



# Portable Load Measurement Device for use during ARED Exercise on ISS A. Hanson<sup>1</sup>, B. Peters<sup>1</sup>, E. Caldwell<sup>1</sup>, J. Sinka<sup>1</sup>, G. Kreutzburg<sup>2</sup>, L. Ploutz-Snyder<sup>3</sup> <sup>1</sup>Wyle Science Technology & Engineering Group, <sup>2</sup>National Space Biomedical Research Institute Summer Student,

<sup>3</sup>Universities Space Research Association. Contact: andrea.m.hanson@nasa.gov



and muscle loss during long duration space missions.



Figure 1: ARED

- ARED instrumentation system was designed to measure and record exercise load data, but:
  - Reliably accurate data has not been available due to a defective force platform.
  - No ARED data has been recorded since mid-2011 due to failures in the instrumentation power system.
- ARED load data supports on-going HRP funded research, and is available to extramural researchers through LSDA-Repository.
- Astronaut Strength, Conditioning, and Rehabilitation specialists (ASCRs) use ARED data to track training progress and advance exercise prescriptions.
- ARED load data is necessary to fulfill medical requirements.
- HRP directed task intends to reduce to program risk (HRP IRMA Risk 1735), and evaluate the XSENS ForceShoe<sup>™</sup> as a means of obtaining ARED load data during exercise sessions.

- compare to ForceShoe<sup>™</sup> measurements.
- Custom LabVIEW software developed to record data.
- Body weight + 45, 90, and 135 lb measured on a force plate and compared to ForceShoe<sup>™</sup> load measures.



Figure 3: Parabolic Flight Test of XSENS ForceShoe™ A: Support console and test stand with static load force application device. B: Operator hovering over the support console and data acquisition system.

C:Operator standing in the ForceShoes<sup>™</sup> wearing the harness/bungee system.

## Results

Table 2: Results of static load measurements in ForceShoe<sup>™</sup> vs X-Y test stand, in flight and ground for measurements made from 40-200 lb.

| X-Y Test Stand Load                  | Flight        |                | Ground        |                |
|--------------------------------------|---------------|----------------|---------------|----------------|
|                                      | mean (±SD)    | spread         | mean (±SD)    | spread         |
| Average % of Target<br>(Fz, ±SD)     | 91.8% (±1.5)  | 90.4 - 94.4%   | 102.8% (±0.9) | 100.2 - 104.3% |
| Average % of Target<br>(Fx,y,z, ±SD) | 105.0% (±1.8) | 102.4 - 107.8% | 104.5% (±1.2) | 102.6 - 107.7% |
|                                      | N=6           |                | N=51          |                |

Table 3: Results of static load measurements made while subject was wearing the ForceShoes<sup>™</sup> and



Figure 4A: Concept of test protocol for T2 measurement. Figure 4B: Concept of test protocol for ARED measurement.

- Subjects (n=4)will perform 1 T2 session (Fig. 4A) and 4 ARED sessions (Fig. 4B).
- A number of static load measures will be collected on the T2 by adding/subtracting spacers to the bungee assembly decrease/increase the pull down load.
- During ARED sessions static and dynamic activity will be performed during squat, deadlift and bicep curl.
  - A series of static loads will be collected in increments of 25 lb, from 0-500 lb.
- Transition to operational use will be assessed upon completion of the in-flight hardware demo.

### **Other PLMDs**

Additional PLMDs are under evaluation in the ExPC lab, as described in Fig. 5.

- The XSENS ForceShoes<sup>™</sup> will fly as a hardware demonstration to ISS in May 2014 (39S).
- Additional portable load monitoring devices (PLMDs) are under evaluation in the ExPC Lab.
- PLMDs are favored over platform redesign as they support future exploration needs.

#### Methods

- XSENS ForceShoe<sup>™</sup> measure tri-axial force and torque • data at 50 Hz (Fig. 2).
- Ground and Parabolic flight (Fig. 3) evaluations were • performed to test the XSENS ForceShoes<sup>™</sup>.

This research is sponsored by HRP Directed Task MTL 922.



#### bungee pull down load was applied during standing.

| Bungee Load                          | Flight Day 2  |                | Flight Day 4* |              |
|--------------------------------------|---------------|----------------|---------------|--------------|
|                                      | mean (±SD)    | spread         | mean (±SD)    | spread       |
| Average % of Target<br>(Fz, ±SD)     | 99.3% (±2.8)  | 94.6 - 101.7%  | 89.4% (±0.2)  | 89.2 - 89.6% |
| Average % of Target<br>(Fx,y,z, ±SD) | 103.7% (±1.9) | 101.8 - 106.6% | 92.8% (±1.3)  | 91.8 - 94.2% |
|                                      | N=5           |                | N=3           |              |

Table 4: Results of load measurements made while subject was wearing the ForceShoes<sup>™</sup> and standing on a force plate. Analysis included BW, three additional weight loads, and set of deadlifts from 5 subjects.

| HILT Eval                            | HILT Evaluation |               |  |
|--------------------------------------|-----------------|---------------|--|
|                                      | mean (±SD)      | spread        |  |
| Average % of Target<br>(Fx,y,z, ±SD) | 101.2% (±0.8)   | 98.1 - 103.7% |  |
|                                      | N=25            |               |  |

- ForceShoes<sup>™</sup> demonstrate accuracy and low variability (<5%) between measures.
- Subjects reported acceptable comfort and ease of use.
- Custom software and ForceShoe<sup>™</sup> hardware operate well in simulated microgravity environment.
- Recommended for flight demo aboard ISS to monitor ARED exercise loads.

• Goal is to identify a device that will meet both research and daily operational needs.



Figure 5: PLMDs under evaluation. A) JSC Robotics X1 Force Shoe B) Aurora Flight Systems Force Plates (SBIR Phase I completed) C) Nike Hyperworkout+ Shoe (SAA) \*USARIEM/MIT LL instrumented boot not shown here.