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Prognostics Center of Excellence
Mission: Advance state-of-the-art in prognostics technology development
• Investigate algorithms for estimation of remaining life 

– Investigate physics-of-failure 
– Model damage initiation and propagation 
– Investigate uncertainty management

• Validate research findings in hardware testbeds
– Hardware-in-the-loop experiments
– Accelerated aging testbeds
– HIL demonstration platforms

• Disseminate research findings
– Public data repository for run-to-failure data
– Actively publish research results

• Engage research community

• Prognostics Center of Excellence, NASA Ames Research Center, CA [http://www.prognostics.nasa.gov]

NASA Ames Research Center, CA
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Today we will discuss…
• What is prognostics?

– It’s relation to health management
– Significance to the decision making process

• How is prognostics used?
– Reliability
– Scheduled maintenance – based on reliability
– Kinds of prognostics – interpretation & applications

• Type I, Type II, and Type III prognostics
• Various application domains 

• Condition based view of Prognostics
• Prognostic Framework
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Also…
• What are the key ingredients for prognostics

– Requirements specifications – Purpose
• Cost-benefit-risk

– Condition Monitoring Data – sensor measurements
• Collect relevant data

– Prognostic algorithm
• Tons of them - examples

– Fault growth model (physics based or model based)
– Run-to-failure data

• Challenges in Validation & Verification
– Performance evaluation
– Uncertainty 

• representation, quantification, propagation, and management
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The Perspective
Prognostics and Health Management
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• Schematic adapted from: A. Saxena, Knowledge-Based Architecture for Integrated Condition Based Maintenance of Engineering Systems, PhD Thesis, Electrical and Computer Engineering, Georgia Institute of 
Technology, Atlanta May 2007.

• Liang Tang, Gregory J. Kacprzynski, Kai Goebel, Johan Reimann, Marcos E. Orchard, Abhinav Saxena, and Bhaskar Saha, Prognostics in the Control Loop, Proceedings of the 2007 AAAI Fall Symposium on 
Artificial Intelligence for Prognostics, November 9-11, 2007, Arlington, VA.
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Data Analysis & Decision Making

• Adapted from presentations and publications from Intelligent Control Systems Lab, Georgia Institute of Technology, Atlanta [http://icsl.gatech.edu/]
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Prognostics
• Dictionary definition – “foretelling” or “prophecy”

• PHM definition –
“Estimation of remaining life of a component or subsystem”

• Prognostics evaluates the current health of a component and, 
conditional on future load and environmental exposure, estimates at 
what time the component (or subsystem) will no longer operate within 
its stated specifications. 

• These predictions are based on 
– Analysis of failure modes (FMECA, FMEA, etc.) 
– Detection of early signs of wear, aging, and fault conditions and an assessment of 

current damage state
– Correlation of aging symptoms with a description of how the damage is expected 

to increase (“damage propagation model”)
– Effects of operating conditions and loads on the system

• Prognostics Center of Excellence, NASA Ames Research Center, CA [http://www.prognostics.nasa.gov]
• Prognostics [http://en.wikipedia.org/wiki/Prognostics]
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Maintenance Management ViewContingency Management View

Goals for Prognostics 

• Prognostics goals should be defined from users’ perspectives
• Different solutions and approaches apply for different users

Increase Safety 
and Mission 
Reliability

Increase Safety 
and Mission 
Reliability

Improved mission 
planning

Ability to reassess 
mission feasibility

Decrease 
Collateral Damage

Decrease 
Collateral Damage

Avoid cascading 
effects onto healthy 

subsystems

Maintain consumer 
confidence, 

product reputation

Decrease 
Logistics Costs

Decrease 
Logistics Costs

More efficient 
maintenance 

planning

Reduced spares

Decrease 
Unnecessary 

Servicing

Decrease 
Unnecessary 

Servicing

Service only 
specific aircraft 

which need 
servicing

Service only when 
it is needed

What does prognostics aim to achieve?
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User Centric View on Prognostics Goals
Category End User Goals Metrics

Operations

Program 
Manager

Assess the economic viability of 
prognosis technology for specific 
applications before it can be approved 
and funded

Cost-benefit type metrics that translate prognostics 
performance in terms of tangible and intangible 
cost savings

Plant 
Manager

Resource allocation and mission 
planning based on available 
prognostic information

Accuracy and precision based metrics that 
compute RUL estimates for specific UUTs. Such 
predictions are based on degradation or damage 
accumulation models

Operator
Take appropriate action and carry out 
re-planning in the event of 
contingency during mission

Accuracy and precision based metrics that 
compute RUL estimates for specific UUTs. These 
predictions are based on fault growth models for 
critical failures

Maintainer
Plan maintenance in advance to 
reduce UUT downtime and maximize 
availability

Accuracy and precision based metrics that 
compute RUL estimates based on damage 
accumulation models

Engineering
Designer

Implement the prognostic system 
within the constraints of user 
specifications. Improve performance 
by modifying design

Reliability based metrics to evaluate a design and 
identify performance bottlenecks. Computational 
performance  metrics to meet resource constraints

Researcher
Develop and implement robust 
performance assessment algorithms 
with desired confidence levels

Accuracy and precision based metrics that employ 
uncertainty management and output probabilistic 
predictions in presence of uncertain conditions

Regulatory Policy Makers
To assess potential hazards (safety, 
economic, and social) and establish 
policies to minimize their effects

Cost-benefit-risk measures, accuracy and precision 
based measures to establish guidelines & timelines 
for phasing out of aging fleet and/or resource 
allocation for future projects• Saxena, A., Celaya, J., Saha, B., Saha, S., Goebel, K., “Metrics for Offline Evaluation of Prognostics Performance”, International Journal of Prognostics and Health Management (IJPHM), vol.1(1) 2010

• Wheeler, K. R., Kurtoglu, T., & Poll, S. (2009). A Survey of Health Management User Objectives Related to Diagnostic and Prognostic Metrics. ASME 2009 International Design Engineering Technical 
Conferences and Computers and Information in Engineering Conference (IDETC/CIE), San Diego, CA
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Prognostics Categories
• Type I: Reliability Data-based 

– Use population based statistical model
– These methods consider historical time to failure data which are used to model 

the failure distribution. They estimate the life of a typical component under
nominal usage conditions

– Example: Weibull Analysis

• Type II: Stress-based
– Use population based fault growth model – learnt from accumulated knowledge
– These methods also consider the environmental stresses (temperature, load, 

vibration, etc.) on the component. They estimate the life of an average 
component under specific usage conditions

– Example: Proportional Hazards Model

• Type III: Condition-based
– Individual component based data-driven model
– These methods also consider the measured or inferred component  degradation. 

They estimate the life of a specific component under specific usage and 
degradation conditions

– Example: Cumulative Damage Model, Filtering and State Estimation
• For more details please refer to last year’s PHM09 tutorial on Prognostics by Dr. J. W. Hines: [http://www.phmsociety.org/events/conference/phm/09/tutorials]
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Forecasting Applications

Predictions

Event predictions Decay predictions

History data No/Little history data

Nominal data Nominal & failure data

RUL Prediction Trajectory Prediction

Statistics can be applied Model-based + Data-driven

Medicine
Mechanical systems

Electronics
Aerospace

Aerospace, Nuclear

Discrete predictions Continuous predictions

Weather, Finance

Quantitative Qualitative

Predict values Predict trends 
Increase/decrease

Economics, Supply Chain

• Saxena, A., Celaya, J., Saha, B., Saha, S., Goebel, K., “Metrics for Offline Evaluation of Prognostics Performance”, International Journal of Prognostics and Health Management (IJPHM), vol.1(1) 2010. 
• Saxena, A., Celaya, J., Balaban, E., Goebel, K., Saha, B., Saha, S., and Schwabacher, M., “Metrics for Evaluating Performance of Prognostics Techniques”, 1st International Conference on 

Prognostics and Health Management (PHM08), Denver CO, pp. 1-17, Oct 2008.

End-of-Life predictions Future behavior predictions

A prediction threshold exists
Use monotonic decay models

Non-monotonic models
No thresholds



P R O G N O S T I C S � C E N T E R � O F � E X C E L L E N C E

Ames Research Center

Understanding the Prognostic Process
Predicting Remaining Useful Life
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Prognostics Framework
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somewhat 

conservatively for 
most applications
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Critical Fault 
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EoL adjusted 
accordingly

Decision Risk
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how late is too late?
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tPtD

Prognostics Framework
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No Ground Truth
Ground truth measurements 
are hard to come by

Noisy Data
Measurement noise leads 
to more uncertainty!

Decision Risk
How soon is too soon and 
how late is too late?

Model Uncertainty
Which model to trust? No 
Model is perfect !

We hardly have access to ground truth

Instead we have measurements, appropriate features of which may correlate 
to damage. such data are usually noisy!

We use these data to learn the model, which may be noisy

Noise may have a significant effect on the learnt model…
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Uncertainties in Prognostics
• Uncertainties arise from a variety of sources

– Modeling uncertainties – Epistemic
• Numerical errors
• Unmodeled phenomenon
• System model & Fault propagation model

– Input data uncertainties – Aleatoric
• Initial state (damage) estimate
• Variability in the material
• Manufacturing variability

– Measurement uncertainties – Prejudicial
• Sensor noise
• Sensor coverage
• Loss of information during preprocessing 
• Approximations and simplifications

– Operating environment uncertainties – Combination
• Unforeseen future loads
• Unforeseen future environments
• Variability in the usage history data

Unknown level of 
uncertainties arising due 

lack of knowledge or 
information

Unknown level of 
uncertainties arising due 

to the way data are 
collected or processed

Inherent statistical 
variability in the process 

that may be characterized 
by experiments



P R O G N O S T I C S � C E N T E R � O F � E X C E L L E N C E

Ames Research Center

18

Prognostics Framework
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Decision 
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Make decisions based on 
risks estimated from 
probability of failure (PoF)

These uncertainties can be represented as a probability distribution on the initial state. 
Probability distribution need not be Normal “always”.

we can propagate the learnt model along with a confidence bound until the Failure Threshold is reached

Compute the total 
probability of failure for a 
given decision pint

� is large…
May be too risky??

Probability distribution 
for EoL given a failure 

threshold (pEoL)
HORIZONTLE SLICE
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� is larger…
How about the risk??
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Prognostics Framework
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Prognostics Framework

Time (t)

Fa
ul

t D
im

en
si

on
 (a

)

t0 EoL

We can figure out if the system would withstand by the time mission is completed

t2t1 t3

Probability�distribution�
for�damage�size�at�any�
given�point�� pâ(a)
VERTICLE�SLICE

Damage size pdf at a 
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(usage) profile
Answers how risky it is to 
go on a mission of known 
duration?

Failure Threshold (aFT)

Probability of damage 
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Prognostics Framework
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Application Examples

• Electro-Mechanical Actuators
• Electrochemical Storage
• Electronics
• Valves, Pumps
• Composite Materials
• Solid Rocket Motor Casing
• Rover
• UAV
• Distributed Health Management
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Prognostics Modeling
Setting up the Problem
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Data-Driven Prognostic Methods
Primarily use data obtained from the system for predicting failures
• What kind of data?

– Something that indicates a fault and fault growth or is expected to influence fault 
growth

• Sensor measurement to assess system state
• Sensor measurements and communication logs to identify operational modes and operational 

environment

– Process data to extract features that “clearly” indicate fault growth
• Preferably monotonically changing since faults are expected to grow monotonically

– Predictions can be made in many ways
• Use raw measurement data to map onto RULs
• Use processed data to trend in feature domain, health index domain, or fault dimension domain against 

a set threshold

• How?
– Learn a mathematical model to fit changing observations

• Regression or trending 
• Learnt model may not be transparent to our understanding but explains observed data

– Use statistics if volumes of run-to-failure data is available
• Map remaining useful life to various faulty states of the system
• Reliability type RUL estimates
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• Operational conditions
– Indicate level of stress on the system

• Ground truth measurements
– Ground truth measurements are less frequent
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Example - Data-Driven Prognostics Model
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Example - Data-Driven Prognostics Model

• Sensor Measurements
– Features are extracted form sensor data
– Depending on what is measured 

features will have noise w.r.t. damage 
growth

– All run-to-failure units follow their own 
track
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Approach
• Learning/training

– Learn a mapping (M1) between 
features and the damage state

– Learn a mapping (M2) between 
operational conditions and 
damage growth rate

• Prediction
– At any given time use M1 & 

latest measurements to estimate 
damage state

– Assuming a future load profile (if 
unknown) estimate damage 
accumulation for all future 
instants using M2

• Goebel, K., Saha, B., and Saxena, A., “A Comparison of Three Data-Driven Techniques for Prognostics”, Proceedings of the 62nd Meeting of the Society For Machinery Failure Prevention Technology 
(MFPT), pp. 119-131, Virginia Beach VA, May 2008



P R O G N O S T I C S � C E N T E R � O F � E X C E L L E N C E

Ames Research Center

29

Data-Driven Prognostic Methods
• Advantages

– Relatively Simple to implement and faster 
• Variety of generic data-mining and machine learning techniques are available

– Helps gain understanding of physical behaviors from large amounts of data
• These represent facts about what actually happened all of which may not be apparent from theory

• Disadvantages
– Physical cause-effect relationships are not utilized

• E.g. different fault growth regimes, effects of overloads or changing environmental conditions

– Difficult to balance between generalization and learning specific trends in data
• Learning what happened to several units on average may not be good enough to predict for a specific 

unit under test

– Requires large amounts of data
• We never know if we have enough data or even how much is enough

• Examples
– Regression 
– Neural Networks (NN)

• RNN, ARNN, RNF
– Gaussian process regression (GPR)
– Bayesian updates
– Relevance vector machines (RVM)
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Physics-Based Models for Prognostics
Use fault propagation models to estimate time of failure
• What kind of models?

– A model that explains the failure mode of interest
– A model that maps the effects of stressors onto accumulation of damage –

Physics of failure driven
• e.g. fatigue cycling increases the crack length, or continuous usage reduces the battery capacity over a 

long term can be modeled in a variety of ways
• Finite Element Models
• Empirical models
• High fidelity simulation models, etc.

– Modeled cause-effect phenomenon may be directly observable as a fault or not
• Structural cracks are observable faults
• Internal resistance changes in a battery causing capacity decay are not directly observable

• How?
– Given the current state of the system simulate future states using the model

• Recursive one step ahead prediction to obtain k-steps ahead prediction

– Propagate fault until a predefined threshold is met to declare failure and compute 
RUL
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Physics-Based Models for Prognostics
• Advantages

– Prediction results are intuitive based on modeled case-effect relationships
• Any deviations may indicate the need to add more fidelity for unmodeled effects or methods to handle 

noise

– Once a model is established, only calibration may be needed for different cases
– Clearly drives sensing requirements

• Based on model inputs, its easy to determine what needs to be monitored

• Disadvantages
– Developing models is not trivial

• Requires assumptions regarding complete knowledge of the physical processes
• Parameter tuning may still require expert knowledge or learning from field data

– High fidelity models may be computationally expensive to run, i.e. impractical for 
real-time applications

• Examples
– Population growth models like Arrhenius, Paris, Eyring, etc.
– Coffin-Manson Mechanical crack growth model

• Engineering Statistics Handbook [http://www.itl.nist.gov/div898/handbook/apr/section1/apr15.htm]



P R O G N O S T I C S � C E N T E R � O F � E X C E L L E N C E

Ames Research Center

32

Hybrid Approaches
Use knowledge about the physical process and information from 
observed data together

• How?
– Learn/fine-tune parameters in the model to fit data
– Use model to make prediction and make adjustment based on observed 

data
– Learn current damage state from data and propagate using model
– Use knowledge about the physical behavior to guide learning process 

from the data
• Improve initialization parameters for learning
• Decide on the form for a regression model

– Use understanding from data analysis to develop models
• Discover the form of the fault growth model

– Fuse estimates from two different approaches 
– or any other creative way you can think of…
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Example1 – Physics Model Tuned with Data

• Objective: Predict when Li-ion battery voltage will dip below 2.7 volts
• Hybrid approach using Particle Filter

– Model non-linear electro-chemical phenomena that explain the discharge process
– Learn model parameters from training data 
– Let the PF framework fine tune the model during the tracking phase
– Use the tuned model to predict EOD
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Predicting Battery Discharge – Short Term

• Data Source: NASA PCoE Data Repository [http://ti.arc.nasa.gov/tech/dash/pcoe/prognostic-data-repository/]
• B. Saha, K. Goebel, Modeling Li-ion Battery Capacity Depletion in a Particle Filtering Framework, Proceedings of Annual Conference of the PHM Society 2009
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Example2 – Develop Empirical Model from Data
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Example2 – Data-driven Regression
• Use a regression algorithm to make predictions

– Gaussian Process Regression
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Hybrid Approaches
• Advantages

– Does not necessarily require high fidelity models or large 
volumes of data – works in a complementary fashion

– Retains intuitiveness of a model but explains observed data
– Helps in uncertainty management
– Flexibility

• Disadvantages
– Needs both data and the models
– An incorrect model or noisy data may bias each other’s 

approach
Otherwise, it’s a compromise to get the best out of both so any 
disadvantage may be alleviated

• Examples
– Particle Filters, Kalman Filters, etc.
– or any clever combination of different approaches…
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Electrolytic Capacitors
Example 1
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Research Approach
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Capacitor Degradation Model
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highly etched 
aluminum foil

anode

dielectric Layer

Al2O3 –
electrochemical 

oxide 
layer(forming)

electrolyte paper 
(spacer) Al2O3 – oxide 

layer(natural)

etched aluminum 
foil

electrolyte

cathode

leakage current

• An aluminum electrolytic capacitor, consists of 
– Cathode aluminum foil, 
– Electrolytic paper, electrolyte
– Aluminum oxide layer on the anode foil surface, which acts as 

the dielectric.
– Equivalent series resistance (ESR) and capacitance(C) are 

electrical parameters that define capacitor health

Capacitor Structure

Physical Structure Internal Structure
Ref 
:http://en.wikipedia.org/wiki/File:ElectrolyticCapacitorDisassembled.jp
g Open Structure
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Degradation Mechanisms

PhD Dissertation Defense -
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• Conditions under investigation 
– Nominal Degradation
– Electrical Over Stress 
– Thermal Over Stress 

• Characterization of capacitors at regular 
intervals 

• Impedance measurement instrument used to 
characterize the capacitors.

• ESR and Capacitance values are computed 
using a system identification tool.

4
2

Experimental Setups

PhD Dissertation Defense -
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Accelerated Aging Studies 

• Under normal operating conditions 
– Device lasts for several years 
– Process of condition based monitoring becomes 

difficult 
• Advantage of accelerated stressors

– We can run the component to failure
– Allows for the understanding of the effects of failure 

mechanisms, 
– Identification of leading indicators of failure 
– The development of physics-based degradation 

models and RUL prediction

4
3PhD Dissertation Defense -
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Accelerated Electrical Aging

PhD Dissertation Defense -
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• Decrease in electrolyte volume :

• Capacitance (C) ): Physics-Based Model:

• Electrolyte evaporation dominant degradation phenomenon
– First principles: Capacitance degradation as a function of electrolyte loss 

4

Capacitance Degradation Model

PhD Dissertation Defense -

(1)

(2)

(3)
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• Oxide breakdown observed - experimental data 
• The breakdown factor is exp. function of electrolyte evaporation 

Cbk(t) = exp f(Veo – Ve(t))

• Updated in capacitance degradation model :

4
6

Capacitance Degradation Model

PhD Dissertation Defense -
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Dynamic Model of Capacitance

PhD Dissertation Defense -

(4)

(5)
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Dynamic Model of Capacitance

PhD Dissertation Defense -

(6)

(7)
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• Decrease in electrolyte volume :

• ESR
– Based on mechanical structure and electrochemistry.
– With changes in RE (electrolyte resistance )

4
9

Dynamic Model of ESR

PhD Dissertation Defense -

(8)
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• Electrolytic capacitors of 2200μF, 
10V, 1A and at 85�C

• Stress voltages 
– 120% , 150% of rated voltage

• Under Electrical Overstress 
– Capacitance Health Threshold – 20%
– ESR Health Threshold – 250 – 280%

• Charging / discharging cycle – 15V

5
0

Electrical Overstress Experiment

PhD Dissertation Defense -

For this experiment ESR ( > 55% ) 
and capacitance decrease  ( > 22-

24%)
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• EOS Experiments : 
• 3 Capacitors failed due to vent 

opening.
• Pressure increase in other 

devices observed. 

5
1

Electrical Overstress Experiment

PhD Dissertation Defense -

Increase in pressure

Opening of the pressure vent
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2

Electrical Overstress Degradation Data 

PhD Dissertation Defense -
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• Devices were characterized at 
regular intervals.

• Impedance data shows 
degradation in C and ESR with 
aging 

• C and ESR values were computed 
from the impedance data 

Aging
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3

Thermal Overstress Experiment

• Exposure of the capacitors to 
temperatures Tapplied (105 C) � Trated

(85 C) results in accelerated aging 
of the devices 

• High temperature on the surface 
causes heat to flow radially towards 
the core of the capacitor 

• Temperature increase leads to 
electrolyte evaporation 

• Health Threshold Storage condition 
- capacitance decreases > 10%)

• Oxide breakdown observed

PhD Dissertation Defense -

Capacitor  Set Capacitance Value TOS condition

1 2200uF,10V, 85�C 105�C – 3400 hrs

2 10,000uF,10V, 85�C 105�C – 3400 hrs

Thermal Chamber

Devices 
Under Test

Capacitance decrease  ( > 15 - 17%)
Linear decrease till 2800 hrs
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• Three sets of DC-DC converters 
with electrolytic capacitors under 
test

• Main components include 
MOSFET's, isolating 
transformers, PWM controller 
chip and an electrolytic
capacitor

• Characterization of capacitors 
done at regular time intervals.
– Voltage source shut down, 

capacitors discharged
– Experiment was started with 

conditions intact again till the next 
measurement

5
4

Nominal Operation Experiment

PhD Dissertation Defense -

For this experiment ESR increase ( > 103% ) and 
capacitance decrease  ( > 8%)
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Aging Time (Hours)
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RUL and Validation – EOS -Experiment 
– ESR Degradation Model  

PhD Dissertation Defense -
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• 2200μF capacitors at 105�C
• Capacitance Degradation Model     

5
6

Summary of RUL forecasting results TOS 
Experiments

PhD Dissertation Defense -
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Li-Ion Batteries
Example 2
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• For Li-ion, a common chemistry 
– positive electrode consisting of lithium cobalt oxide 

(LixCoO2)
– negative electrode of lithiated carbon (LixC).

• Electrolyte enables lithium ions (Li+) to diffuse 
between the positive and negative electrodes.

• Intercalation/charging  and 
deintercalation/discharging process

5
9

Background
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• On�connecting�to�load
• current�flow�leads�to�
oxidation�reaction

• liberation�of�Li�ions�and�
electrons

• positive�electrode�the�
reduction�reaction�takes�
place

Background - Discharging



P R O G N O S T I C S � C E N T E R � O F � E X C E L L E N C E

Ames Research Center

61

• During�charging
• active�material�in�the�
positive�electrode�(anode)�is�
oxidized�and�Li�ions�are�de�
intercalated

• results�in�the�loss�of�Li�ions�
and�electrons,�which�can�
then�move�to�the�negative�
electrode�(cathode).

Background - Charging
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Aging Process
• Solid-electrolyte interface (SEI) layer

– degradation in the negative electrode 
– increase in impedance

• Lithium corrosion
– degradation with aging
– decrease in capacity.

• Lithium plating
– irreversible loss due to plating formation

• Contact Loss
– SEI layer disconnects from the negative electrode, 

impedance increase
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Problem Formulation

• Prognostics goal
– Compute EOL = time point at which component no longer meets 

specified performance criteria
– Compute RUL = time remaining until EOL

• System model

• Define threshold that determines if EOL has been reached

• EOL and RUL defined as

2/13/2014 Prognostics Center of Excellence 63

Compute������������������������������������and/or

StateState InputInput Process NoiseProcess Noise

OutputOutput Sensor NoiseSensor Noise

ParametersParameters
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Prognostics Architecture

2/13/2014 Prognostics Center of Excellence 64

System�receives�
inputs,�produces�

outputs

Estimate�current�
state�and�parameter�

values

Predict�EOL�and�
RUL�as�probability�

distributions

1

2 3
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Battery Modeling
• Overall Battery Voltage

– potential at positive current collector
– potential Negative current collector
– resistance losses

• Equilibrium potential
– Nernst Equation

• Surface over-potential
– Butler-Volmer

• Solid-phase resistance
– treated as constant and lumped together
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Battery Voltage
• The total battery voltage can be given as :

• Change in voltage levels and transients 
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Constant 2A discharge

• Model fits very well

• The accuracy towards the end of discharge is most 
sensitive to the 
– Redlich-Kister parameters
– Diffusion constant
– Volume of surface 

layer
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Variable Loading

• Load changes every 2 
mins

• Results in 
corresponding changes 
in voltage

• Predictions are fairly 
accurate

• Some errors still present  
possibly accounted by 
thermal effects
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Battery Aging - Experiments  

• EOD point moves earlier in 
time due to diminished 
capacity.

• Voltage drops down during 
discharge due to increased 
resistance

• Steady-state voltage after 
discharge increases
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• Total�available�charge�in�the�
battery�is�represented�through�
qmax

• Loss��of�active�material
• Decrease�in�voltage�due�to�Butler�
Volmer term

• Increase�in�internal�resistance�
captured�through�an�increase�in�
the�Ro�parameter�

Battery Aging Model 
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• Dynamics�near�EOD�are�
dominated�mainly�by�the�
equilibrium�potential�
contribution�with�some�
contribution�from�the�Butler�
Volmer dynamics

• combined�effects,�with�qmax�
decreasing�by�1%�and�Ro�
increasing�by�5%�with�each�new�
discharge.

• Similar�to�observed�in�
experimental�data

Battery Aging Model 
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Prognostics Performance

• UKF is used for state 
estimation

• Each sigma point is 
simulated forward using 
the model until EOD is 
reached

• We assume future 
loading points

• Model tracks very well 
under different conditions

Voltage Estimation

Prognostics results for 2 A 
discharge
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Prognostics Performance

• Each sigma point is 
simulated forward using 
the model until EOD is 
reached

• We assume future 
loading points are known

• Model tracks very well 
under different conditions
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Prognostics Performance

• EOD being defined in this 
case as 3:35 V. 

• In the open loop, the 
model slightly 
overestimates EOD 

• Model tracks very well 
under different conditions

• RA averages 88:41%

Voltage Estimation

EOD Prediction
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Conclusions
• Discussed the lumped parameter electrical equivalent 

models
– Study the links between the equivalent models and different 

degradation conditions.

• Stressors leading to degradation in capacitors are 
electrical and thermal overstress conditions respectively

• Developed appropriate experimental setups,
– conducted laboratory experiments 
– Simulating  capacitors under different operating conditions.

• Development of  generalized physics based degradation 
models for C and ESR
– Structural and manufacturing data
– First principles of operation 
– Experimental Data
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• Electrochemistry based model discussed
• Prognostics results for EOD predictions are 

accurate
• The model can be applied to battery packs 
• Two approaches 
• Either each battery modeled individually
• Battery pack lumped to a single cell

Discussion
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THANK YOU !!!

Contact: 
chetan.s.kulkarni@nasa.gov
http://prognostics.nasa.gov
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Prognostics Metrics
Prognostic Performance Evaluation
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Performance 
Evaluation

Algorithm 
Fine-tuning

Failure 
Criticality

Cost of 
unscheduled 

repair

Cost of lost 
or incomplete 

mission

Cost of 
incurred 
damage

Time 
required 
for repair 

action

Best 
achievable 
algorithm 
fidelity

Requirement 
Variables

Performance 
Specifications

Fault 
Evolution 

Rate

Role of Prognostics Metrics

Algorithm 
Selection

Time 
required to 

make a 
prediction

Desired 
minimum 

performance 
criteria

Algorithm 
Complexity



P R O G N O S T I C S � C E N T E R � O F � E X C E L L E N C E

Ames Research Center

80

Prognostic Performance Metrics

• Prognostics horizon
• �-� performance
• Relative accuracy
• Cumulative relative accuracy
• Convergence

• New metrics were proposed specific to prognostics for PHM
• These metrics were applied to 

• A combination of different algorithms and different datasets
• Metrics were evaluated and refined
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Prognostic Performance Metrics
• Metrics Hierarchy

I. Prognostic Horizon
• Does the algorithm predict within desired accuracy around EoL and sufficiently in 

advance?

I. Prognostic Horizon
• Does the algorithm predict within desired accuracy around EoL and sufficiently in 

advance?

II. �-� Performance
• Further does the algorithm stay within desired performance levels relative to RUL at a 

given time?

II. �-� Performance
• Further does the algorithm stay within desired performance levels relative to RUL at a 

given time?

III. Relative Accuracy
• Quantify how well an algorithm does at a 

given time relative to RUL

III. Relative Accuracy
• Quantify how well an algorithm does at a 

given time relative to RUL

IV. Convergence Rate
• If the performance converges (i.e. satisfies above 

metrics) quantify how fast does it converge

IV. Convergence Rate
• If the performance converges (i.e. satisfies above 

metrics) quantify how fast does it converge

EoL

�*EoL

r*(t�)

�*r*(t�)
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Prognostic Horizon (PH)
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p is the set of all time indexes when predictions are made
l is the index for lth unit under test (UUT)
� is the minimum acceptable probability mass

��i is the first time index when predictions satisfy �-criterion 
for a given �

r(k)    is the predicted RUL distribution at time tj

is the probability mass of the prediction between �-bounds 
given by 

tEoL is the predicted End-of-Life 

(a)

1PH

*EoL'k

R
U

L

2PH

• Prognostic Horizon is defined as the difference between the time index i when the 
predictions first meet the specified performance criteria (based on data accumulated 
until time index i) and the time index for End-of-Life (EoL). The performance 
specification may be specified in terms of allowable error bound (�) around true EoL.

The range of PH is between (tEoL-tP) and max[0, tEoL-tEoP]
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�-� Accuracy
• �-� Accuracy determines whether at given point in time (specified by �) prediction 

accuracy is within desired accuracy levels (specified by �). Desired accuracy levels 
for ant time t are expressed a percentage of true RUL at time t.
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� is the time window modifier such that
� is the minimum acceptable probability mass

 ��ir is the predicted RUL at time t�

is the probability mass of the prediction between �-bounds 
given by 

)( PEoLP tttt 	�� ��
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Comparing Various Algorithms
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90% accuracy zone
actual RUL
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RVM GPR ANN PR

PH (weeks) 8.46 12.46 12.46 24.46

RVM GPR ANN PR

PH (weeks) 12.46 16.46 12.46 24.46

PR > GPR = ANN > RVM PR > GPR > ANN = RVM


