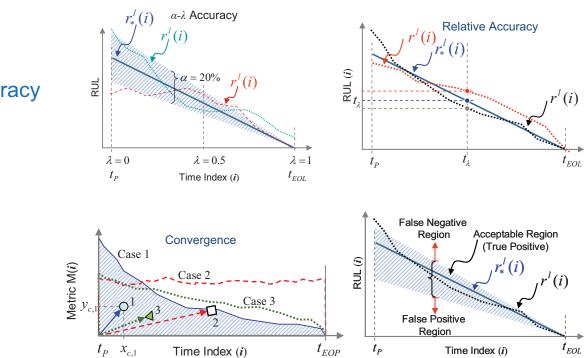
 t_{EOL}

 t_{EOP}

Convergence •

RUL

 $t_D^{+} t_P$



t_P

Time Index (i)

Source: A. Saxena, J. Celava, E. Balaban, K. Goebel, B. Saha, S. Saha, and M. Schwabacher (2008). Metrics for evaluating performance of prognostic techniques. International Conference on Prognostics and Health Management, PHM 2008. 6-9 Oct. 2008 Page(s): 1-17.

Time Index (i)

α*EoL

 $\alpha^* r^*(t_{\lambda})$

EoL

 $r^*(t_1)$

Prognostic Performance Metrics

• Metrics Hierarchy

 Does the algorithm predict within desired accuracy around EoL and sufficiently in advance?

II. α - λ Performance

• Further does the algorithm stay within desired performance levels relative to RUL at a given time?

III. Relative Accuracy

Quantify how well an algorithm does at a given time relative to RUL

IV. Convergence Rate

• If the performance converges (i.e. satisfies above metrics) quantify how fast does it converge

Prognostic Horizon (PH)

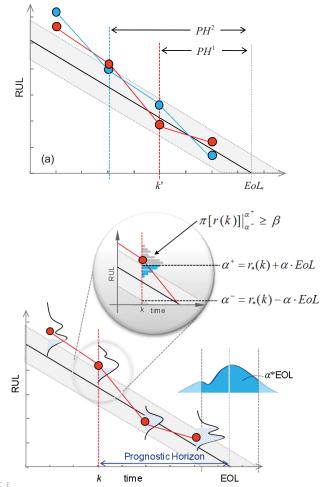
• **Prognostic Horizon** is defined as the difference between the time index *i* when the predictions first meet the specified performance criteria (based on data accumulated until time index *i*) and the time index for End-of-Life (EoL). The performance specification may be specified in terms of allowable error bound (*α*) around true EoL.

$$PH = t_{EoL} - t_{i_{\alpha\beta}}$$

 $i_{\alpha\beta}$ is the first time index when predictions satisfy β -criterion for a given α

 $\min \left\{ k \mid \left(k \in p \right) \land \left(\pi \left[r(k) \right]_{-\alpha}^{+\alpha} \right) \ge \beta \right\}$

- *p* is the set of all time indexes when predictions are made
- l is the index for l^{th} unit under test (UUT)
- β is the minimum acceptable probability mass
- $\pi[r(k)]_{\alpha^{-}}^{\alpha^{+}} \quad \text{is the probability mass of the prediction between } \alpha\text{-bounds} \\ \text{given by } \alpha^{+} = r_{*} + \alpha \cdot t_{EoL} \text{ and } \alpha^{-} = r_{*} \alpha \cdot t_{EoL}$
 - r(k) is the predicted RUL distribution at time t_i
 - $t_{\rm EoL}$ is the predicted End-of-Life

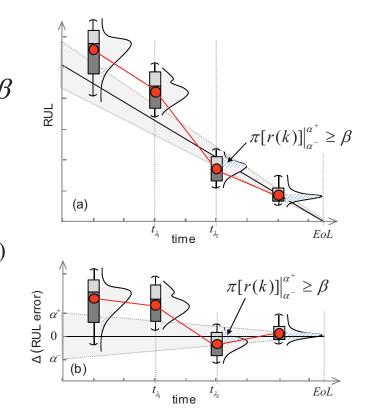


PROGNOSTICS CENTER OF EXCELLENCE

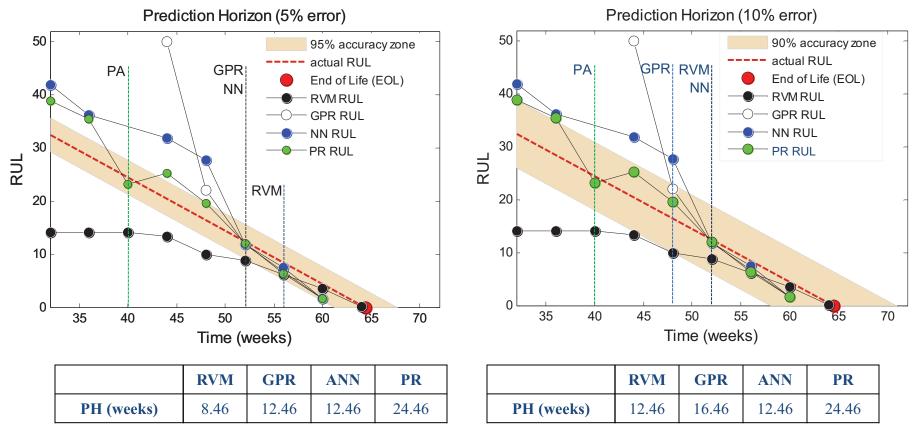
α-λ Accuracy

α-λ Accuracy determines whether at given point in time (specified by λ) prediction accuracy is within desired accuracy levels (specified by α). Desired accuracy levels for ant time *t* are expressed a percentage of true RUL at time *t*.

- $\alpha \lambda Accuracy = \begin{cases} 1 & \text{if } \pi[r(i_{\lambda})]_{-\alpha}^{+\alpha} \ge \beta \\ 0 & \text{otherwise} \end{cases}$
- λ is the time window modifier such that $t_{\lambda} = t_{P} + \lambda (t_{EoL} t_{P})$
- β is the minimum acceptable probability mass
- $r(i_{\lambda})$ is the predicted RUL at time t_{λ}
- $\pi [r(i_{\lambda})]_{\alpha^{-}}^{\alpha^{+}} \text{ is the probability mass of the prediction between } \alpha\text{-bounds}$ given by $\alpha^{+} = r_{*}(i_{\lambda}) + \alpha \cdot r(i_{\lambda}) \text{ and } \alpha^{-} = r_{*}(i_{\lambda}) - \alpha \cdot r(i_{\lambda})$



Comparing Various Algorithms



PR > GPR = ANN > RVM

PR > GPR > ANN = RVM